From Wikipedia, the free encyclopedia
The structure of microviridin B

The microviridins are a class of serine protease inhibitors produced by various genera of cyanobacteria. Recent genome mining has shown that the biosynthetic gene cluster responsible for microviridin biosynthesis is much more prevalent, found in many species of Pseudomonadota (formerly Proteobacteria) and Bacteriodota (formerly Bacteriodetes). [1]

Microviridins are members of the RiPP family of natural products.

The first microviridin was isolated from Microcystis viridis (NIES-102) and its structure was reported in 1990. [2] Microviridins are characterized by a tricyclic depsipeptide structure resulting from the enzymatic activity of two dedicated ATP-grasp ligases, which form two lactone and one lactam rings in the core region of the precursor peptide. [3] [4]

Toxicity

Microviridin J has been found to disrupt molting in the invertebrate Daphnia pulicaria, probably as a result of its protease inhibitory effects [5]

See also

References

  1. ^ Ahmed MN, Reyna-González E, Schmid B, Wiebach V, Süssmuth RD, Dittmann E, Fewer DP (2017). "Phylogenomic Analysis of the Microviridin Biosynthetic Pathway Coupled with Targeted Chemo-Enzymatic Synthesis Yields Potent Protease Inhibitors". ACS Chem. Biol. 12 (6): 1538–1546. doi: 10.1021/acschembio.7b00124. PMID  28406289.
  2. ^ Ishitsuka MO, Kusumi T, Kakisawa H, Kunimitsu K, Watanabe MM (1990). “Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium Microsystis viridis”. J. Am. Chem. Soc. 112 (22): 8180-8182. doi: 10.1021/ja00178a060.
  3. ^ Ziemert N, Ishida K, Liaimer A, Hertweck C, Dittmann E (2008). "Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria". Angew. Chem. Int. Ed. Engl. 47 (40): 7756–9. doi: 10.1002/anie.200802730. PMID  18683268.
  4. ^ Philmus B, Christiansen G, Yoshida WY, Hemscheidt TK (2008). "Post-translational modification in microviridin biosynthesis". ChemBioChem. 9 (18): 3066–73. doi: 10.1002/cbic.200800560. PMID  19035375.
  5. ^ Thomas Rohrlack; Kirsten Christoffersen; Melanie Kaebernick; Brett A. Neilan (2004). "Cyanobacterial Protease Inhibitor Microviridin J Causes a Lethal Molting Disruption in Daphnia pulicaria". Applied and Environmental Microbiology. 70 (8): 5047–5050. doi: 10.1128/AEM.70.8.5047-5050.2004. PMC  492328. PMID  15294849.

External links

From Wikipedia, the free encyclopedia
The structure of microviridin B

The microviridins are a class of serine protease inhibitors produced by various genera of cyanobacteria. Recent genome mining has shown that the biosynthetic gene cluster responsible for microviridin biosynthesis is much more prevalent, found in many species of Pseudomonadota (formerly Proteobacteria) and Bacteriodota (formerly Bacteriodetes). [1]

Microviridins are members of the RiPP family of natural products.

The first microviridin was isolated from Microcystis viridis (NIES-102) and its structure was reported in 1990. [2] Microviridins are characterized by a tricyclic depsipeptide structure resulting from the enzymatic activity of two dedicated ATP-grasp ligases, which form two lactone and one lactam rings in the core region of the precursor peptide. [3] [4]

Toxicity

Microviridin J has been found to disrupt molting in the invertebrate Daphnia pulicaria, probably as a result of its protease inhibitory effects [5]

See also

References

  1. ^ Ahmed MN, Reyna-González E, Schmid B, Wiebach V, Süssmuth RD, Dittmann E, Fewer DP (2017). "Phylogenomic Analysis of the Microviridin Biosynthetic Pathway Coupled with Targeted Chemo-Enzymatic Synthesis Yields Potent Protease Inhibitors". ACS Chem. Biol. 12 (6): 1538–1546. doi: 10.1021/acschembio.7b00124. PMID  28406289.
  2. ^ Ishitsuka MO, Kusumi T, Kakisawa H, Kunimitsu K, Watanabe MM (1990). “Microviridin. A novel tricyclic depsipeptide from the toxic cyanobacterium Microsystis viridis”. J. Am. Chem. Soc. 112 (22): 8180-8182. doi: 10.1021/ja00178a060.
  3. ^ Ziemert N, Ishida K, Liaimer A, Hertweck C, Dittmann E (2008). "Ribosomal synthesis of tricyclic depsipeptides in bloom-forming cyanobacteria". Angew. Chem. Int. Ed. Engl. 47 (40): 7756–9. doi: 10.1002/anie.200802730. PMID  18683268.
  4. ^ Philmus B, Christiansen G, Yoshida WY, Hemscheidt TK (2008). "Post-translational modification in microviridin biosynthesis". ChemBioChem. 9 (18): 3066–73. doi: 10.1002/cbic.200800560. PMID  19035375.
  5. ^ Thomas Rohrlack; Kirsten Christoffersen; Melanie Kaebernick; Brett A. Neilan (2004). "Cyanobacterial Protease Inhibitor Microviridin J Causes a Lethal Molting Disruption in Daphnia pulicaria". Applied and Environmental Microbiology. 70 (8): 5047–5050. doi: 10.1128/AEM.70.8.5047-5050.2004. PMC  492328. PMID  15294849.

External links


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook