From Wikipedia, the free encyclopedia
(Redirected from Schwartz TVS)

In functional analysis and related areas of mathematics, Schwartz spaces are topological vector spaces (TVS) whose neighborhoods of the origin have a property similar to the definition of totally bounded subsets. These spaces were introduced by Alexander Grothendieck.

Definition

A Hausdorff locally convex space X with continuous dual , X is called a Schwartz space if it satisfies any of the following equivalent conditions: [1]

  1. For every closed convex balanced neighborhood U of the origin in X, there exists a neighborhood V of 0 in X such that for all real r > 0, V can be covered by finitely many translates of rU.
  2. Every bounded subset of X is totally bounded and for every closed convex balanced neighborhood U of the origin in X, there exists a neighborhood V of 0 in X such that for all real r > 0, there exists a bounded subset B of X such that VB + rU.

Properties

Every quasi-complete Schwartz space is a semi-Montel space. Every Fréchet Schwartz space is a Montel space. [2]

The strong dual space of a complete Schwartz space is an ultrabornological space.

Examples and sufficient conditions

  • Vector subspace of Schwartz spaces are Schwartz spaces.
  • The quotient of a Schwartz space by a closed vector subspace is again a Schwartz space.
  • The Cartesian product of any family of Schwartz spaces is again a Schwartz space.
  • The weak topology induced on a vector space by a family of linear maps valued in Schwartz spaces is a Schwartz space if the weak topology is Hausdorff.
  • The locally convex strict inductive limit of any countable sequence of Schwartz spaces (with each space TVS-embedded in the next space) is again a Schwartz space.

Counter-examples

Every infinite-dimensional normed space is not a Schwartz space. [2]

There exist Fréchet spaces that are not Schwartz spaces and there exist Schwartz spaces that are not Montel spaces. [2]

See also

References

  1. ^ Khaleelulla 1982, p. 32.
  2. ^ a b c Khaleelulla 1982, pp. 32–63.

Bibliography

  • Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). doi: 10.5802/aif.16. MR  0042609.
  • Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN  3-540-13627-4. OCLC  17499190.
  • Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN  978-0-521-29882-7. OCLC  589250.
  • Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN  978-3-540-09096-0. OCLC  4493665.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN  978-3-519-02224-4. OCLC  8210342.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN  978-3-540-11565-6. OCLC  8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN  978-1584888666. OCLC  144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN  978-1-4612-7155-0. OCLC  840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN  978-0-486-45352-1. OCLC  853623322.
From Wikipedia, the free encyclopedia
(Redirected from Schwartz TVS)

In functional analysis and related areas of mathematics, Schwartz spaces are topological vector spaces (TVS) whose neighborhoods of the origin have a property similar to the definition of totally bounded subsets. These spaces were introduced by Alexander Grothendieck.

Definition

A Hausdorff locally convex space X with continuous dual , X is called a Schwartz space if it satisfies any of the following equivalent conditions: [1]

  1. For every closed convex balanced neighborhood U of the origin in X, there exists a neighborhood V of 0 in X such that for all real r > 0, V can be covered by finitely many translates of rU.
  2. Every bounded subset of X is totally bounded and for every closed convex balanced neighborhood U of the origin in X, there exists a neighborhood V of 0 in X such that for all real r > 0, there exists a bounded subset B of X such that VB + rU.

Properties

Every quasi-complete Schwartz space is a semi-Montel space. Every Fréchet Schwartz space is a Montel space. [2]

The strong dual space of a complete Schwartz space is an ultrabornological space.

Examples and sufficient conditions

  • Vector subspace of Schwartz spaces are Schwartz spaces.
  • The quotient of a Schwartz space by a closed vector subspace is again a Schwartz space.
  • The Cartesian product of any family of Schwartz spaces is again a Schwartz space.
  • The weak topology induced on a vector space by a family of linear maps valued in Schwartz spaces is a Schwartz space if the weak topology is Hausdorff.
  • The locally convex strict inductive limit of any countable sequence of Schwartz spaces (with each space TVS-embedded in the next space) is again a Schwartz space.

Counter-examples

Every infinite-dimensional normed space is not a Schwartz space. [2]

There exist Fréchet spaces that are not Schwartz spaces and there exist Schwartz spaces that are not Montel spaces. [2]

See also

References

  1. ^ Khaleelulla 1982, p. 32.
  2. ^ a b c Khaleelulla 1982, pp. 32–63.

Bibliography

  • Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). doi: 10.5802/aif.16. MR  0042609.
  • Bourbaki, Nicolas (1987) [1981]. Topological Vector Spaces: Chapters 1–5. Éléments de mathématique. Translated by Eggleston, H.G.; Madan, S. Berlin New York: Springer-Verlag. ISBN  3-540-13627-4. OCLC  17499190.
  • Robertson, Alex P.; Robertson, Wendy J. (1980). Topological Vector Spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge England: Cambridge University Press. ISBN  978-0-521-29882-7. OCLC  589250.
  • Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN  978-3-540-09096-0. OCLC  4493665.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN  978-3-519-02224-4. OCLC  8210342.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN  978-3-540-11565-6. OCLC  8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN  978-1584888666. OCLC  144216834.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN  978-1-4612-7155-0. OCLC  840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN  978-0-486-45352-1. OCLC  853623322.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook