From Wikipedia, the free encyclopedia
creatinase
Identifiers
EC no. 3.5.3.3
CAS no. 37340-58-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Creatinase/Prolidase N-terminal domain
The Crystal Structure of the Creatinase/Prolidase N-terminal domain of an X-PRO dipeptidase from Streptococcus pyogenes to 1.85A [1]
Identifiers
SymbolCreatinase_N
Pfam PF01321
InterPro IPR000587
SCOP2 1chm / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1wn1B:2-131 1chmA:27-158 1kp0B:27-157 1pv9B:4-124 1wy2B:7-127

In enzymology, a creatinase ( EC 3.5.3.3) is an enzyme that catalyzes the chemical reaction

creatine + H2O sarcosine + urea

Thus, the two substrates of this enzyme are creatine and H2O, whereas its two products are sarcosine and urea.

The native enzyme was shown to be made up of two subunit monomers via SDS-polyacrylamide gel electrophoresis. The molecular weights of these subunits was estimated to be 47,000 g/mol. [2] The enzyme works as a homodimer, and is induced by choline chloride. Each monomer of creatinase has two clearly defined domains, a small N-terminal domain, and a large C-terminal domain. Each of the two active sites is made by residues of the large domain of one monomer and some residues of the small domain of the other monomer. It has been suggested that a sulfhydryl group is located on or near the active site of the enzyme following inhibition experiments. [2] Creatinase has been found to be most active at pH 8 and is most stable between ph 6-8 for 24 hrs. at 37 degrees. [2]

This enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amidines. The systematic name of this enzyme class is creatine amidinohydrolase. This enzyme participates in arginine and proline metabolism.

Structural studies

As of late 2007, two structures have been solved for this class of enzymes, with PDB accession codes 1CHM and 1KP0.

References

  • "RCSB Protein Data Bank - Structure Summary for 3O5V - The Crystal Structure of the Creatinase/Prolidase N-terminal domain of an X-PRO dipeptidase from Streptococcus pyogenes to 1.85A".
  • ROCHE J, LACOMBE G, GIRARD H (1950). "[On the specificity of certain bacterial deguanidases generating urea and on arginindihydrolase.]". Biochim. Biophys. Acta. 6 (1): 210–6. doi: 10.1016/0006-3002(50)90093-x. PMID  14791411.
  1. ^ "RCSB Protein Data Bank - Structure Summary for 3O5V - The Crystal Structure of the Creatinase/Prolidase N-terminal domain of an X-PRO dipeptidase from Streptococcus pyogenes to 1.85A".
  2. ^ a b c Yoshimoto T, Oka I, Tsuru D (June 1976). "Purification, crystallization, and some properties of creatine amidinohydrolase from Pseudomonas putida". J. Biochem. 79 (6): 1381–3. doi: 10.1093/oxfordjournals.jbchem.a131193. PMID  8443.


From Wikipedia, the free encyclopedia
creatinase
Identifiers
EC no. 3.5.3.3
CAS no. 37340-58-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
Creatinase/Prolidase N-terminal domain
The Crystal Structure of the Creatinase/Prolidase N-terminal domain of an X-PRO dipeptidase from Streptococcus pyogenes to 1.85A [1]
Identifiers
SymbolCreatinase_N
Pfam PF01321
InterPro IPR000587
SCOP2 1chm / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB 1wn1B:2-131 1chmA:27-158 1kp0B:27-157 1pv9B:4-124 1wy2B:7-127

In enzymology, a creatinase ( EC 3.5.3.3) is an enzyme that catalyzes the chemical reaction

creatine + H2O sarcosine + urea

Thus, the two substrates of this enzyme are creatine and H2O, whereas its two products are sarcosine and urea.

The native enzyme was shown to be made up of two subunit monomers via SDS-polyacrylamide gel electrophoresis. The molecular weights of these subunits was estimated to be 47,000 g/mol. [2] The enzyme works as a homodimer, and is induced by choline chloride. Each monomer of creatinase has two clearly defined domains, a small N-terminal domain, and a large C-terminal domain. Each of the two active sites is made by residues of the large domain of one monomer and some residues of the small domain of the other monomer. It has been suggested that a sulfhydryl group is located on or near the active site of the enzyme following inhibition experiments. [2] Creatinase has been found to be most active at pH 8 and is most stable between ph 6-8 for 24 hrs. at 37 degrees. [2]

This enzyme belongs to the family of hydrolases, those acting on carbon-nitrogen bonds other than peptide bonds, specifically in linear amidines. The systematic name of this enzyme class is creatine amidinohydrolase. This enzyme participates in arginine and proline metabolism.

Structural studies

As of late 2007, two structures have been solved for this class of enzymes, with PDB accession codes 1CHM and 1KP0.

References

  • "RCSB Protein Data Bank - Structure Summary for 3O5V - The Crystal Structure of the Creatinase/Prolidase N-terminal domain of an X-PRO dipeptidase from Streptococcus pyogenes to 1.85A".
  • ROCHE J, LACOMBE G, GIRARD H (1950). "[On the specificity of certain bacterial deguanidases generating urea and on arginindihydrolase.]". Biochim. Biophys. Acta. 6 (1): 210–6. doi: 10.1016/0006-3002(50)90093-x. PMID  14791411.
  1. ^ "RCSB Protein Data Bank - Structure Summary for 3O5V - The Crystal Structure of the Creatinase/Prolidase N-terminal domain of an X-PRO dipeptidase from Streptococcus pyogenes to 1.85A".
  2. ^ a b c Yoshimoto T, Oka I, Tsuru D (June 1976). "Purification, crystallization, and some properties of creatine amidinohydrolase from Pseudomonas putida". J. Biochem. 79 (6): 1381–3. doi: 10.1093/oxfordjournals.jbchem.a131193. PMID  8443.



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook