From Wikipedia, the free encyclopedia

In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin.

Definition

A subset of a TVS is called an ultrabarrel if it is a closed and balanced subset of and if there exists a sequence of closed balanced and absorbing subsets of such that for all In this case, is called a defining sequence for A TVS is called ultrabarrelled if every ultrabarrel in is a neighbourhood of the origin. [1]

Properties

A locally convex ultrabarrelled space is a barrelled space. [1] Every ultrabarrelled space is a quasi-ultrabarrelled space. [1]

Examples and sufficient conditions

Complete and metrizable TVSs are ultrabarrelled. [1] If is a complete locally bounded non-locally convex TVS and if is a closed balanced and bounded neighborhood of the origin, then is an ultrabarrel that is not convex and has a defining sequence consisting of non-convex sets. [1]

Counter-examples

There exist barrelled spaces that are not ultrabarrelled. [1] There exist TVSs that are complete and metrizable (and thus ultrabarrelled) but not barrelled. [1]

See also

Citations

  1. ^ a b c d e f g Khaleelulla 1982, pp. 65–76.

Bibliography

  • Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). doi: 10.5802/aif.16. MR  0042609.
  • Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN  978-3-540-09096-0. OCLC  4493665.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN  978-3-519-02224-4. OCLC  8210342.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN  978-3-540-11565-6. OCLC  8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN  978-1584888666. OCLC  144216834.
  • Robertson, Alex P.; Robertson, Wendy J. (1964). Topological vector spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge University Press. pp. 65–75.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN  978-1-4612-7155-0. OCLC  840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN  978-0-486-45352-1. OCLC  853623322.
From Wikipedia, the free encyclopedia

In functional analysis and related areas of mathematics, an ultrabarrelled space is a topological vector spaces (TVS) for which every ultrabarrel is a neighbourhood of the origin.

Definition

A subset of a TVS is called an ultrabarrel if it is a closed and balanced subset of and if there exists a sequence of closed balanced and absorbing subsets of such that for all In this case, is called a defining sequence for A TVS is called ultrabarrelled if every ultrabarrel in is a neighbourhood of the origin. [1]

Properties

A locally convex ultrabarrelled space is a barrelled space. [1] Every ultrabarrelled space is a quasi-ultrabarrelled space. [1]

Examples and sufficient conditions

Complete and metrizable TVSs are ultrabarrelled. [1] If is a complete locally bounded non-locally convex TVS and if is a closed balanced and bounded neighborhood of the origin, then is an ultrabarrel that is not convex and has a defining sequence consisting of non-convex sets. [1]

Counter-examples

There exist barrelled spaces that are not ultrabarrelled. [1] There exist TVSs that are complete and metrizable (and thus ultrabarrelled) but not barrelled. [1]

See also

Citations

  1. ^ a b c d e f g Khaleelulla 1982, pp. 65–76.

Bibliography

  • Bourbaki, Nicolas (1950). "Sur certains espaces vectoriels topologiques". Annales de l'Institut Fourier (in French). 2: 5–16 (1951). doi: 10.5802/aif.16. MR  0042609.
  • Husain, Taqdir; Khaleelulla, S. M. (1978). Barrelledness in Topological and Ordered Vector Spaces. Lecture Notes in Mathematics. Vol. 692. Berlin, New York, Heidelberg: Springer-Verlag. ISBN  978-3-540-09096-0. OCLC  4493665.
  • Jarchow, Hans (1981). Locally convex spaces. Stuttgart: B.G. Teubner. ISBN  978-3-519-02224-4. OCLC  8210342.
  • Khaleelulla, S. M. (1982). Counterexamples in Topological Vector Spaces. Lecture Notes in Mathematics. Vol. 936. Berlin, Heidelberg, New York: Springer-Verlag. ISBN  978-3-540-11565-6. OCLC  8588370.
  • Narici, Lawrence; Beckenstein, Edward (2011). Topological Vector Spaces. Pure and applied mathematics (Second ed.). Boca Raton, FL: CRC Press. ISBN  978-1584888666. OCLC  144216834.
  • Robertson, Alex P.; Robertson, Wendy J. (1964). Topological vector spaces. Cambridge Tracts in Mathematics. Vol. 53. Cambridge University Press. pp. 65–75.
  • Schaefer, Helmut H.; Wolff, Manfred P. (1999). Topological Vector Spaces. GTM. Vol. 8 (Second ed.). New York, NY: Springer New York Imprint Springer. ISBN  978-1-4612-7155-0. OCLC  840278135.
  • Trèves, François (2006) [1967]. Topological Vector Spaces, Distributions and Kernels. Mineola, N.Y.: Dover Publications. ISBN  978-0-486-45352-1. OCLC  853623322.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook