From Wikipedia, the free encyclopedia
Rosmarinic acid
Rosmarinic acid
Names
Preferred IUPAC name
(2R)-3-(3,4-Dihydroxyphenyl)-2-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}propanoic acid
Identifiers
3D model ( JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.123.507 Edit this at Wikidata
KEGG
PubChem CID
UNII
  • InChI=1S/C18H16O8/c19-12-4-1-10(7-14(12)21)3-6-17(23)26-16(18(24)25)9-11-2-5-13(20)15(22)8-11/h1-8,16,19-22H,9H2,(H,24,25)/b6-3+ checkY
    Key: DOUMFZQKYFQNTF-ZZXKWVIFSA-N checkY
  • InChI=1/C18H16O8/c19-12-4-1-10(7-14(12)21)3-6-17(23)26-16(18(24)25)9-11-2-5-13(20)15(22)8-11/h1-8,16,19-22H,9H2,(H,24,25)/b6-3+
    Key: DOUMFZQKYFQNTF-ZZXKWVIFBW
  • O=C(O)C(OC(=O)\C=C\c1ccc(O)c(O)c1)Cc2cc(O)c(O)cc2
Properties
C18H16O8
Molar mass 360.318 g·mol−1
Appearance Red-orange powder
Melting point 171 to 175 °C (340 to 347 °F; 444 to 448 K)
Slightly soluble
Solubility in other solvents Well soluble in most organic solvents [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  verify ( what is checkY☒N ?)

Rosmarinic acid, named after rosemary (Salvia rosmarinus Spenn.), is a polyphenol constituent of many culinary herbs, including rosemary (Salvia rosmarinus L.), perilla (Perilla frutescens L.), sage (Salvia officinalis L.), mint (Mentha arvense L.), and basil (Ocimum basilicum L.). [1]

History

Rosmarinic acid was first isolated and characterized in 1958 by the Italian chemists Scarpatti and Oriente from rosemary ( Salvia rosmarinus), [2] after which the acid is named.

Chemistry

Chemically, rosmarinic acid is a caffeic acid ester, with tyrosine providing another phenolic ring via dihydroxyphenyl- lactic acid. [1] It has a molecular mass of 360 daltons. [1]

Natural occurrences

Rosmarinic acid accumulation is shown in hornworts, in the fern family Blechnaceae, and in species of several orders of mono- and dicotyledonous angiosperms. [3]

It is found most notably in many Lamiaceae (dicotyledons in the order Lamiales), especially in the subfamily Nepetoideae. [1] [4] It is found in species used commonly as culinary herbs such as Ocimum basilicum (basil), Ocimum tenuiflorum (holy basil), Melissa officinalis (lemon balm), Salvia rosmarinus ( rosemary), Origanum majorana ( marjoram), Salvia officinalis (sage), thyme and peppermint. [1] [5] It is also found in plants in the family Marantaceae (monocotyledons in the order Zingiberales) [3] such as species in the genera Maranta ( Maranta leuconeura, Maranta depressa) and Thalia ( Thalia geniculata). [6]

Rosmarinic acid and the derivative rosmarinic acid 3′-O-β-D- glucoside can be found in Anthoceros agrestis, a hornwort (Anthocerotophyta). [7]

Metabolism

The biosynthesis of rosmarinic acid uses 4-coumaroyl-CoA from the general phenylpropanoid pathway as a hydroxycinnamoyl donor. [1] The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and 3,4-dihydroxyphenyllactic acid derived from L-tyrosine. [3] Thus, chemically, rosmarinic acid is an ester of caffeic acid with 3,4-dihydroxyphenyllactic acid, but biologically, it is formed from 4-coumaroyl-4′-hydroxyphenyllactate. [8] Rosmarinate synthase is an enzyme that uses caffeoyl-CoA and 3,4-dihydroxyphenyllactic acid to produce CoA and rosmarinate. Hydroxyphenylpyruvate reductase is also an enzyme involved in this biosynthesis. [9]

Rosmarinic acid biosynthesis

Uses

When extracted from plant sources or synthesized in manufacturing, rosmarinic acid may be used in foods or beverages as a flavoring, in cosmetics, or as a dietary supplement. [1]

References

  1. ^ a b c d e f g h "Rosmarinic acid". PubChem, US National Library of Medicine. 10 July 2021. Retrieved 11 July 2021.
  2. ^ Scarpati, M. L.; Oriente, G. (1958). "Isolamento costituzione e dell'acido rosmarinico (dal Rosmarinus off.)". Ricerca Scientifica. 28: 2329–2333.
  3. ^ a b c Petersen, M.; Abdullah, Y.; Benner, J.; Eberle, D.; Gehlen, K.; Hücherig, S.; Janiak, V.; Kim, K. H.; Sander, M.; Weitzel, C.; Wolters, S. (2009). "Evolution of rosmarinic acid biosynthesis". Phytochemistry. 70 (15–16): 1663–1679. Bibcode: 2009PChem..70.1663P. doi: 10.1016/j.phytochem.2009.05.010. PMID  19560175.
  4. ^ Distribution and taxonomic implications of some phenolics in the family Lamiaceae determined by ESR spectroscopy. J. A. Pedersen, Biochemical Systematics and Ecology, 2000, volume 28, pages 229–253
  5. ^ Clifford, M. N. (1999). "Chlorogenic acids and other cinnamates. Nature, occurrence and dietary burden". Journal of the Science of Food and Agriculture. 79 (3): 362–372. doi: 10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D.
  6. ^ Abdullah, Yana; Schneider, Bernd; Petersen, Maike (12 December 2008). "Occurrence of rosmarinic acid, chlorogenic acid and rutin in Marantaceae species". Phytochemistry Letters. 1 (4): 199–203. Bibcode: 2008PChL....1..199A. doi: 10.1016/j.phytol.2008.09.010.
  7. ^ Vogelsang, Katharina; Schneider, Bernd; Petersen, Maike (2006). "Production of rosmarinic acid and a new rosmarinic acid 3′-O-β-D-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton". Planta. 223 (2): 369–373. doi: 10.1007/s00425-005-0089-8. PMID  16133208. S2CID  29302603.
  8. ^ "MetaCyc rosmarinic acid biosynthesis I". biocyc.org.
  9. ^ Petersen, M.; Alfermann, A. W. (1988). "Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase". Zeitschrift für Naturforschung C. 43 (7–8): 501–504. doi: 10.1515/znc-1988-7-804. S2CID  35635116.
From Wikipedia, the free encyclopedia
Rosmarinic acid
Rosmarinic acid
Names
Preferred IUPAC name
(2R)-3-(3,4-Dihydroxyphenyl)-2-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}propanoic acid
Identifiers
3D model ( JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.123.507 Edit this at Wikidata
KEGG
PubChem CID
UNII
  • InChI=1S/C18H16O8/c19-12-4-1-10(7-14(12)21)3-6-17(23)26-16(18(24)25)9-11-2-5-13(20)15(22)8-11/h1-8,16,19-22H,9H2,(H,24,25)/b6-3+ checkY
    Key: DOUMFZQKYFQNTF-ZZXKWVIFSA-N checkY
  • InChI=1/C18H16O8/c19-12-4-1-10(7-14(12)21)3-6-17(23)26-16(18(24)25)9-11-2-5-13(20)15(22)8-11/h1-8,16,19-22H,9H2,(H,24,25)/b6-3+
    Key: DOUMFZQKYFQNTF-ZZXKWVIFBW
  • O=C(O)C(OC(=O)\C=C\c1ccc(O)c(O)c1)Cc2cc(O)c(O)cc2
Properties
C18H16O8
Molar mass 360.318 g·mol−1
Appearance Red-orange powder
Melting point 171 to 175 °C (340 to 347 °F; 444 to 448 K)
Slightly soluble
Solubility in other solvents Well soluble in most organic solvents [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  verify ( what is checkY☒N ?)

Rosmarinic acid, named after rosemary (Salvia rosmarinus Spenn.), is a polyphenol constituent of many culinary herbs, including rosemary (Salvia rosmarinus L.), perilla (Perilla frutescens L.), sage (Salvia officinalis L.), mint (Mentha arvense L.), and basil (Ocimum basilicum L.). [1]

History

Rosmarinic acid was first isolated and characterized in 1958 by the Italian chemists Scarpatti and Oriente from rosemary ( Salvia rosmarinus), [2] after which the acid is named.

Chemistry

Chemically, rosmarinic acid is a caffeic acid ester, with tyrosine providing another phenolic ring via dihydroxyphenyl- lactic acid. [1] It has a molecular mass of 360 daltons. [1]

Natural occurrences

Rosmarinic acid accumulation is shown in hornworts, in the fern family Blechnaceae, and in species of several orders of mono- and dicotyledonous angiosperms. [3]

It is found most notably in many Lamiaceae (dicotyledons in the order Lamiales), especially in the subfamily Nepetoideae. [1] [4] It is found in species used commonly as culinary herbs such as Ocimum basilicum (basil), Ocimum tenuiflorum (holy basil), Melissa officinalis (lemon balm), Salvia rosmarinus ( rosemary), Origanum majorana ( marjoram), Salvia officinalis (sage), thyme and peppermint. [1] [5] It is also found in plants in the family Marantaceae (monocotyledons in the order Zingiberales) [3] such as species in the genera Maranta ( Maranta leuconeura, Maranta depressa) and Thalia ( Thalia geniculata). [6]

Rosmarinic acid and the derivative rosmarinic acid 3′-O-β-D- glucoside can be found in Anthoceros agrestis, a hornwort (Anthocerotophyta). [7]

Metabolism

The biosynthesis of rosmarinic acid uses 4-coumaroyl-CoA from the general phenylpropanoid pathway as a hydroxycinnamoyl donor. [1] The hydroxycinnamoyl acceptor substrate comes from the shikimate pathway: shikimic acid, quinic acid and 3,4-dihydroxyphenyllactic acid derived from L-tyrosine. [3] Thus, chemically, rosmarinic acid is an ester of caffeic acid with 3,4-dihydroxyphenyllactic acid, but biologically, it is formed from 4-coumaroyl-4′-hydroxyphenyllactate. [8] Rosmarinate synthase is an enzyme that uses caffeoyl-CoA and 3,4-dihydroxyphenyllactic acid to produce CoA and rosmarinate. Hydroxyphenylpyruvate reductase is also an enzyme involved in this biosynthesis. [9]

Rosmarinic acid biosynthesis

Uses

When extracted from plant sources or synthesized in manufacturing, rosmarinic acid may be used in foods or beverages as a flavoring, in cosmetics, or as a dietary supplement. [1]

References

  1. ^ a b c d e f g h "Rosmarinic acid". PubChem, US National Library of Medicine. 10 July 2021. Retrieved 11 July 2021.
  2. ^ Scarpati, M. L.; Oriente, G. (1958). "Isolamento costituzione e dell'acido rosmarinico (dal Rosmarinus off.)". Ricerca Scientifica. 28: 2329–2333.
  3. ^ a b c Petersen, M.; Abdullah, Y.; Benner, J.; Eberle, D.; Gehlen, K.; Hücherig, S.; Janiak, V.; Kim, K. H.; Sander, M.; Weitzel, C.; Wolters, S. (2009). "Evolution of rosmarinic acid biosynthesis". Phytochemistry. 70 (15–16): 1663–1679. Bibcode: 2009PChem..70.1663P. doi: 10.1016/j.phytochem.2009.05.010. PMID  19560175.
  4. ^ Distribution and taxonomic implications of some phenolics in the family Lamiaceae determined by ESR spectroscopy. J. A. Pedersen, Biochemical Systematics and Ecology, 2000, volume 28, pages 229–253
  5. ^ Clifford, M. N. (1999). "Chlorogenic acids and other cinnamates. Nature, occurrence and dietary burden". Journal of the Science of Food and Agriculture. 79 (3): 362–372. doi: 10.1002/(SICI)1097-0010(19990301)79:3<362::AID-JSFA256>3.0.CO;2-D.
  6. ^ Abdullah, Yana; Schneider, Bernd; Petersen, Maike (12 December 2008). "Occurrence of rosmarinic acid, chlorogenic acid and rutin in Marantaceae species". Phytochemistry Letters. 1 (4): 199–203. Bibcode: 2008PChL....1..199A. doi: 10.1016/j.phytol.2008.09.010.
  7. ^ Vogelsang, Katharina; Schneider, Bernd; Petersen, Maike (2006). "Production of rosmarinic acid and a new rosmarinic acid 3′-O-β-D-glucoside in suspension cultures of the hornwort Anthoceros agrestis Paton". Planta. 223 (2): 369–373. doi: 10.1007/s00425-005-0089-8. PMID  16133208. S2CID  29302603.
  8. ^ "MetaCyc rosmarinic acid biosynthesis I". biocyc.org.
  9. ^ Petersen, M.; Alfermann, A. W. (1988). "Two new enzymes of rosmarinic acid biosynthesis from cell cultures of Coleus blumei: hydroxyphenylpyruvate reductase and rosmarinic acid synthase". Zeitschrift für Naturforschung C. 43 (7–8): 501–504. doi: 10.1515/znc-1988-7-804. S2CID  35635116.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook