From Wikipedia, the free encyclopedia
Ureohydrolase
Identifiers
SymbolUreohydrolase
Pfam PF00491
InterPro IPR006035
PROSITE PDOC00135
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB PDB: 1cev PDB: 1d3v PDB: 1gq6 PDB: 1gq7 PDB: 1hq5 PDB: 1hqf PDB: 1hqg PDB: 1hqh PDB: 1hqx PDB: 1p8m

A ureohydrolase is a type of hydrolase enzyme. [1] The ureohydrolase superfamily includes arginase ( EC 3.5.3.1), agmatinase ( EC 3.5.3.11), formiminoglutamase ( EC 3.5.3.8) and proclavaminate amidinohydrolase ( EC 3.5.3.22). [2] These enzymes share a 3-layer alpha-beta-alpha structure, [2] [3] [4] and play important roles in arginine/agmatine metabolism, the urea cycle, histidine degradation, and other pathways.

Enzymes

Arginase

Arginase, which catalyses the conversion of arginine to urea and ornithine, is one of the five members of the urea cycle enzymes that convert ammonia to urea as the principal product of nitrogen excretion. [5] There are several arginase isozymes that differ in catalytic, molecular and immunological properties. Deficiency in the liver isozyme leads to argininemia, which is usually associated with hyperammonemia.

Agmatinase

Agmatinase hydrolyses agmatine to putrescine, the precursor for the biosynthesis of higher polyamines, spermidine and spermine. In addition, agmatine may play an important regulatory role in mammals. [6]

Formiminoglutaminase

Formiminoglutamase catalyses the fourth step in histidine degradation, acting to hydrolyse N-formimidoyl-L-glutamate to L-glutamate and formamide.

Proclavaminate amidinohydrolase

Proclavaminate amidinohydrolase is involved in clavulanic acid biosynthesis. Clavulanic acid acts as an inhibitor of a wide range of beta-lactamase enzymes that are used by various microorganisms to resist beta-lactam antibiotics. As a result, this enzyme improves the effectiveness of beta-lactamase antibiotics. [4] [7]

References

  1. ^ Ureohydrolases at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  2. ^ a b Lee J, Suh SW, Kim KH, Kim D, Yoon HJ, Kwon AR, Ahn HJ, Ha JY, Lee HH (2004). "Crystal structure of agmatinase reveals structural conservation and inhibition mechanism of the ureohydrolase superfamily". J. Biol. Chem. 279 (48): 50505–13. doi: 10.1074/jbc.M409246200. PMID  15355972.
  3. ^ Christianson DW, Di Costanzo L, Sabio G, Mora A, Rodriguez PC, Ochoa AC, Centeno F (2005). "Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response". Proc. Natl. Acad. Sci. U.S.A. 102 (37): 13058–13063. doi: 10.1073/pnas.0504027102. PMC  1201588. PMID  16141327.
  4. ^ a b Clifton IJ, Elkins JM, Hernandez H (2002). "Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis". Biochem. J. 366 (Pt 2): 423–434. doi: 10.1042/BJ20020125. PMC  1222790. PMID  12020346.
  5. ^ Baker BS, Tata JR, Xu Q (1993). "Developmental and hormonal regulation of the Xenopus liver-type arginase gene". Eur. J. Biochem. 211 (3): 891–898. doi: 10.1111/j.1432-1033.1993.tb17622.x. PMID  7916684.
  6. ^ Ahn HJ, Kim KH, Lee J, et al. (November 2004). "Crystal structure of agmatinase reveals structural conservation and inhibition mechanism of the ureohydrolase superfamily". J. Biol. Chem. 279 (48): 50505–13. doi: 10.1074/jbc.M409246200. PMID  15355972.
  7. ^ "IPR006035 Ureohydrolase". Retrieved 2009-02-17.
This article incorporates text from the public domain Pfam and InterPro: IPR006035
From Wikipedia, the free encyclopedia
Ureohydrolase
Identifiers
SymbolUreohydrolase
Pfam PF00491
InterPro IPR006035
PROSITE PDOC00135
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
PDB PDB: 1cev PDB: 1d3v PDB: 1gq6 PDB: 1gq7 PDB: 1hq5 PDB: 1hqf PDB: 1hqg PDB: 1hqh PDB: 1hqx PDB: 1p8m

A ureohydrolase is a type of hydrolase enzyme. [1] The ureohydrolase superfamily includes arginase ( EC 3.5.3.1), agmatinase ( EC 3.5.3.11), formiminoglutamase ( EC 3.5.3.8) and proclavaminate amidinohydrolase ( EC 3.5.3.22). [2] These enzymes share a 3-layer alpha-beta-alpha structure, [2] [3] [4] and play important roles in arginine/agmatine metabolism, the urea cycle, histidine degradation, and other pathways.

Enzymes

Arginase

Arginase, which catalyses the conversion of arginine to urea and ornithine, is one of the five members of the urea cycle enzymes that convert ammonia to urea as the principal product of nitrogen excretion. [5] There are several arginase isozymes that differ in catalytic, molecular and immunological properties. Deficiency in the liver isozyme leads to argininemia, which is usually associated with hyperammonemia.

Agmatinase

Agmatinase hydrolyses agmatine to putrescine, the precursor for the biosynthesis of higher polyamines, spermidine and spermine. In addition, agmatine may play an important regulatory role in mammals. [6]

Formiminoglutaminase

Formiminoglutamase catalyses the fourth step in histidine degradation, acting to hydrolyse N-formimidoyl-L-glutamate to L-glutamate and formamide.

Proclavaminate amidinohydrolase

Proclavaminate amidinohydrolase is involved in clavulanic acid biosynthesis. Clavulanic acid acts as an inhibitor of a wide range of beta-lactamase enzymes that are used by various microorganisms to resist beta-lactam antibiotics. As a result, this enzyme improves the effectiveness of beta-lactamase antibiotics. [4] [7]

References

  1. ^ Ureohydrolases at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  2. ^ a b Lee J, Suh SW, Kim KH, Kim D, Yoon HJ, Kwon AR, Ahn HJ, Ha JY, Lee HH (2004). "Crystal structure of agmatinase reveals structural conservation and inhibition mechanism of the ureohydrolase superfamily". J. Biol. Chem. 279 (48): 50505–13. doi: 10.1074/jbc.M409246200. PMID  15355972.
  3. ^ Christianson DW, Di Costanzo L, Sabio G, Mora A, Rodriguez PC, Ochoa AC, Centeno F (2005). "Crystal structure of human arginase I at 1.29-A resolution and exploration of inhibition in the immune response". Proc. Natl. Acad. Sci. U.S.A. 102 (37): 13058–13063. doi: 10.1073/pnas.0504027102. PMC  1201588. PMID  16141327.
  4. ^ a b Clifton IJ, Elkins JM, Hernandez H (2002). "Oligomeric structure of proclavaminic acid amidino hydrolase: evolution of a hydrolytic enzyme in clavulanic acid biosynthesis". Biochem. J. 366 (Pt 2): 423–434. doi: 10.1042/BJ20020125. PMC  1222790. PMID  12020346.
  5. ^ Baker BS, Tata JR, Xu Q (1993). "Developmental and hormonal regulation of the Xenopus liver-type arginase gene". Eur. J. Biochem. 211 (3): 891–898. doi: 10.1111/j.1432-1033.1993.tb17622.x. PMID  7916684.
  6. ^ Ahn HJ, Kim KH, Lee J, et al. (November 2004). "Crystal structure of agmatinase reveals structural conservation and inhibition mechanism of the ureohydrolase superfamily". J. Biol. Chem. 279 (48): 50505–13. doi: 10.1074/jbc.M409246200. PMID  15355972.
  7. ^ "IPR006035 Ureohydrolase". Retrieved 2009-02-17.
This article incorporates text from the public domain Pfam and InterPro: IPR006035

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook