From Wikipedia, the free encyclopedia

mir-16
miR-16 microRNA secondary structure and sequence conservation.
Identifiers
Symbolmir-16
Rfam RF00254
miRBase family MIPF0000006
HGNC 31545
OMIM 609704
Other data
RNA type microRNA
Domain(s) Eukaryota;
PDB structures PDBe

The miR-16 microRNA precursor family is a group of related small non-coding RNA genes that regulates gene expression. miR-16, miR-15, mir-195 and miR-497 are related microRNA precursor sequences from the mir-15 gene family ( [1]). This microRNA family appears to be vertebrate specific and its members have been predicted or experimentally validated in a wide range of vertebrate species ( MIPF0000006).

Background

The human miR-16 precursor was discovered through detailed expression profile and Karyotype analyses of patients by Calin and colleagues. [1] Karyotyping of chromosome structures from individuals with B-cell chronic lymphocytic leukaemias (B-CLL) found that more than half have alterations in the 13q14 region. [1] [2] Deletions of this well characterised 1 megabase region of the genome [3] [4] was also observed in approximately 50% of mantle cell lymphoma, [ citation needed] up to 40% of multiple myeloma, [ citation needed] and 60% of prostate cancers. [5] Comprehensive screenings of the region at the time did not provide consistent evidence of involvement from any of the known genes at the time. [3] [4] [6] [7] [8] [9] [10] Using CD5+ B-lymphocytes, [11] which is known to accumulate with B-CLL progression, the minimal region lost from 13q14 region was scrutinised for regulatory elements. [1] Publicly available sequence databases were used to identify a gene cluster which encodes the homologue to the human miR15 and miR16 from the Caenorhabditis elegans. [12] [13] [14]

Gene targets

In the original publication which identified the action of miR15 and miR16 in the development of B-CLL, Calin and colleagues proposed that miR16 could be the targets with imperfect base pairing for 14 genes. [1] Increased CD5+ B-lymphocytes in CLL suggests the miR16 may be involved in cellular differentiation. [1] In animal models single-stranded microRNA species act by binding to imperfect mRNA complements, typically to the 3' UTR, [15] [16] although targets have also been observed in the coding sequence of the mRNA. [15] [17] Downregulation of miR16 (as well as miR15) was observed in diffuse large B-cell lymphoma. [18] miR16 has been shown to bind to a nine base pair to a complementary sequence in the 3' UTR region of BCL2, which is an anti- apoptotic gene involved in an evolutionarily conserved pathway in programmed cell death. [19] In the nasopharyngeal carcinoma cell line, miR-16 has been shown to target the 3' UTR of vascular endothelial growth factor (VEGF) and repress the expression of VEGF, which is an important angiogenic factor. [20] [21]

Clinical relevance

Altered expression of microRNA-16 has been observed in cancer, [22] [23] [24] including malignancies of the breast, [25] colon [26] [27] , brain [28] [29] , lung [30] , lymphatic system [1] [18] [31] [32] , ovaries [33] , pancreas [34] , prostate [35] and stomach. [36] This difference in expression levels can be used distinguish between cancerous and healthy tissues and to determine clinical prognosis. [27] [37] [38] The fact that pathology is associated with a different expression profile has led to the proposal that disease specific biomarkers can provide potential targets for directed clinical intervention. [39] More recently, there is evidence that in colorectal cancer that the efficacy of treatment with the monoclonal antibody cetuximab can be assessed by the expression pattern of colorectal carcinoma after therapy. [40]

miR-16 and miR-15a are clustered within a 0.5 kbp region in Chromosome 13 (13q14) in humans, a chromosomal region shown to be deleted or down-regulated in approximately more than half of B-CLL, [1] the most prevalent form of leukemia in adults. [41] Carcinogenesis is a gradual process, involving multiple genetic mutations, thus every patient with malignancy presents with a heterogeneous population of cells. The fact that mir-16 microRNA loss is observed in a large proportion of cells indicates the change occurred early in cancer development [23] and a target for therapeutic intervention.

References

  1. ^ a b c d e f g Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002). "Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia". Proc Natl Acad Sci USA. 99 (24): 15524–15529. Bibcode: 2002PNAS...9915524C. doi: 10.1073/pnas.242606799. PMC  137750. PMID  12434020.
  2. ^ Coll-Mulet L, Gil J (2009). "Genetic alterations in chronic lymphocytic leukaemia". Clin Transl Oncol. 11 (4): 194–198. doi: 10.1007/s12094-009-0340-z. PMID  19380295. S2CID  36669052.
  3. ^ a b Bullrich F, Fujii H, Calin G, Mabuchi H, Negrini M, Pekarsky Y, Rassenti L, Alder H, Reed JC, Keating MJ, Kipps TJ, Croce C, M. (2001). "Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene". Cancer Res. 61 (18): 6640–6648. PMID  11559527.{{ cite journal}}: CS1 maint: multiple names: authors list ( link)
  4. ^ a b Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E, Guccione E, Qu X, Chien M, Murty VV, Gaidano G, Inghirami G, Zhang P, Fischer S, Kalachikov SM, Russo J, Edelman I, Efstratiadis A, Dalla-Favera R (2001). "Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia". Blood. 97 (7): 2098–2104. doi: 10.1182/blood.V97.7.2098. PMID  11264177.
  5. ^ Dong JT, Boyd JC, Frierson HF Jr (2001). "Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer". Prostate. 49 (3): 166–171. doi: 10.1002/pros.1131. PMID  11746261. S2CID  40075043.
  6. ^ Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grander D, Iyengar A, Baranova A, Kashuba V, Merup M, Wu XS, Gardiner A, Mullenbach R, Poltaraus A, Hultstrom AL, Juliusson G, Chapman R, Tiller M, Cotter F, Gahrton G, Yankovsky N, Zabarovsky E, Einhorn S, Oscier D (1997). "Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia". Oncogene. 15 (20): 2463–2473. doi: 10.1038/sj.onc.1201643. PMID  9395242. S2CID  21133945.
  7. ^ Mabuchi H, Fujii H, Calin G, Alder H, Negrini M, Rassenti L, Kipps TJ, Bullrich F, Croce CM (2001). "Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia". Cancer Res. 61 (7): 2870–2877. PMID  11306461.
  8. ^ Rondeau G, Moreau I, Bézieau S, Petit JL, Heilig R, Fernandez S, Pennarun E, Myers JS, Batzer MA, Moisan JP, Devilder MC (2001). "Comprehensive analysis of a large genomic sequence at the putative B-cell chronic lymphocytic leukaemia (B-CLL) tumour suppresser gene locus". Mutat Res. 458 (3–4): 55–70. doi: 10.1016/S0027-5107(01)00219-6. PMID  11691637.
  9. ^ Wolf S, Mertens D, Schaffner C, Korz C, Dohner H, Stilgenbauer S, Lichter P (2001). "B-cell neoplasia associated gene with multiple splicing (BCMS): the candidate B-CLL gene on 13q14 comprises more than 560 kb covering all critical regions". Hum Mol Genet. 10 (12): 1275–1285. doi: 10.1093/hmg/10.12.1275. PMID  11406609.
  10. ^ Rowntree C, Duke V, Panayiotidis P, Kotsi P, Palmisano GL, Hoffbrand AV, Foroni L (2002). "Deletion analysis of chromosome 13q14.3 and characterisation of an alternative splice form of LEU1 in B cell chronic lymphocytic leukemia". Leukemia. 16 (17): 1267–1275. doi: 10.1038/sj.leu.2402551. PMID  12094250.
  11. ^ Caligaris-Cappio F, Hamblin TJ (1999). "B-cell chronic lymphocytic leukemia: a bird of a different feather". J Clin Oncol. 17 (1): 399–408. doi: 10.1200/JCO.1999.17.1.399. PMID  10458259.
  12. ^ Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). "Identification of novel genes coding for small expressed RNAs". Science. 294 (5543): 853–858. Bibcode: 2001Sci...294..853L. doi: 10.1126/science.1064921. hdl: 11858/00-001M-0000-0012-F65F-2. PMID  11679670. S2CID  18101169.
  13. ^ Lau NC, Lim LP, Weinstein EG, Bartel DP (2001). "An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans". Science. 294 (5543): 858–862. Bibcode: 2001Sci...294..858L. doi: 10.1126/science.1065062. PMID  11679671. S2CID  43262684.
  14. ^ Lee RC, Ambros V (2001). "An extensive class of small RNAs in Caenorhabditis elegans". Science. 294 (5543): 862–864. Bibcode: 2001Sci...294..862L. doi: 10.1126/science.1065329. PMID  11679672. S2CID  33480585.
  15. ^ a b Lewis BP, Burge CB, Bartel DP (2005). "Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets". Cell. 120 (1): 15–20. doi: 10.1016/j.cell.2004.12.035. PMID  15652477.
  16. ^ Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005). "Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals". Nature. 434 (7031): 338–345. Bibcode: 2005Natur.434..338X. doi: 10.1038/nature03441. PMC  2923337. PMID  15735639.
  17. ^ Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008). "MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation". Nature. 455 (7216): 1124–1128. Bibcode: 2008Natur.455.1124T. doi: 10.1038/nature07299. PMID  18806776. S2CID  4330178.
  18. ^ a b Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2004). "Accumulation of miR-155 and BIC RNA in human B-cell lymphoma". Proc Natl Acad Sci U S A. 102 (10): 3627–3632. doi: 10.1073/pnas.0500613102. PMC  552785. PMID  15738415.
  19. ^ Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005). "miR-15 and miR-16 induce apoptosis by targeting BCL2". Proc Natl Acad Sci U S A. 102 (39): 13944–13949. Bibcode: 2005PNAS..10213944C. doi: 10.1073/pnas.0506654102. PMC  1236577. PMID  16166262. (Erratum:  doi: 10.1073/pnas.0510793103, PMID  16166262)
  20. ^ Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (27 December 2006). "MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia". PLOS ONE. 1 (1): e116. Bibcode: 2006PLoSO...1..116H. doi: 10.1371/journal.pone.0000116. PMC  1762435. PMID  17205120.
  21. ^ Ye W, Lv Q, Wong CK, Hu S, Fu C, Hua Z, Cai G, Li G, Yang BB, Zhang Y (5 March 2008). "The effect of central loops in miRNA:MRE duplexes on the efficiency of miRNA-mediated gene regulation". PLOS ONE. 3 (3): e1719. Bibcode: 2008PLoSO...3.1719Y. doi: 10.1371/journal.pone.0001719. PMC  2248708. PMID  18320040.
  22. ^ Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005). "MicroRNA expression profiles classify human cancers". Nature. 435 (7043): 834–838. Bibcode: 2005Natur.435..834L. doi: 10.1038/nature03702. PMID  15944708. S2CID  4423938.
  23. ^ a b Croce CM. (2009). "Causes and consequences of microRNA dysregulation in cancer". Nat Rev Genet. 10 (10): 704–714. doi: 10.1038/nrg2634. PMC  3467096. PMID  19763153.
  24. ^ Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004). "Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers". Proc Natl Acad Sci U S A. 101 (9): 2999–3004. Bibcode: 2004PNAS..101.2999C. doi: 10.1073/pnas.0307323101. PMC  365734. PMID  14973191.
  25. ^ Rivas MA, Venturutti L, Huang YW, Schillaci R, Huang TH, Elizalde PV (2012). "Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development". Breast Cancer Res. 14 (3): R77. doi: 10.1186/bcr3187. PMC  3446340. PMID  22583478.
  26. ^ Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003). "Reduced accumulation of specific microRNAs in colorectal neoplasia". Mol Cancer Res. 1 (12): 882–891. PMID  14573789.
  27. ^ a b Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC (2008). "MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma". JAMA. 299 (4): 425–436. doi: 10.1001/jama.299.4.425. PMC  2614237. PMID  18230780.
  28. ^ Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005). "Extensive modulation of a set of microRNAs in primary glioblastoma". Biochem Biophys Res Commun. 334 (4): 1351–1358. doi: 10.1016/j.bbrc.2005.07.030. PMID  16039986.
  29. ^ Chan JA, Krichevsky AM, Kosik KS (2007). "MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells". Cancer Res. 65 (14): 6029–6033. doi: 10.1158/0008-5472.CAN-05-0137. PMID  16024602.
  30. ^ Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004). "Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival". Cancer Res. 64 (11): 3753–3756. doi: 10.1158/0008-5472.CAN-04-0637. PMID  15172979.
  31. ^ Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A (2004). "High expression of precursor microRNA-155/BIC RNA in children with Burkitt's lymphoma". Genes Chromosomes Cancer. 39 (2): 167–169. doi: 10.1002/gcc.10316. PMID  14695998. S2CID  10009892.
  32. ^ Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M (2004). "Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant Lymphoma". Cancer Res. 64 (9): 3087–3095. doi: 10.1158/0008-5472.CAN-03-3773. PMID  15126345.
  33. ^ Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM (2007). "MicroRNA signatures in human ovarian cancer". Cancer Res. 67 (8): 8699–8707. doi: 10.1158/0008-5472.CAN-07-1936. PMID  17875710.
  34. ^ Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM (2007). "MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis". JAMA. 297 (17): 1901–1908. doi: 10.1001/jama.297.17.1901. PMID  17473300.
  35. ^ Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R (2008). "The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities". Nat Med. 14 (11): 1271–1277. doi: 10.1038/nm.1880. PMID  18931683. S2CID  1452987.
  36. ^ Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, Ruco LP, Baldassarre G, Croce CM, Vecchione A (2008). "MicroRNA signatures in human ovarian cancer". Cancer Cell. 13 (3): 272–286. doi: 10.1016/j.ccr.2008.02.013. PMID  18328430.
  37. ^ Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006). "Unique microRNA molecular profiles in lung cancer diagnosis and prognosis". Cancer Cell. 9 (3): 189–198. doi: 10.1016/j.ccr.2006.01.025. PMID  16530703.
  38. ^ Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005). "A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia". N Engl J Med. 353 (17): 1793–1801. doi: 10.1056/NEJMoa050995. PMID  16251535.
  39. ^ Cho WC. (2010). "A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia". Expert Opin Ther Targets. 14 (10): 1005–1008. doi: 10.1517/14728222.2010.522399. PMID  20854177. S2CID  37265481.
  40. ^ Ragusa M, Majorana A, Statello L, Maugeri M, Salito L, Barbagallo D, Guglielmino MR, Duro LR, Angelica R, Caltabiano R, Biondi A, Di Vita M, Privitera G, Scalia M, Cappellani A, Vasquez E, Lanzafame S, Basile F, Di Pietro C, Purrello M (2010). "Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment". Mol Cancer Ther. 14 (10): 1005–1008. doi: 10.1158/1535-7163.MCT-10-0137. PMID  20881268.
  41. ^ Döhner H; Stilgenbauer S. Benner A; Leupolt E; Krober A; Bullinger L; Dohner K; Bentz M; Lichter P. (2000). "Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia". N Engl J Med. 343 (26): 1910–1916. doi: 10.1056/NEJM200012283432602. PMID  11136261.

Further reading

External links


  1. ^ Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O (2010). "miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants". Science. 329 (5998): 1537–41. Bibcode: 2010Sci...329.1537B. doi: 10.1126/science.1193692. PMID  20847275. S2CID  7835219.
  2. ^ Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H, Lu X (2010). "Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway". Cancer Res. 70 (18): 7176–86. doi: 10.1158/0008-5472.CAN-10-0697. PMC  2940956. PMID  20668064.
  3. ^ Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ (2010). "Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21 and miR-146a in the placenta". Epigenetics. 5 (7): 583–9. doi: 10.4161/epi.5.7.12762. PMC  2974801. PMID  20647767.
  4. ^ Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, Tavakkolizadeh A (2010). "MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts". Exp Cell Res. 316 (20): 3512–21. doi: 10.1016/j.yexcr.2010.07.007. PMC  2976799. PMID  20633552.
  5. ^ Xu F, Zhang X, Lei Y, Liu X, Liu Z, Tong T, Wang W (2010). "Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma". J Cell Biochem. 111 (3): 727–34. doi: 10.1002/jcb.22762. PMID  20626035. S2CID  19458784.
  6. ^ Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J, Peng X (2010). "MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer's-associated pathogenesis in SAMP8 mice". Neurobiol Aging. 33 (3): 522–534. doi: 10.1016/j.neurobiolaging.2010.04.034. PMID  20619502. S2CID  12138856.
  7. ^ Yang J, Cao Y, Sun J, Zhang Y (2009). "Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells". Med Oncol. 27 (4): 1114–8. doi: 10.1007/s12032-009-9344-3. PMID  19908170. S2CID  21826528.
  8. ^ Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S, Calin GA, Mukherjee P (2009). "MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer". Cancer Res. 69 (23): 9090–5. doi: 10.1158/0008-5472.CAN-09-2552. PMC  2859686. PMID  19903841.
  9. ^ Guo CJ, Pan Q, Jiang B, Chen GY, Li DG (2009). "Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells". Apoptosis. 14 (11): 1331–40. doi: 10.1007/s10495-009-0401-3. PMID  19784778. S2CID  3229011.
  10. ^ Hanlon K, Rudin CE, Harries LW (2009). Williams S (ed.). "Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL)". PLOS ONE. 4 (9): e7169. Bibcode: 2009PLoSO...4.7169H. doi: 10.1371/journal.pone.0007169. PMC  2745703. PMID  19779621.
  11. ^ Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T (2010). "Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes". Mol Ther. 18 (1): 181–7. doi: 10.1038/mt.2009.207. PMC  2839211. PMID  19738602.
  12. ^ Lerner M, Harada M, Lovén J, Castro J, Davis Z, Oscier D, Henriksson M, Sangfelt O, Grandér D, Corcoran MM (2009). "DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1". Exp Cell Res. 315 (17): 2941–52. doi: 10.1016/j.yexcr.2009.07.001. PMID  19591824.
  13. ^ Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E (2009). "miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer". Cancer Res. 69 (13): 5553–9. doi: 10.1158/0008-5472.CAN-08-4277. PMID  19549910.
  14. ^ Aqeilan RI, Calin GA, Croce CM (2010). "miR-15a and miR-16-1 in cancer: discovery, function and future perspectives". Cell Death Differ. 17 (2): 215–20. doi: 10.1038/cdd.2009.69. PMID  19498445.
  15. ^ Tsang WP, Kwok TT (2010). "Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells". J Nutr Biochem. 21 (2): 140–6. doi: 10.1016/j.jnutbio.2008.12.003. PMID  19269153.
  16. ^ Kaddar T, Rouault JP, Chien WW, Chebel A, Gadoux M, Salles G, Ffrench M, Magaud JP (2009). "Two new miR-16 targets: caprin-1 and HMGA1, proteins implicated in cell proliferation". Biol Cell. 101 (9): 511–24. doi: 10.1042/BC20080213. PMID  19250063.
  17. ^ Guo CJ, Pan Q, Li DG, Sun H, Liu BW (2009). "miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis". J Hepatol. 50 (4): 766–78. doi: 10.1016/j.jhep.2008.11.025. PMID  19232449.
  18. ^ Kaddar T, Chien WW, Bertrand Y, Pages MP, Rouault JP, Salles G, Ffrench M, Magaud JP (2009). "Prognostic value of miR-16 expression in childhood acute lymphoblastic leukemia relationships to normal and malignant lymphocyte proliferation". Leuk Res. 33 (9): 1217–23. doi: 10.1016/j.leukres.2008.12.015. PMID  19195700.
  19. ^ Karaa ZS, Iacovoni JS, Bastide A, Lacazette E, Touriol C, Prats H (2009). "The VEGF IRESes are differentially susceptible to translation inhibition by miR-16". RNA. 15 (2): 249–54. doi: 10.1261/rna.1301109. PMC  2648711. PMID  19144909.
  20. ^ Shanmugam N, Reddy MA, Natarajan R (2008). "Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products". J Biol Chem. 283 (52): 36221–33. doi: 10.1074/jbc.M806322200. PMC  2606002. PMID  18854308.
  21. ^ Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008). "miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes". Nucleic Acids Res. 36 (16): 5391–404. doi: 10.1093/nar/gkn522. PMC  2532718. PMID  18701644.
  22. ^ Chen RW, Bemis LT, Amato CM, Myint H, Tran H, Birks DK, Eckhardt SG, Robinson WA (2008). "Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma". Blood. 112 (3): 822–9. doi: 10.1182/blood-2008-03-142182. PMC  2481543. PMID  18483394.
  23. ^ Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008). "miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells". Int J Cancer. 123 (2): 372–9. doi: 10.1002/ijc.23501. PMID  18449891.
  24. ^ Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM (2008). "MiR-15a and miR-16-1 cluster functions in human leukemia". Proc Natl Acad Sci U S A. 105 (13): 5166–71. Bibcode: 2008PNAS..105.5166C. doi: 10.1073/pnas.0800121105. PMC  2278188. PMID  18362358.
  25. ^ Scaglione BJ, Salerno E, Balan M, Coffman F, Landgraf P, Abbasi F, Kotenko S, Marti GE, Raveche ES (2007). "Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model". Br J Haematol. 139 (5): 645–57. doi: 10.1111/j.1365-2141.2007.06851.x. PMC  2692662. PMID  17941951.
  26. ^ Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC, Fredrickson T, Landgraf P, Ramachandra S, Huppi K, Toro JR, Zenger VE, Metcalf RA, Marti GE (2007). "Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice". Blood. 109 (12): 5079–86. doi: 10.1182/blood-2007-02-071225. PMC  1890829. PMID  17351108.
  27. ^ Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M, Jackson AL, Carleton M, Lim L (2007). "Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression". Mol Cell Biol. 27 (6): 2240–52. doi: 10.1128/MCB.02005-06. PMC  1820501. PMID  17242205.
  28. ^ Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC (2005). "miR-15a and miR-16-1 down-regulation in pituitary adenomas". J Cell Physiol. 204 (1): 280–5. doi: 10.1002/jcp.20282. PMID  15648093. S2CID  39337781.
From Wikipedia, the free encyclopedia

mir-16
miR-16 microRNA secondary structure and sequence conservation.
Identifiers
Symbolmir-16
Rfam RF00254
miRBase family MIPF0000006
HGNC 31545
OMIM 609704
Other data
RNA type microRNA
Domain(s) Eukaryota;
PDB structures PDBe

The miR-16 microRNA precursor family is a group of related small non-coding RNA genes that regulates gene expression. miR-16, miR-15, mir-195 and miR-497 are related microRNA precursor sequences from the mir-15 gene family ( [1]). This microRNA family appears to be vertebrate specific and its members have been predicted or experimentally validated in a wide range of vertebrate species ( MIPF0000006).

Background

The human miR-16 precursor was discovered through detailed expression profile and Karyotype analyses of patients by Calin and colleagues. [1] Karyotyping of chromosome structures from individuals with B-cell chronic lymphocytic leukaemias (B-CLL) found that more than half have alterations in the 13q14 region. [1] [2] Deletions of this well characterised 1 megabase region of the genome [3] [4] was also observed in approximately 50% of mantle cell lymphoma, [ citation needed] up to 40% of multiple myeloma, [ citation needed] and 60% of prostate cancers. [5] Comprehensive screenings of the region at the time did not provide consistent evidence of involvement from any of the known genes at the time. [3] [4] [6] [7] [8] [9] [10] Using CD5+ B-lymphocytes, [11] which is known to accumulate with B-CLL progression, the minimal region lost from 13q14 region was scrutinised for regulatory elements. [1] Publicly available sequence databases were used to identify a gene cluster which encodes the homologue to the human miR15 and miR16 from the Caenorhabditis elegans. [12] [13] [14]

Gene targets

In the original publication which identified the action of miR15 and miR16 in the development of B-CLL, Calin and colleagues proposed that miR16 could be the targets with imperfect base pairing for 14 genes. [1] Increased CD5+ B-lymphocytes in CLL suggests the miR16 may be involved in cellular differentiation. [1] In animal models single-stranded microRNA species act by binding to imperfect mRNA complements, typically to the 3' UTR, [15] [16] although targets have also been observed in the coding sequence of the mRNA. [15] [17] Downregulation of miR16 (as well as miR15) was observed in diffuse large B-cell lymphoma. [18] miR16 has been shown to bind to a nine base pair to a complementary sequence in the 3' UTR region of BCL2, which is an anti- apoptotic gene involved in an evolutionarily conserved pathway in programmed cell death. [19] In the nasopharyngeal carcinoma cell line, miR-16 has been shown to target the 3' UTR of vascular endothelial growth factor (VEGF) and repress the expression of VEGF, which is an important angiogenic factor. [20] [21]

Clinical relevance

Altered expression of microRNA-16 has been observed in cancer, [22] [23] [24] including malignancies of the breast, [25] colon [26] [27] , brain [28] [29] , lung [30] , lymphatic system [1] [18] [31] [32] , ovaries [33] , pancreas [34] , prostate [35] and stomach. [36] This difference in expression levels can be used distinguish between cancerous and healthy tissues and to determine clinical prognosis. [27] [37] [38] The fact that pathology is associated with a different expression profile has led to the proposal that disease specific biomarkers can provide potential targets for directed clinical intervention. [39] More recently, there is evidence that in colorectal cancer that the efficacy of treatment with the monoclonal antibody cetuximab can be assessed by the expression pattern of colorectal carcinoma after therapy. [40]

miR-16 and miR-15a are clustered within a 0.5 kbp region in Chromosome 13 (13q14) in humans, a chromosomal region shown to be deleted or down-regulated in approximately more than half of B-CLL, [1] the most prevalent form of leukemia in adults. [41] Carcinogenesis is a gradual process, involving multiple genetic mutations, thus every patient with malignancy presents with a heterogeneous population of cells. The fact that mir-16 microRNA loss is observed in a large proportion of cells indicates the change occurred early in cancer development [23] and a target for therapeutic intervention.

References

  1. ^ a b c d e f g Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002). "Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia". Proc Natl Acad Sci USA. 99 (24): 15524–15529. Bibcode: 2002PNAS...9915524C. doi: 10.1073/pnas.242606799. PMC  137750. PMID  12434020.
  2. ^ Coll-Mulet L, Gil J (2009). "Genetic alterations in chronic lymphocytic leukaemia". Clin Transl Oncol. 11 (4): 194–198. doi: 10.1007/s12094-009-0340-z. PMID  19380295. S2CID  36669052.
  3. ^ a b Bullrich F, Fujii H, Calin G, Mabuchi H, Negrini M, Pekarsky Y, Rassenti L, Alder H, Reed JC, Keating MJ, Kipps TJ, Croce C, M. (2001). "Characterization of the 13q14 tumor suppressor locus in CLL: identification of ALT1, an alternative splice variant of the LEU2 gene". Cancer Res. 61 (18): 6640–6648. PMID  11559527.{{ cite journal}}: CS1 maint: multiple names: authors list ( link)
  4. ^ a b Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E, Guccione E, Qu X, Chien M, Murty VV, Gaidano G, Inghirami G, Zhang P, Fischer S, Kalachikov SM, Russo J, Edelman I, Efstratiadis A, Dalla-Favera R (2001). "Nucleotide sequence, transcription map, and mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic leukemia". Blood. 97 (7): 2098–2104. doi: 10.1182/blood.V97.7.2098. PMID  11264177.
  5. ^ Dong JT, Boyd JC, Frierson HF Jr (2001). "Loss of heterozygosity at 13q14 and 13q21 in high grade, high stage prostate cancer". Prostate. 49 (3): 166–171. doi: 10.1002/pros.1131. PMID  11746261. S2CID  40075043.
  6. ^ Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grander D, Iyengar A, Baranova A, Kashuba V, Merup M, Wu XS, Gardiner A, Mullenbach R, Poltaraus A, Hultstrom AL, Juliusson G, Chapman R, Tiller M, Cotter F, Gahrton G, Yankovsky N, Zabarovsky E, Einhorn S, Oscier D (1997). "Cloning of two candidate tumor suppressor genes within a 10 kb region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia". Oncogene. 15 (20): 2463–2473. doi: 10.1038/sj.onc.1201643. PMID  9395242. S2CID  21133945.
  7. ^ Mabuchi H, Fujii H, Calin G, Alder H, Negrini M, Rassenti L, Kipps TJ, Bullrich F, Croce CM (2001). "Cloning and characterization of CLLD6, CLLD7, and CLLD8, novel candidate genes for leukemogenesis at chromosome 13q14, a region commonly deleted in B-cell chronic lymphocytic leukemia". Cancer Res. 61 (7): 2870–2877. PMID  11306461.
  8. ^ Rondeau G, Moreau I, Bézieau S, Petit JL, Heilig R, Fernandez S, Pennarun E, Myers JS, Batzer MA, Moisan JP, Devilder MC (2001). "Comprehensive analysis of a large genomic sequence at the putative B-cell chronic lymphocytic leukaemia (B-CLL) tumour suppresser gene locus". Mutat Res. 458 (3–4): 55–70. doi: 10.1016/S0027-5107(01)00219-6. PMID  11691637.
  9. ^ Wolf S, Mertens D, Schaffner C, Korz C, Dohner H, Stilgenbauer S, Lichter P (2001). "B-cell neoplasia associated gene with multiple splicing (BCMS): the candidate B-CLL gene on 13q14 comprises more than 560 kb covering all critical regions". Hum Mol Genet. 10 (12): 1275–1285. doi: 10.1093/hmg/10.12.1275. PMID  11406609.
  10. ^ Rowntree C, Duke V, Panayiotidis P, Kotsi P, Palmisano GL, Hoffbrand AV, Foroni L (2002). "Deletion analysis of chromosome 13q14.3 and characterisation of an alternative splice form of LEU1 in B cell chronic lymphocytic leukemia". Leukemia. 16 (17): 1267–1275. doi: 10.1038/sj.leu.2402551. PMID  12094250.
  11. ^ Caligaris-Cappio F, Hamblin TJ (1999). "B-cell chronic lymphocytic leukemia: a bird of a different feather". J Clin Oncol. 17 (1): 399–408. doi: 10.1200/JCO.1999.17.1.399. PMID  10458259.
  12. ^ Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001). "Identification of novel genes coding for small expressed RNAs". Science. 294 (5543): 853–858. Bibcode: 2001Sci...294..853L. doi: 10.1126/science.1064921. hdl: 11858/00-001M-0000-0012-F65F-2. PMID  11679670. S2CID  18101169.
  13. ^ Lau NC, Lim LP, Weinstein EG, Bartel DP (2001). "An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans". Science. 294 (5543): 858–862. Bibcode: 2001Sci...294..858L. doi: 10.1126/science.1065062. PMID  11679671. S2CID  43262684.
  14. ^ Lee RC, Ambros V (2001). "An extensive class of small RNAs in Caenorhabditis elegans". Science. 294 (5543): 862–864. Bibcode: 2001Sci...294..862L. doi: 10.1126/science.1065329. PMID  11679672. S2CID  33480585.
  15. ^ a b Lewis BP, Burge CB, Bartel DP (2005). "Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets". Cell. 120 (1): 15–20. doi: 10.1016/j.cell.2004.12.035. PMID  15652477.
  16. ^ Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V, Lindblad-Toh K, Lander ES, Kellis M (2005). "Systematic discovery of regulatory motifs in human promoters and 3' UTRs by comparison of several mammals". Nature. 434 (7031): 338–345. Bibcode: 2005Natur.434..338X. doi: 10.1038/nature03441. PMC  2923337. PMID  15735639.
  17. ^ Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I (2008). "MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation". Nature. 455 (7216): 1124–1128. Bibcode: 2008Natur.455.1124T. doi: 10.1038/nature07299. PMID  18806776. S2CID  4330178.
  18. ^ a b Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE (2004). "Accumulation of miR-155 and BIC RNA in human B-cell lymphoma". Proc Natl Acad Sci U S A. 102 (10): 3627–3632. doi: 10.1073/pnas.0500613102. PMC  552785. PMID  15738415.
  19. ^ Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005). "miR-15 and miR-16 induce apoptosis by targeting BCL2". Proc Natl Acad Sci U S A. 102 (39): 13944–13949. Bibcode: 2005PNAS..10213944C. doi: 10.1073/pnas.0506654102. PMC  1236577. PMID  16166262. (Erratum:  doi: 10.1073/pnas.0510793103, PMID  16166262)
  20. ^ Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (27 December 2006). "MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia". PLOS ONE. 1 (1): e116. Bibcode: 2006PLoSO...1..116H. doi: 10.1371/journal.pone.0000116. PMC  1762435. PMID  17205120.
  21. ^ Ye W, Lv Q, Wong CK, Hu S, Fu C, Hua Z, Cai G, Li G, Yang BB, Zhang Y (5 March 2008). "The effect of central loops in miRNA:MRE duplexes on the efficiency of miRNA-mediated gene regulation". PLOS ONE. 3 (3): e1719. Bibcode: 2008PLoSO...3.1719Y. doi: 10.1371/journal.pone.0001719. PMC  2248708. PMID  18320040.
  22. ^ Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005). "MicroRNA expression profiles classify human cancers". Nature. 435 (7043): 834–838. Bibcode: 2005Natur.435..834L. doi: 10.1038/nature03702. PMID  15944708. S2CID  4423938.
  23. ^ a b Croce CM. (2009). "Causes and consequences of microRNA dysregulation in cancer". Nat Rev Genet. 10 (10): 704–714. doi: 10.1038/nrg2634. PMC  3467096. PMID  19763153.
  24. ^ Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004). "Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers". Proc Natl Acad Sci U S A. 101 (9): 2999–3004. Bibcode: 2004PNAS..101.2999C. doi: 10.1073/pnas.0307323101. PMC  365734. PMID  14973191.
  25. ^ Rivas MA, Venturutti L, Huang YW, Schillaci R, Huang TH, Elizalde PV (2012). "Downregulation of the tumor-suppressor miR-16 via progestin-mediated oncogenic signaling contributes to breast cancer development". Breast Cancer Res. 14 (3): R77. doi: 10.1186/bcr3187. PMC  3446340. PMID  22583478.
  26. ^ Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ (2003). "Reduced accumulation of specific microRNAs in colorectal neoplasia". Mol Cancer Res. 1 (12): 882–891. PMID  14573789.
  27. ^ a b Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, Yuen ST, Chan TL, Kwong DL, Au GK, Liu CG, Calin GA, Croce CM, Harris CC (2008). "MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma". JAMA. 299 (4): 425–436. doi: 10.1001/jama.299.4.425. PMC  2614237. PMID  18230780.
  28. ^ Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005). "Extensive modulation of a set of microRNAs in primary glioblastoma". Biochem Biophys Res Commun. 334 (4): 1351–1358. doi: 10.1016/j.bbrc.2005.07.030. PMID  16039986.
  29. ^ Chan JA, Krichevsky AM, Kosik KS (2007). "MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells". Cancer Res. 65 (14): 6029–6033. doi: 10.1158/0008-5472.CAN-05-0137. PMID  16024602.
  30. ^ Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T (2004). "Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival". Cancer Res. 64 (11): 3753–3756. doi: 10.1158/0008-5472.CAN-04-0637. PMID  15172979.
  31. ^ Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A (2004). "High expression of precursor microRNA-155/BIC RNA in children with Burkitt's lymphoma". Genes Chromosomes Cancer. 39 (2): 167–169. doi: 10.1002/gcc.10316. PMID  14695998. S2CID  10009892.
  32. ^ Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M (2004). "Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant Lymphoma". Cancer Res. 64 (9): 3087–3095. doi: 10.1158/0008-5472.CAN-03-3773. PMID  15126345.
  33. ^ Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM (2007). "MicroRNA signatures in human ovarian cancer". Cancer Res. 67 (8): 8699–8707. doi: 10.1158/0008-5472.CAN-07-1936. PMID  17875710.
  34. ^ Bloomston M, Frankel WL, Petrocca F, Volinia S, Alder H, Hagan JP, Liu CG, Bhatt D, Taccioli C, Croce CM (2007). "MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis". JAMA. 297 (17): 1901–1908. doi: 10.1001/jama.297.17.1901. PMID  17473300.
  35. ^ Bonci D, Coppola V, Musumeci M, Addario A, Giuffrida R, Memeo L, D'Urso L, Pagliuca A, Biffoni M, Labbaye C, Bartucci M, Muto G, Peschle C, De Maria R (2008). "The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities". Nat Med. 14 (11): 1271–1277. doi: 10.1038/nm.1880. PMID  18931683. S2CID  1452987.
  36. ^ Petrocca F, Visone R, Onelli MR, Shah MH, Nicoloso MS, de Martino I, Iliopoulos D, Pilozzi E, Liu CG, Negrini M, Cavazzini L, Volinia S, Alder H, Ruco LP, Baldassarre G, Croce CM, Vecchione A (2008). "MicroRNA signatures in human ovarian cancer". Cancer Cell. 13 (3): 272–286. doi: 10.1016/j.ccr.2008.02.013. PMID  18328430.
  37. ^ Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, Calin GA, Liu CG, Croce CM, Harris CC (2006). "Unique microRNA molecular profiles in lung cancer diagnosis and prognosis". Cancer Cell. 9 (3): 189–198. doi: 10.1016/j.ccr.2006.01.025. PMID  16530703.
  38. ^ Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005). "A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia". N Engl J Med. 353 (17): 1793–1801. doi: 10.1056/NEJMoa050995. PMID  16251535.
  39. ^ Cho WC. (2010). "A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia". Expert Opin Ther Targets. 14 (10): 1005–1008. doi: 10.1517/14728222.2010.522399. PMID  20854177. S2CID  37265481.
  40. ^ Ragusa M, Majorana A, Statello L, Maugeri M, Salito L, Barbagallo D, Guglielmino MR, Duro LR, Angelica R, Caltabiano R, Biondi A, Di Vita M, Privitera G, Scalia M, Cappellani A, Vasquez E, Lanzafame S, Basile F, Di Pietro C, Purrello M (2010). "Specific alterations of microRNA transcriptome and global network structure in colorectal carcinoma after cetuximab treatment". Mol Cancer Ther. 14 (10): 1005–1008. doi: 10.1158/1535-7163.MCT-10-0137. PMID  20881268.
  41. ^ Döhner H; Stilgenbauer S. Benner A; Leupolt E; Krober A; Bullinger L; Dohner K; Bentz M; Lichter P. (2000). "Genomic Aberrations and Survival in Chronic Lymphocytic Leukemia". N Engl J Med. 343 (26): 1910–1916. doi: 10.1056/NEJM200012283432602. PMID  11136261.

Further reading

External links


  1. ^ Baudry A, Mouillet-Richard S, Schneider B, Launay JM, Kellermann O (2010). "miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants". Science. 329 (5998): 1537–41. Bibcode: 2010Sci...329.1537B. doi: 10.1126/science.1193692. PMID  20847275. S2CID  7835219.
  2. ^ Zhang X, Wan G, Mlotshwa S, Vance V, Berger FG, Chen H, Lu X (2010). "Oncogenic Wip1 phosphatase is inhibited by miR-16 in the DNA damage signaling pathway". Cancer Res. 70 (18): 7176–86. doi: 10.1158/0008-5472.CAN-10-0697. PMC  2940956. PMID  20668064.
  3. ^ Maccani MA, Avissar-Whiting M, Banister CE, McGonnigal B, Padbury JF, Marsit CJ (2010). "Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21 and miR-146a in the placenta". Epigenetics. 5 (7): 583–9. doi: 10.4161/epi.5.7.12762. PMC  2974801. PMID  20647767.
  4. ^ Balakrishnan A, Stearns AT, Park PJ, Dreyfuss JM, Ashley SW, Rhoads DB, Tavakkolizadeh A (2010). "MicroRNA mir-16 is anti-proliferative in enterocytes and exhibits diurnal rhythmicity in intestinal crypts". Exp Cell Res. 316 (20): 3512–21. doi: 10.1016/j.yexcr.2010.07.007. PMC  2976799. PMID  20633552.
  5. ^ Xu F, Zhang X, Lei Y, Liu X, Liu Z, Tong T, Wang W (2010). "Loss of repression of HuR translation by miR-16 may be responsible for the elevation of HuR in human breast carcinoma". J Cell Biochem. 111 (3): 727–34. doi: 10.1002/jcb.22762. PMID  20626035. S2CID  19458784.
  6. ^ Liu W, Liu C, Zhu J, Shu P, Yin B, Gong Y, Qiang B, Yuan J, Peng X (2010). "MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer's-associated pathogenesis in SAMP8 mice". Neurobiol Aging. 33 (3): 522–534. doi: 10.1016/j.neurobiolaging.2010.04.034. PMID  20619502. S2CID  12138856.
  7. ^ Yang J, Cao Y, Sun J, Zhang Y (2009). "Curcumin reduces the expression of Bcl-2 by upregulating miR-15a and miR-16 in MCF-7 cells". Med Oncol. 27 (4): 1114–8. doi: 10.1007/s12032-009-9344-3. PMID  19908170. S2CID  21826528.
  8. ^ Bhattacharya R, Nicoloso M, Arvizo R, Wang E, Cortez A, Rossi S, Calin GA, Mukherjee P (2009). "MiR-15a and MiR-16 control Bmi-1 expression in ovarian cancer". Cancer Res. 69 (23): 9090–5. doi: 10.1158/0008-5472.CAN-09-2552. PMC  2859686. PMID  19903841.
  9. ^ Guo CJ, Pan Q, Jiang B, Chen GY, Li DG (2009). "Effects of upregulated expression of microRNA-16 on biological properties of culture-activated hepatic stellate cells". Apoptosis. 14 (11): 1331–40. doi: 10.1007/s10495-009-0401-3. PMID  19784778. S2CID  3229011.
  10. ^ Hanlon K, Rudin CE, Harries LW (2009). Williams S (ed.). "Investigating the targets of MIR-15a and MIR-16-1 in patients with chronic lymphocytic leukemia (CLL)". PLOS ONE. 4 (9): e7169. Bibcode: 2009PLoSO...4.7169H. doi: 10.1371/journal.pone.0007169. PMC  2745703. PMID  19779621.
  11. ^ Takeshita F, Patrawala L, Osaki M, Takahashi RU, Yamamoto Y, Kosaka N, Kawamata M, Kelnar K, Bader AG, Brown D, Ochiya T (2010). "Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes". Mol Ther. 18 (1): 181–7. doi: 10.1038/mt.2009.207. PMC  2839211. PMID  19738602.
  12. ^ Lerner M, Harada M, Lovén J, Castro J, Davis Z, Oscier D, Henriksson M, Sangfelt O, Grandér D, Corcoran MM (2009). "DLEU2, frequently deleted in malignancy, functions as a critical host gene of the cell cycle inhibitory microRNAs miR-15a and miR-16-1". Exp Cell Res. 315 (17): 2941–52. doi: 10.1016/j.yexcr.2009.07.001. PMID  19591824.
  13. ^ Bandi N, Zbinden S, Gugger M, Arnold M, Kocher V, Hasan L, Kappeler A, Brunner T, Vassella E (2009). "miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer". Cancer Res. 69 (13): 5553–9. doi: 10.1158/0008-5472.CAN-08-4277. PMID  19549910.
  14. ^ Aqeilan RI, Calin GA, Croce CM (2010). "miR-15a and miR-16-1 in cancer: discovery, function and future perspectives". Cell Death Differ. 17 (2): 215–20. doi: 10.1038/cdd.2009.69. PMID  19498445.
  15. ^ Tsang WP, Kwok TT (2010). "Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells". J Nutr Biochem. 21 (2): 140–6. doi: 10.1016/j.jnutbio.2008.12.003. PMID  19269153.
  16. ^ Kaddar T, Rouault JP, Chien WW, Chebel A, Gadoux M, Salles G, Ffrench M, Magaud JP (2009). "Two new miR-16 targets: caprin-1 and HMGA1, proteins implicated in cell proliferation". Biol Cell. 101 (9): 511–24. doi: 10.1042/BC20080213. PMID  19250063.
  17. ^ Guo CJ, Pan Q, Li DG, Sun H, Liu BW (2009). "miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis". J Hepatol. 50 (4): 766–78. doi: 10.1016/j.jhep.2008.11.025. PMID  19232449.
  18. ^ Kaddar T, Chien WW, Bertrand Y, Pages MP, Rouault JP, Salles G, Ffrench M, Magaud JP (2009). "Prognostic value of miR-16 expression in childhood acute lymphoblastic leukemia relationships to normal and malignant lymphocyte proliferation". Leuk Res. 33 (9): 1217–23. doi: 10.1016/j.leukres.2008.12.015. PMID  19195700.
  19. ^ Karaa ZS, Iacovoni JS, Bastide A, Lacazette E, Touriol C, Prats H (2009). "The VEGF IRESes are differentially susceptible to translation inhibition by miR-16". RNA. 15 (2): 249–54. doi: 10.1261/rna.1301109. PMC  2648711. PMID  19144909.
  20. ^ Shanmugam N, Reddy MA, Natarajan R (2008). "Distinct roles of heterogeneous nuclear ribonuclear protein K and microRNA-16 in cyclooxygenase-2 RNA stability induced by S100b, a ligand of the receptor for advanced glycation end products". J Biol Chem. 283 (52): 36221–33. doi: 10.1074/jbc.M806322200. PMC  2606002. PMID  18854308.
  21. ^ Liu Q, Fu H, Sun F, Zhang H, Tie Y, Zhu J, Xing R, Sun Z, Zheng X (2008). "miR-16 family induces cell cycle arrest by regulating multiple cell cycle genes". Nucleic Acids Res. 36 (16): 5391–404. doi: 10.1093/nar/gkn522. PMC  2532718. PMID  18701644.
  22. ^ Chen RW, Bemis LT, Amato CM, Myint H, Tran H, Birks DK, Eckhardt SG, Robinson WA (2008). "Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma". Blood. 112 (3): 822–9. doi: 10.1182/blood-2008-03-142182. PMC  2481543. PMID  18483394.
  23. ^ Xia L, Zhang D, Du R, Pan Y, Zhao L, Sun S, Hong L, Liu J, Fan D (2008). "miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells". Int J Cancer. 123 (2): 372–9. doi: 10.1002/ijc.23501. PMID  18449891.
  24. ^ Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, Taccioli C, Zanesi N, Garzon R, Aqeilan RI, Alder H, Volinia S, Rassenti L, Liu X, Liu CG, Kipps TJ, Negrini M, Croce CM (2008). "MiR-15a and miR-16-1 cluster functions in human leukemia". Proc Natl Acad Sci U S A. 105 (13): 5166–71. Bibcode: 2008PNAS..105.5166C. doi: 10.1073/pnas.0800121105. PMC  2278188. PMID  18362358.
  25. ^ Scaglione BJ, Salerno E, Balan M, Coffman F, Landgraf P, Abbasi F, Kotenko S, Marti GE, Raveche ES (2007). "Murine models of chronic lymphocytic leukaemia: role of microRNA-16 in the New Zealand Black mouse model". Br J Haematol. 139 (5): 645–57. doi: 10.1111/j.1365-2141.2007.06851.x. PMC  2692662. PMID  17941951.
  26. ^ Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC, Fredrickson T, Landgraf P, Ramachandra S, Huppi K, Toro JR, Zenger VE, Metcalf RA, Marti GE (2007). "Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice". Blood. 109 (12): 5079–86. doi: 10.1182/blood-2007-02-071225. PMC  1890829. PMID  17351108.
  27. ^ Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M, Jackson AL, Carleton M, Lim L (2007). "Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression". Mol Cell Biol. 27 (6): 2240–52. doi: 10.1128/MCB.02005-06. PMC  1820501. PMID  17242205.
  28. ^ Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli MC, degli Uberti EC (2005). "miR-15a and miR-16-1 down-regulation in pituitary adenomas". J Cell Physiol. 204 (1): 280–5. doi: 10.1002/jcp.20282. PMID  15648093. S2CID  39337781.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook