From Wikipedia, the free encyclopedia
AMPA
Names
IUPAC name
2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid
Identifiers
3D model ( JSmol)
ChEMBL
ChemSpider
DrugBank
MeSH AMPA
PubChem CID
  • InChI=1S/C7H10N2O4/c1-3-4(6(10)9-13-3)2-5(8)7(11)12/h5H,2,8H2,1H3,(H,9,10)(H,11,12) checkY
    Key: UUDAMDVQRQNNHZ-UHFFFAOYSA-N checkY
  • InChI=1/C7H10N2O4/c1-3-4(6(10)9-13-3)2-5(8)7(11)12/h5H,2,8H2,1H3,(H,9,10)(H,11,12)
    Key: UUDAMDVQRQNNHZ-UHFFFAOYAT
  • O=C1/C(=C(\ON1)C)CC(N)C(=O)O
Properties
C7H10N2O4
Molar mass 186.167 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  verify ( what is checkY☒N ?)

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, better known as AMPA, is a compound that is a specific agonist for the AMPA receptor, where it mimics the effects of the neurotransmitter glutamate. [1]

There are several types of glutamatergic ion channels in the central nervous system including AMPA, kainic acid and N-methyl-D-aspartic acid (NMDA) channels. In the synapse, these receptors serve very different purposes. AMPA can be used experimentally to distinguish the activity of one receptor from the other in order to understand their differing functions. [2] AMPA generates fast excitatory postsynaptic potentials (EPSP). [1] AMPA activates AMPA receptors that are non-selective cationic channels allowing the passage of Na+ and K+ and therefore have an equilibrium potential near 0 mV.

AMPA was first synthesized, along with several other ibotenic acid derivatives, by Krogsgaard-Larsen, Honoré, and others toward differentiating glutamate sensitive receptors from aspartate sensitive receptors. [3]


See also

References

  1. ^ a b Purves, Dale; George J. Augustine; David Fitzpatrick; William C. Hall; Anthony-Samuel LaMantia; James O. McNamara & Leonard E. White (2008). Neuroscience (4th ed.). Sinauer Associates. pp. 128–33. ISBN  978-0-87893-697-7.
  2. ^ Dinh, L; Nguyen T; Salgado H; Atzori M (2009). "Norepinephrine homogeneously inhibits alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate- (AMPAR-) mediated currents in all layers of the temporal cortex of the rat". Neurochem Res. 34 (11): 1896–906. doi: 10.1007/s11064-009-9966-z. PMID  19357950. S2CID  25255160.
  3. ^ Krogsgaard-Larsen, P; Honore T; Hansen JJ; Curtis DR; Lodge D (1980). "New class of glutamate agonist structurally related to ibotenic acid". Nature. 284 (5751): 64–66. Bibcode: 1980Natur.284...64K. doi: 10.1038/284064a0. PMID  6101908. S2CID  4252428.
From Wikipedia, the free encyclopedia
AMPA
Names
IUPAC name
2-Amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl)propanoic acid
Identifiers
3D model ( JSmol)
ChEMBL
ChemSpider
DrugBank
MeSH AMPA
PubChem CID
  • InChI=1S/C7H10N2O4/c1-3-4(6(10)9-13-3)2-5(8)7(11)12/h5H,2,8H2,1H3,(H,9,10)(H,11,12) checkY
    Key: UUDAMDVQRQNNHZ-UHFFFAOYSA-N checkY
  • InChI=1/C7H10N2O4/c1-3-4(6(10)9-13-3)2-5(8)7(11)12/h5H,2,8H2,1H3,(H,9,10)(H,11,12)
    Key: UUDAMDVQRQNNHZ-UHFFFAOYAT
  • O=C1/C(=C(\ON1)C)CC(N)C(=O)O
Properties
C7H10N2O4
Molar mass 186.167 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  verify ( what is checkY☒N ?)

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, better known as AMPA, is a compound that is a specific agonist for the AMPA receptor, where it mimics the effects of the neurotransmitter glutamate. [1]

There are several types of glutamatergic ion channels in the central nervous system including AMPA, kainic acid and N-methyl-D-aspartic acid (NMDA) channels. In the synapse, these receptors serve very different purposes. AMPA can be used experimentally to distinguish the activity of one receptor from the other in order to understand their differing functions. [2] AMPA generates fast excitatory postsynaptic potentials (EPSP). [1] AMPA activates AMPA receptors that are non-selective cationic channels allowing the passage of Na+ and K+ and therefore have an equilibrium potential near 0 mV.

AMPA was first synthesized, along with several other ibotenic acid derivatives, by Krogsgaard-Larsen, Honoré, and others toward differentiating glutamate sensitive receptors from aspartate sensitive receptors. [3]


See also

References

  1. ^ a b Purves, Dale; George J. Augustine; David Fitzpatrick; William C. Hall; Anthony-Samuel LaMantia; James O. McNamara & Leonard E. White (2008). Neuroscience (4th ed.). Sinauer Associates. pp. 128–33. ISBN  978-0-87893-697-7.
  2. ^ Dinh, L; Nguyen T; Salgado H; Atzori M (2009). "Norepinephrine homogeneously inhibits alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate- (AMPAR-) mediated currents in all layers of the temporal cortex of the rat". Neurochem Res. 34 (11): 1896–906. doi: 10.1007/s11064-009-9966-z. PMID  19357950. S2CID  25255160.
  3. ^ Krogsgaard-Larsen, P; Honore T; Hansen JJ; Curtis DR; Lodge D (1980). "New class of glutamate agonist structurally related to ibotenic acid". Nature. 284 (5751): 64–66. Bibcode: 1980Natur.284...64K. doi: 10.1038/284064a0. PMID  6101908. S2CID  4252428.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook