From Wikipedia, the free encyclopedia
MSX2
Identifiers
Aliases MSX2, CRS2, FPP, HOX8, MSH, PFM, PFM1, Msh homeobox 2
External IDs OMIM: 123101 MGI: 97169 HomoloGene: 1837 GeneCards: MSX2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002449
NM_001363626

NM_013601

RefSeq (protein)

NP_002440
NP_001350555

NP_038629

Location (UCSC) Chr 5: 174.72 – 174.73 Mbn/a
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

Homeobox protein MSX-2 is a protein that in humans is encoded by the MSX2 gene. [4] [5] [6]

Function

This gene encodes a member of the muscle segment homeobox gene family. The encoded protein is a transcriptional repressor whose normal activity may establish a balance between survival and apoptosis of neural crest-derived cells required for proper craniofacial morphogenesis. The encoded protein may also have a role in promoting cell growth under certain conditions and may be an important target for the RAS signaling pathways. Mutations in this gene are associated with parietal foramina 1 and craniosynostosis type 2. [6] Msx2 is a homeobox gene localized on human chromosome 5 that encodes a transcription repressor and activator (MSX-2) responsible for craniofacial and limb-bud development. Cells will express msx2 when exposed to signaling molecules BMP-2 and BMP-4 in situ. [7] Expression of msx2 leads to the proliferation, migration and osteogenic differentiation of neural crest cells during embryogenesis and bone fracture. [8] It is well documented that expression of cell-cell adhesion molecules such as E-cadherins will promote structural integrity and an epithelial arrangement of cells, while expression of N-cadherin and vimentin promote mesenchymal arrangement and cell migration. [9] [10] Msx2 downregulates E-cadherins and upregulates N-cadherin and vimentin which indicates its role in inducing epithelial mesenchymal transition (EMT). Germline knockout mice have been created for this gene (Msx2 +/-) in order to examine functional loss. [11] Clinical studies on craniosynostosis, or the premature fusion of cranial structures, have shown the condition to be genetically linked to mutation in the msx2 homeobox gene. [12]

Interactions

Msh homeobox 2 has been shown to interact with DLX5, [13] DLX2 [13] and MSX1. [13]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000120149Ensembl, May 2017
  2. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ Takahashi C, Akiyama N, Matsuzaki T, Takai S, Kitayama H, Noda M (May 1996). "Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene". Oncogene. 12 (10): 2137–46. PMID  8668339.
  5. ^ Kostrzewa M, Grady DL, Moyzis RK, Flöter L, Müller U (March 1996). "Integration of four genes, a pseudogene, thirty-one STSs, and a highly polymorphic STRP into the 7-10 Mb YAC contig of 5q34-q35". Human Genetics. 97 (3): 399–403. doi: 10.1007/BF02185781. PMID  8786091. S2CID  12647370.
  6. ^ a b "Entrez Gene: MSX2 msh homeobox 2".
  7. ^ Rifas L (July 1997). "Gestational exposure to ethanol suppresses msx2 expression in developing mouse embryos". Proc Natl Acad Sci U S A. 94 (14): 7549–54. Bibcode: 1997PNAS...94.7549R. doi: 10.1073/pnas.94.14.7549. PMC  23859. PMID  9207129.
  8. ^ Liu H, Chen B, Li Y (March 2019). "microRNA-203 promotes proliferation, differentiation, and migration of osteoblasts by upregulation of Msh homeobox 2". Journal of Cellular Physiology. 234 (10): 17639–17648. doi: 10.1002/jcp.28387. PMID  30854680. S2CID  73726197.
  9. ^ Fujita T, Hayashida K, Shiba H, Kishimoto A, Matsuda S, Takeda K, Kawaguchi H, Kurihara H (August 2010). "The expressions of claudin-1 and E-cadherin in junctional epithelium". Journal of Periodontal Research. 45 (4): 579–82. doi: 10.1111/j.1600-0765.2009.01258.x. PMID  20337884.
  10. ^ Zhao Y, Yao J, Wu XP, Zhao L, Zhou YX, Zhang Y, You QD, Guo QL, Lu N (June 2015). "Wogonin suppresses human alveolar adenocarcinoma cell A549 migration in inflammatory microenvironment by modulating the IL-6/STAT3 signaling pathway". Molecular Carcinogenesis. 54 (Suppl 1): E81-93. doi: 10.1002/mc.22182. PMID  24976450. S2CID  29685898.
  11. ^ Yu Z, Yu W, Liu J, Wu D, Wang C, Zhang J, Zhao J (July 2018). "Lens-specific deletion of the Msx2 gene increased apoptosis by enhancing the caspase-3/caspase-8 signaling pathway". The Journal of International Medical Research. 46 (7): 2843–2855. doi: 10.1177/0300060518774687. PMC  6124292. PMID  29921154.
  12. ^ Melville H, Wang Y, Taub PJ, Jabs EW (December 2010). "Genetic basis of potential therapeutic strategies for craniosynostosis". American Journal of Medical Genetics. Part A. 152A (12): 3007–15. doi: 10.1002/ajmg.a.33703. PMID  21082653. S2CID  24424024.
  13. ^ a b c Zhang H, Hu G, Wang H, Sciavolino P, Iler N, Shen MM, Abate-Shen C (May 1997). "Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism". Molecular and Cellular Biology. 17 (5): 2920–32. doi: 10.1128/mcb.17.5.2920. PMC  232144. PMID  9111364.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


From Wikipedia, the free encyclopedia
MSX2
Identifiers
Aliases MSX2, CRS2, FPP, HOX8, MSH, PFM, PFM1, Msh homeobox 2
External IDs OMIM: 123101 MGI: 97169 HomoloGene: 1837 GeneCards: MSX2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002449
NM_001363626

NM_013601

RefSeq (protein)

NP_002440
NP_001350555

NP_038629

Location (UCSC) Chr 5: 174.72 – 174.73 Mbn/a
PubMed search [2] [3]
Wikidata
View/Edit Human View/Edit Mouse

Homeobox protein MSX-2 is a protein that in humans is encoded by the MSX2 gene. [4] [5] [6]

Function

This gene encodes a member of the muscle segment homeobox gene family. The encoded protein is a transcriptional repressor whose normal activity may establish a balance between survival and apoptosis of neural crest-derived cells required for proper craniofacial morphogenesis. The encoded protein may also have a role in promoting cell growth under certain conditions and may be an important target for the RAS signaling pathways. Mutations in this gene are associated with parietal foramina 1 and craniosynostosis type 2. [6] Msx2 is a homeobox gene localized on human chromosome 5 that encodes a transcription repressor and activator (MSX-2) responsible for craniofacial and limb-bud development. Cells will express msx2 when exposed to signaling molecules BMP-2 and BMP-4 in situ. [7] Expression of msx2 leads to the proliferation, migration and osteogenic differentiation of neural crest cells during embryogenesis and bone fracture. [8] It is well documented that expression of cell-cell adhesion molecules such as E-cadherins will promote structural integrity and an epithelial arrangement of cells, while expression of N-cadherin and vimentin promote mesenchymal arrangement and cell migration. [9] [10] Msx2 downregulates E-cadherins and upregulates N-cadherin and vimentin which indicates its role in inducing epithelial mesenchymal transition (EMT). Germline knockout mice have been created for this gene (Msx2 +/-) in order to examine functional loss. [11] Clinical studies on craniosynostosis, or the premature fusion of cranial structures, have shown the condition to be genetically linked to mutation in the msx2 homeobox gene. [12]

Interactions

Msh homeobox 2 has been shown to interact with DLX5, [13] DLX2 [13] and MSX1. [13]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000120149Ensembl, May 2017
  2. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  3. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ Takahashi C, Akiyama N, Matsuzaki T, Takai S, Kitayama H, Noda M (May 1996). "Characterization of a human MSX-2 cDNA and its fragment isolated as a transformation suppressor gene against v-Ki-ras oncogene". Oncogene. 12 (10): 2137–46. PMID  8668339.
  5. ^ Kostrzewa M, Grady DL, Moyzis RK, Flöter L, Müller U (March 1996). "Integration of four genes, a pseudogene, thirty-one STSs, and a highly polymorphic STRP into the 7-10 Mb YAC contig of 5q34-q35". Human Genetics. 97 (3): 399–403. doi: 10.1007/BF02185781. PMID  8786091. S2CID  12647370.
  6. ^ a b "Entrez Gene: MSX2 msh homeobox 2".
  7. ^ Rifas L (July 1997). "Gestational exposure to ethanol suppresses msx2 expression in developing mouse embryos". Proc Natl Acad Sci U S A. 94 (14): 7549–54. Bibcode: 1997PNAS...94.7549R. doi: 10.1073/pnas.94.14.7549. PMC  23859. PMID  9207129.
  8. ^ Liu H, Chen B, Li Y (March 2019). "microRNA-203 promotes proliferation, differentiation, and migration of osteoblasts by upregulation of Msh homeobox 2". Journal of Cellular Physiology. 234 (10): 17639–17648. doi: 10.1002/jcp.28387. PMID  30854680. S2CID  73726197.
  9. ^ Fujita T, Hayashida K, Shiba H, Kishimoto A, Matsuda S, Takeda K, Kawaguchi H, Kurihara H (August 2010). "The expressions of claudin-1 and E-cadherin in junctional epithelium". Journal of Periodontal Research. 45 (4): 579–82. doi: 10.1111/j.1600-0765.2009.01258.x. PMID  20337884.
  10. ^ Zhao Y, Yao J, Wu XP, Zhao L, Zhou YX, Zhang Y, You QD, Guo QL, Lu N (June 2015). "Wogonin suppresses human alveolar adenocarcinoma cell A549 migration in inflammatory microenvironment by modulating the IL-6/STAT3 signaling pathway". Molecular Carcinogenesis. 54 (Suppl 1): E81-93. doi: 10.1002/mc.22182. PMID  24976450. S2CID  29685898.
  11. ^ Yu Z, Yu W, Liu J, Wu D, Wang C, Zhang J, Zhao J (July 2018). "Lens-specific deletion of the Msx2 gene increased apoptosis by enhancing the caspase-3/caspase-8 signaling pathway". The Journal of International Medical Research. 46 (7): 2843–2855. doi: 10.1177/0300060518774687. PMC  6124292. PMID  29921154.
  12. ^ Melville H, Wang Y, Taub PJ, Jabs EW (December 2010). "Genetic basis of potential therapeutic strategies for craniosynostosis". American Journal of Medical Genetics. Part A. 152A (12): 3007–15. doi: 10.1002/ajmg.a.33703. PMID  21082653. S2CID  24424024.
  13. ^ a b c Zhang H, Hu G, Wang H, Sciavolino P, Iler N, Shen MM, Abate-Shen C (May 1997). "Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism". Molecular and Cellular Biology. 17 (5): 2920–32. doi: 10.1128/mcb.17.5.2920. PMC  232144. PMID  9111364.

Further reading

External links

This article incorporates text from the United States National Library of Medicine, which is in the public domain.



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook