From Wikipedia, the free encyclopedia
hydrogen:quinone oxidoreductase
Identifiers
EC no. 1.12.5.1
CAS no. 147097-29-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a hydrogen:quinone oxidoreductase ( EC 1.12.5.1) is an enzyme that catalyzes the chemical reaction

H2 + quinone quinol

Thus, the two substrates of this enzyme are H2 and quinone, whereas its product is quinol. The quinone can be menaquinone, ubiquinone, demethylmenaquinone or methionaquinone.

This enzyme belongs to the family of oxidoreductases, specifically those acting on hydrogen as donor with a quinone or similar compound as acceptor. The systematic name of this enzyme class is hydrogen:quinone oxidoreductase. Other names in common use include hydrogen-ubiquinone oxidoreductase, hydrogen:menaquinone oxidoreductase, membrane-bound hydrogenase, and quinone-reactive Ni/Fe-hydrogenase.

References

  • E, Duchene A, Tripier D, Juvenal K, et al. (1992). "The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes". Eur. J. Biochem. 206 (1): 93–102. doi: 10.1111/j.1432-1033.1992.tb16905.x. PMID  1587288.
  • E, Duchene A, Tripier D, Juvenal K, et al. (1993). "The quinone-reactive Ni/Fe-hydrogenase of Wolinella Succinogenes". Eur. J. Biochem. 214 (3): 949–50. doi: 10.1111/j.1432-1033.1993.tb17999.x. PMID  8319698.
  • Gross R, Simon J, Lancaster CR, Kröger A (1998). "Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2". Mol. Microbiol. 30 (3): 639–46. doi: 10.1046/j.1365-2958.1998.01100.x. PMID  9822828.
  • Bernhard M, Benelli B, Hochkoeppler A, Zannoni D, Friedrich B (1997). "Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16". Eur. J. Biochem. 248 (1): 179–86. doi: 10.1111/j.1432-1033.1997.00179.x. PMID  9310376.
  • Ferber DM, Maier RJ (1993). "Hydrogen-ubiquinone oxidoreductase activity by the Bradyrhizobium japonicum membrane-bound hydrogenase". FEMS Microbiol. Lett. 110 (3): 257–64. doi: 10.1111/j.1574-6968.1993.tb06331.x. PMID  8354459.
  • Kodama T (1991). "Methionaquinone is a direct natural electron-acceptor for the membrane-bound hydrogenase in Hydrogenobacter thermophilus strain TK-6". Agric. Biol. Chem. 55: 3011–3016. doi: 10.1271/bbb1961.55.3011.
  • Infossi, Pascale; Lojou, Elisabeth; Chauvin, Jean-Paul; Herbette, Gaetan; Brugna, Myriam; Giudici-Orticoni, Marie-Thérèse (2010). "Aquifex aeolicus membrane hydrogenase for hydrogen biooxidation: Role of lipids and physiological partners in enzyme stability and activity". International Journal of Hydrogen Energy. 35 (19): 10778–10789. doi: 10.1016/j.ijhydene.2010.02.054. ISSN  0360-3199.
  • Frielingsdorf, Stefan; Schubert, Torsten; Pohlmann, Anne; Lenz, Oliver; Friedrich, Bärbel (2011). "A Trimeric Supercomplex of the Oxygen-Tolerant Membrane-Bound [NiFe]-Hydrogenase fromRalstonia eutrophaH16". Biochemistry. 50 (50): 10836–10843. doi: 10.1021/bi201594m. ISSN  0006-2960.
  • Radu, Valentin; Frielingsdorf, Stefan; Evans, Stephen D.; Lenz, Oliver; Jeuken, Lars J. C. (2014). "Enhanced Oxygen-Tolerance of the Full Heterotrimeric Membrane-Bound [NiFe]-Hydrogenase ofRalstonia eutropha". Journal of the American Chemical Society. 136 (24): 8512–8515. doi: 10.1021/ja503138p. ISSN  0002-7863. PMC  4073834. PMID  24866391.


From Wikipedia, the free encyclopedia
hydrogen:quinone oxidoreductase
Identifiers
EC no. 1.12.5.1
CAS no. 147097-29-8
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, a hydrogen:quinone oxidoreductase ( EC 1.12.5.1) is an enzyme that catalyzes the chemical reaction

H2 + quinone quinol

Thus, the two substrates of this enzyme are H2 and quinone, whereas its product is quinol. The quinone can be menaquinone, ubiquinone, demethylmenaquinone or methionaquinone.

This enzyme belongs to the family of oxidoreductases, specifically those acting on hydrogen as donor with a quinone or similar compound as acceptor. The systematic name of this enzyme class is hydrogen:quinone oxidoreductase. Other names in common use include hydrogen-ubiquinone oxidoreductase, hydrogen:menaquinone oxidoreductase, membrane-bound hydrogenase, and quinone-reactive Ni/Fe-hydrogenase.

References

  • E, Duchene A, Tripier D, Juvenal K, et al. (1992). "The quinone-reactive Ni/Fe-hydrogenase of Wolinella succinogenes". Eur. J. Biochem. 206 (1): 93–102. doi: 10.1111/j.1432-1033.1992.tb16905.x. PMID  1587288.
  • E, Duchene A, Tripier D, Juvenal K, et al. (1993). "The quinone-reactive Ni/Fe-hydrogenase of Wolinella Succinogenes". Eur. J. Biochem. 214 (3): 949–50. doi: 10.1111/j.1432-1033.1993.tb17999.x. PMID  8319698.
  • Gross R, Simon J, Lancaster CR, Kröger A (1998). "Identification of histidine residues in Wolinella succinogenes hydrogenase that are essential for menaquinone reduction by H2". Mol. Microbiol. 30 (3): 639–46. doi: 10.1046/j.1365-2958.1998.01100.x. PMID  9822828.
  • Bernhard M, Benelli B, Hochkoeppler A, Zannoni D, Friedrich B (1997). "Functional and structural role of the cytochrome b subunit of the membrane-bound hydrogenase complex of Alcaligenes eutrophus H16". Eur. J. Biochem. 248 (1): 179–86. doi: 10.1111/j.1432-1033.1997.00179.x. PMID  9310376.
  • Ferber DM, Maier RJ (1993). "Hydrogen-ubiquinone oxidoreductase activity by the Bradyrhizobium japonicum membrane-bound hydrogenase". FEMS Microbiol. Lett. 110 (3): 257–64. doi: 10.1111/j.1574-6968.1993.tb06331.x. PMID  8354459.
  • Kodama T (1991). "Methionaquinone is a direct natural electron-acceptor for the membrane-bound hydrogenase in Hydrogenobacter thermophilus strain TK-6". Agric. Biol. Chem. 55: 3011–3016. doi: 10.1271/bbb1961.55.3011.
  • Infossi, Pascale; Lojou, Elisabeth; Chauvin, Jean-Paul; Herbette, Gaetan; Brugna, Myriam; Giudici-Orticoni, Marie-Thérèse (2010). "Aquifex aeolicus membrane hydrogenase for hydrogen biooxidation: Role of lipids and physiological partners in enzyme stability and activity". International Journal of Hydrogen Energy. 35 (19): 10778–10789. doi: 10.1016/j.ijhydene.2010.02.054. ISSN  0360-3199.
  • Frielingsdorf, Stefan; Schubert, Torsten; Pohlmann, Anne; Lenz, Oliver; Friedrich, Bärbel (2011). "A Trimeric Supercomplex of the Oxygen-Tolerant Membrane-Bound [NiFe]-Hydrogenase fromRalstonia eutrophaH16". Biochemistry. 50 (50): 10836–10843. doi: 10.1021/bi201594m. ISSN  0006-2960.
  • Radu, Valentin; Frielingsdorf, Stefan; Evans, Stephen D.; Lenz, Oliver; Jeuken, Lars J. C. (2014). "Enhanced Oxygen-Tolerance of the Full Heterotrimeric Membrane-Bound [NiFe]-Hydrogenase ofRalstonia eutropha". Journal of the American Chemical Society. 136 (24): 8512–8515. doi: 10.1021/ja503138p. ISSN  0002-7863. PMC  4073834. PMID  24866391.



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook