From Wikipedia, the free encyclopedia
Cellulase (glycosyl hydrolase family 5)
Identifiers
SymbolCellulase
Pfam PF00150
Pfam clan CL0058
InterPro IPR001547
PROSITE PDOC00565
SCOP2 2exo / SCOPe / SUPFAM
OPM superfamily 117
OPM protein 2osx
CAZy GH5
Membranome 1365
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, glycoside hydrolase family 5 is a family of glycoside hydrolases EC 3.2.1., which are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families. [1] [2] [3] This classification is available on the CAZy web site, [4] [5] and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes. [6] [7]

Glycoside hydrolase family 5 CAZY GH_5 comprises enzymes with several known activities including endoglucanase ( EC 3.2.1.4); beta-mannanase ( EC 3.2.1.78); exo-1,3-glucanase ( EC 3.2.1.58); endo-1,6-glucanase ( EC 3.2.1.75); xylanase ( EC 3.2.1.8); endoglycoceramidase ( EC 3.2.1.123); xanthanase. [8]

The microbial degradation of cellulose and xylans requires several types of enzymes. Fungi and bacteria produces a spectrum of cellulolytic enzymes (cellulases) and xylanases which, on the basis of sequence similarities, can be classified into families. One of these families is known as the cellulase family A [9] or as the glycosyl hydrolases family 5. [10] One of the conserved regions in this family contains a conserved glutamic acid residue which is potentially involved [11] in the catalytic mechanism.

In a recent study using Molecular Dynamics simulations, a considerable correlation between thermal stability and structural rigidity of members of family 5 with solved structures has been proved. [12]

External links

References

  1. ^ Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (July 1995). "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proceedings of the National Academy of Sciences of the United States of America. 92 (15): 7090–4. Bibcode: 1995PNAS...92.7090H. doi: 10.1073/pnas.92.15.7090. PMC  41477. PMID  7624375.
  2. ^ Davies G, Henrissat B (September 1995). "Structures and mechanisms of glycosyl hydrolases". Structure. 3 (9): 853–9. doi: 10.1016/S0969-2126(01)00220-9. PMID  8535779.
  3. ^ Henrissat B, Bairoch A (June 1996). "Updating the sequence-based classification of glycosyl hydrolases". The Biochemical Journal. 316 (Pt 2): 695–6. doi: 10.1042/bj3160695. PMC  1217404. PMID  8687420.
  4. ^ "Home". CAZy.org. Retrieved 2018-03-06.
  5. ^ Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (January 2014). "The carbohydrate-active enzymes database (CAZy) in 2013". Nucleic Acids Research. 42 (Database issue): D490-5. doi: 10.1093/nar/gkt1178. PMC  3965031. PMID  24270786.
  6. ^ "Glycoside Hydrolase Family 5". CAZypedia.org. Retrieved 2018-03-06.
  7. ^ CAZypedia Consortium (December 2018). "Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes" (PDF). Glycobiology. 28 (1): 3–8. doi: 10.1093/glycob/cwx089. hdl: 21.11116/0000-0003-B7EB-6. PMID  29040563.
  8. ^ Ostrowski, Matthew P.; La Rosa, Sabina Leanti; Kunath, Benoit J.; Robertson, Andrew; Pereira, Gabriel; Hagen, Live H.; Varghese, Neha J.; Qiu, Ling; Yao, Tianming; Flint, Gabrielle; Li, James; McDonald, Sean P.; Buttner, Duna; Pudlo, Nicholas A.; Schnizlein, Matthew K.; Young, Vincent B.; Brumer, Harry; Schmidt, Thomas M.; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Hamaker, Bruce; Eloe-Fadrosh, Emiley A.; Tripathi, Ashootosh; Pope, Phillip B.; Martens, Eric C. (April 2022). "Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota". Nature Microbiology. 7 (4): 556–569. doi: 10.1038/s41564-022-01093-0. hdl: 11250/3003739. PMID  35365790. S2CID  247866305.
  9. ^ Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (September 1989). "Cellulase families revealed by hydrophobic cluster analysis". Gene. 81 (1): 83–95. doi: 10.1016/0378-1119(89)90339-9. PMID  2806912.
  10. ^ Henrissat B (December 1991). "A classification of glycosyl hydrolases based on amino acid sequence similarities". The Biochemical Journal. 280 (2): 309–16. doi: 10.1042/bj2800309. PMC  1130547. PMID  1747104.
  11. ^ Py B, Bortoli-German I, Haiech J, Chippaux M, Barras F (February 1991). "Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glu133 residues for catalysis". Protein Engineering. 4 (3): 325–33. doi: 10.1093/protein/4.3.325. PMID  1677466.
  12. ^ Badieyan S, Bevan DR, Zhang C (January 2012). "Study and design of stability in GH5 cellulases". Biotechnology and Bioengineering. 109 (1): 31–44. doi: 10.1002/bit.23280. PMID  21809329. S2CID  29281420.
From Wikipedia, the free encyclopedia
Cellulase (glycosyl hydrolase family 5)
Identifiers
SymbolCellulase
Pfam PF00150
Pfam clan CL0058
InterPro IPR001547
PROSITE PDOC00565
SCOP2 2exo / SCOPe / SUPFAM
OPM superfamily 117
OPM protein 2osx
CAZy GH5
Membranome 1365
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, glycoside hydrolase family 5 is a family of glycoside hydrolases EC 3.2.1., which are a widespread group of enzymes that hydrolyse the glycosidic bond between two or more carbohydrates, or between a carbohydrate and a non-carbohydrate moiety. A classification system for glycoside hydrolases, based on sequence similarity, has led to the definition of >100 different families. [1] [2] [3] This classification is available on the CAZy web site, [4] [5] and also discussed at CAZypedia, an online encyclopedia of carbohydrate active enzymes. [6] [7]

Glycoside hydrolase family 5 CAZY GH_5 comprises enzymes with several known activities including endoglucanase ( EC 3.2.1.4); beta-mannanase ( EC 3.2.1.78); exo-1,3-glucanase ( EC 3.2.1.58); endo-1,6-glucanase ( EC 3.2.1.75); xylanase ( EC 3.2.1.8); endoglycoceramidase ( EC 3.2.1.123); xanthanase. [8]

The microbial degradation of cellulose and xylans requires several types of enzymes. Fungi and bacteria produces a spectrum of cellulolytic enzymes (cellulases) and xylanases which, on the basis of sequence similarities, can be classified into families. One of these families is known as the cellulase family A [9] or as the glycosyl hydrolases family 5. [10] One of the conserved regions in this family contains a conserved glutamic acid residue which is potentially involved [11] in the catalytic mechanism.

In a recent study using Molecular Dynamics simulations, a considerable correlation between thermal stability and structural rigidity of members of family 5 with solved structures has been proved. [12]

External links

References

  1. ^ Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (July 1995). "Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases". Proceedings of the National Academy of Sciences of the United States of America. 92 (15): 7090–4. Bibcode: 1995PNAS...92.7090H. doi: 10.1073/pnas.92.15.7090. PMC  41477. PMID  7624375.
  2. ^ Davies G, Henrissat B (September 1995). "Structures and mechanisms of glycosyl hydrolases". Structure. 3 (9): 853–9. doi: 10.1016/S0969-2126(01)00220-9. PMID  8535779.
  3. ^ Henrissat B, Bairoch A (June 1996). "Updating the sequence-based classification of glycosyl hydrolases". The Biochemical Journal. 316 (Pt 2): 695–6. doi: 10.1042/bj3160695. PMC  1217404. PMID  8687420.
  4. ^ "Home". CAZy.org. Retrieved 2018-03-06.
  5. ^ Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (January 2014). "The carbohydrate-active enzymes database (CAZy) in 2013". Nucleic Acids Research. 42 (Database issue): D490-5. doi: 10.1093/nar/gkt1178. PMC  3965031. PMID  24270786.
  6. ^ "Glycoside Hydrolase Family 5". CAZypedia.org. Retrieved 2018-03-06.
  7. ^ CAZypedia Consortium (December 2018). "Ten years of CAZypedia: a living encyclopedia of carbohydrate-active enzymes" (PDF). Glycobiology. 28 (1): 3–8. doi: 10.1093/glycob/cwx089. hdl: 21.11116/0000-0003-B7EB-6. PMID  29040563.
  8. ^ Ostrowski, Matthew P.; La Rosa, Sabina Leanti; Kunath, Benoit J.; Robertson, Andrew; Pereira, Gabriel; Hagen, Live H.; Varghese, Neha J.; Qiu, Ling; Yao, Tianming; Flint, Gabrielle; Li, James; McDonald, Sean P.; Buttner, Duna; Pudlo, Nicholas A.; Schnizlein, Matthew K.; Young, Vincent B.; Brumer, Harry; Schmidt, Thomas M.; Terrapon, Nicolas; Lombard, Vincent; Henrissat, Bernard; Hamaker, Bruce; Eloe-Fadrosh, Emiley A.; Tripathi, Ashootosh; Pope, Phillip B.; Martens, Eric C. (April 2022). "Mechanistic insights into consumption of the food additive xanthan gum by the human gut microbiota". Nature Microbiology. 7 (4): 556–569. doi: 10.1038/s41564-022-01093-0. hdl: 11250/3003739. PMID  35365790. S2CID  247866305.
  9. ^ Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon JP (September 1989). "Cellulase families revealed by hydrophobic cluster analysis". Gene. 81 (1): 83–95. doi: 10.1016/0378-1119(89)90339-9. PMID  2806912.
  10. ^ Henrissat B (December 1991). "A classification of glycosyl hydrolases based on amino acid sequence similarities". The Biochemical Journal. 280 (2): 309–16. doi: 10.1042/bj2800309. PMC  1130547. PMID  1747104.
  11. ^ Py B, Bortoli-German I, Haiech J, Chippaux M, Barras F (February 1991). "Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glu133 residues for catalysis". Protein Engineering. 4 (3): 325–33. doi: 10.1093/protein/4.3.325. PMID  1677466.
  12. ^ Badieyan S, Bevan DR, Zhang C (January 2012). "Study and design of stability in GH5 cellulases". Biotechnology and Bioengineering. 109 (1): 31–44. doi: 10.1002/bit.23280. PMID  21809329. S2CID  29281420.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook