From Wikipedia, the free encyclopedia

Dialkylbiaryl phosphine ligands are phosphine ligands that are used in homogeneous catalysis. They have proved useful in Buchwald-Hartwig amination and etherification reactions as well as Negishi cross-coupling, Suzuki-Miyaura cross-coupling, and related reactions. [1] In addition to these Pd-based processes, their use has also been extended to transformations catalyzed by nickel, [2] gold, [3] [4] [5] silver, [6] copper, [7] rhodium, [8] [9] and ruthenium, [10] [11] among other transition metals. [12]

History

Dialkylbiaryl phosphine ligands were first described by Stephen L. Buchwald in 1998 for applications in palladium-catalyzed coupling reactions to form carbon-nitrogen and carbon-carbon bonds. [13] Before their development, use of first- or second-generation phosphine ligands for Pd-catalyzed C-N bond-forming cross-coupling (e.g., tris(o-tolyl)phosphine and BINAP, respectively) necessitated harsh conditions, and the scope of the transformation was severely limited. The Suzuki-Miyaura and Negishi cross-coupling reactions were typically performed with Pd(PPh3)4 as catalyst and were mostly limited to aryl bromides and iodides at elevated temperatures, while the widely available aryl chlorides were unreactive. The development of new classes of ligands was needed to address these limitations. In particular, Buchwald's group focused on the development of the dialkylbiaryl phosphine ligands, while Hartwig's group investigated bisphosphinoferrocene and trialkylphosphine ligands. Due to the Buchwald group's discovery and extensive development of the dialkylbiaryl phosphine ligands, they are also informally known as the "Buchwald ligands." [14]

General features

One pot synthesis of dialkylbiaryl phosphine ligands

Dialkylbiaryl phosphine ligands are air-stable solids. Many are available commercially. They often can be synthesized in from inexpensive starting materials. One pot protocols have been conducted on >10 kg scales. [15] [16]

Structural features of the dialkylbiarylphosphines and their impact on the efficacy of catalysts using these ligands

Their enhanced catalytic activity over other ligands in palladium-catalyzed coupling reactions have been attributed to their electron-richness, steric bulk, and some special structural features. In particular, cyclohexyl, t-butyl, and adamantyl groups on the phosphorus are used for this purpose as bulky, electron-donating substituents. The lower ring of the biphenyl system, ortho to the phosphino group, is also a key structural feature. Numerous crystallographic studies have indicated that it behaves as a hemilabile ligand and is believed to play a role in stabilizing the highly reactive, formally 12-electron L–Pd0 intermediate during the catalytic cycle. 2,6-Substitution on the lower ring minimizes catalyst decomposition via Pd-mediated C-H activation of these positions. Extensive experimentation by the Buchwald group has shown that further minor changes to the structure of these ligands can dramatically alter their catalytic activity in cross coupling reactions with different substrates. This has led to the evolution of multiple ligands that are tailored for specific transformations. [17] By providing a means of generating the postulated catalytically active L–Pd0 species under mild conditions (room temperature or lower in many cases), the development of several generations of base-activated, cyclopalladated precatalysts have further broadened the applicability of the ligands and simplified their use. [18] [19]

Common Dialkylbiaryl phosphine ligands

DavePhos

DavePhos

DavePhos, the first reported dialkylbiaryl phosphine ligand, was initially used in Pd-catalyzed Suzuki-Miyaura cross-coupling reactions as well as Buchwald-Hartwig aminations. [20] Complexes of this ligand also catalyze a wide array of reactions, including the arylation of ketones [21] and esters, [22] borylation of aryl chlorides, [23] and the arylation of indoles. [24]

Many modified versions of DavePhos have been synthesized. t-BuDavePhos has been shown to be an even more reactive variant of DavePhos in the room temperature Suzuki-Miyaura coupling of aryl bromides and chlorides. [25] The biphenyl equivalent (PhDavePhos) is also available.

JohnPhos

JohnPhos

JohnPhos supports the Pd-catalyzed Suzuki-Miyaura reactions with aryl bromides and chlorides. [26] It tolerates hindered substrates and operates at room temperature with low catalyst loading. This ligand has been utilized in multiple reactions including the amination of a range of aryl halides and triflates [27] [28] as well as the arylation of thiophenes. [29]

MePhos

MePhos

Like DavePhos and JohnPhos, MePhos is competent in the Pd-catalyzed Suzuki-Miyaura coupling. [30] It can also form the active catalyst in the formation of aryl ketones. [31] Variants of this ligand, including t-BuMePhos, are also commercially available.

The Pd2(dba)3/MePhos catalytic system has been applied to late stage Suzuki cross couplings. This reaction has been conducted on a kilogram scale, and no specific palladium-removal treatment was required as the excess imidazole present in the final amide coupling step coordinated to the Pd and generated a removable byproduct. [32]

Amgen kilogram-acale aynthesis of p38 MAP kinase inhibitor candidate

XPhos

XPhos

XPhos supports Pd-based catalysts for amination and amidation of arylsulfonates and aryl halides. [33] XPhos has also been used in the Pd-catalyzed borylation of aryl and heteroaryl chlorides [34]

Modified versions of XPhos, he more hindered t-BuXPhos and Me4tButylXPhos, have been employed in the formation of diaryl ethers. [35] Incorporation of a sulfonate group at the 4-position allows this ligand to be used for Sonogashira couplings in aqueous biphasic solvents. [36]

SPhos

SPhos

SPhos has proven effective in Pd-catalyzed Suzuki-Miyaura coupling reactions. [37] This ligand enables the cross-coupling of heteroaryl, electron-rich and electron-poor aryl, and vinylboronic acids with a variety of aryl and heteroaryl halides under mild reaction conditions. SPhos has also been used in the Pd-catalyzed borylation of aryl and heteroaryl chlorides. [38]

3-Sulfonate variants of sSPhos have been used in Suzuki-Miyaura couplings in aqueous media. [39] SPhos was used in the 8 step total synthesis of (±)-geigerin. [40]

Synthesis of geigerin through Suzuki-Miyaura Coupling

RuPhos

RuPhos

RuPhos has proven effective for Pd-catalyzed Negishi coupling of organozincs with aryl halides. [41] This ligands tolerates hindered substrates as well as a wide range of functional groups. Its complexes also catalyze the trifluoromethylation of aryl chlorides [42] and aminations of aryl halides. [43]

BrettPhos

BrettPhos

BrettPhos has been evaluated for the Pd-catalyzed amination of aryl mesylates and aryl halides. [44] Pd-BrettPhos complexes catalyze the coupling of weak nucleophiles with aryl halides. Such catalysts are selective for the monoarylation of primary amines. Other applications of BrettPhos in catalysis include trifluoromethylation of aryl chlorides, [45] the formation of aryl trifluoromethyl sulfides, [46] and Suzuki-Miyaura cross-couplings. [47]

Pd- t-BuBrettPhos complexes catalyze the conversion of aryl triflates and aryl bromides to aryl fluorides [48] as well as the synthesis of aromatic nitro compounds. [49] The bulky AdBrettPhos can be used in the amidation of five-membered heterocyclic halides that contain multiple heteroatoms (such as haloimidazoles and halopyrazoles). [50]

CPhos

CPhos

CPhos has been used as a ligand in the Pd-catalyzed synthesis of 3-cyclopentylindole derivatives, [51] dihydrobenzofurans, [52] and trans-bicyclic sulfamides. [53] It has also been used to synthesize palladacycle precatalysts for Negishi coupling of secondary alkylzinc reagents with aryl halides. [54] [55] [56]

AlPhos

AlPhos

AlPhos allows for the mild Pd-catalyzed fluorination of aryl- and heteroaryl triflates. [57] Reported in 2015, this ligand has been used for Buchwald-Hartwig cross-coupling reactions and synthesizing highly regioselective aryl fluorides through Pd-catalyzed fluorination of various activated aryl and heteroaryl triflates and bromides. [58] [59] It has also been used to prepare aryl thioethers by C–S cross-coupling of thiols with aromatic electrophile in the presence of palladium catalyst. [60]

Applications in Bioconjugation

Oxidative Addition Complex

In Pd-catalyzed transformation, an aryl halide substrate undergoes oxidative addition with L–Pd0 to from an oxidative addition complex (OAC). The resulting L–PdII(Ar)X OAC is an electrophilic complex that can react with a nucleophile and form C–C and C–heteroatom bonds after reductive elimination. [61] L–PdII(Ar)X OACs have been used as precatalysts that serve as intermediates in the catalytic cycle for cross coupling and support the use of extremely bulky phosphine ligands such as dialkylbiaryl phosphine ligands. [62] OACs exhibit remarkable stability, allow reactions to proceed under milder conditions and with higher success, and thus have not only been used in organic solutions but also been applied to bioconjugation. [63]

Dialkylbiaryl phosphine ligands has been shown useful and crucial as the ligand for Pd OAC-mediated bioconjugation. For example, RuPhos and sSPhos has been used as the ligand for Pd-mediated cysteine arylation, and the use of BrettPhos and t-BuBrettPhos are critical for lysine arylation. [64] [65] [66] [67]

See also

References

  1. ^ Surry, David S.; Buchwald, Stephen L. (2008-08-11). "Biaryl Phosphane Ligands in Palladium-Catalyzed Amination". Angewandte Chemie International Edition. 47 (34): 6338–6361. doi: 10.1002/anie.200800497. ISSN  1521-3773. PMC  3517088. PMID  18663711.
  2. ^ Newman-Stonebraker, Samuel H.; Wang, Jason Y.; Jeffrey, Philip D.; Doyle, Abigail G. (October 2022). "Structure–Reactivity Relationships of Buchwald-Type Phosphines in Nickel-Catalyzed Cross-Couplings" (PDF). Journal of the American Chemical Society. 144 (42): 19635–19648. doi: 10.1021/jacs.2c09840. PMID  36250758. S2CID  252917338.
  3. ^ Ferrer, Catalina; Amijs, Catelijne H. M.; Echavarren, Antonio M. (2007-02-02). "Intra- and Intermolecular Reactions of Indoles with Alkynes Catalyzed by Gold". Chemistry - A European Journal. 13 (5): 1358–1373. doi: 10.1002/chem.200601324.
  4. ^ Ferrer, Catalina; Echavarren, Antonio M. (2006-02-06). "Gold-Catalyzed Intramolecular Reaction of Indoles with Alkynes: Facile Formation of Eight-Membered Rings and an Unexpected Allenylation". Angewandte Chemie (in German). 118 (7): 1123–1127. doi: 10.1002/ange.200503484. ISSN  0044-8249.
  5. ^ López, Salomé; Herrero-Gómez, Elena; Pérez-Galán, Patricia; Nieto-Oberhuber, Cristina; Echavarren, Antonio M. (2006-09-11). "Gold(I)-Catalyzed Intermolecular Cyclopropanation of Enynes with Alkenes: Trapping of Two Different Gold Carbenes". Angewandte Chemie (in German). 118 (36): 6175–6178. doi: 10.1002/ange.200602448. ISSN  0044-8249.
  6. ^ Porcel, Susana; Echavarren, Antonio M. (2007-03-06). "Intramolecular Carbostannylation of Alkynes Catalyzed by Silver(I) Species". Angewandte Chemie. 119 (15): 2726–2730. doi: 10.1002/ange.200605041.
  7. ^ Haider, Joachim; Kunz, Klaus; Scholz, Ulrich (2004-06). "Highly Selective Copper-Catalyzed Monoarylation of Aniline". Advanced Synthesis & Catalysis. 346 (7): 717–722. doi: 10.1002/adsc.200404011. ISSN  1615-4150. {{ cite journal}}: Check date values in: |date= ( help)
  8. ^ Dhondi, Pawan K.; Chisholm, John D. (2006-01-01). "Rhodium-Catalyzed Addition of Alkynes to Activated Ketones and Aldehydes". Organic Letters. 8 (1): 67–69. doi: 10.1021/ol0525260. ISSN  1523-7060.
  9. ^ Dhondi, Pawan K.; Carberry, Patrick; Choi, Lydia B.; Chisholm, John D. (2007-12-01). "Addition of Alkynes to Aldehydes and Activated Ketones Catalyzed by Rhodium−Phosphine Complexes". The Journal of Organic Chemistry. 72 (25): 9590–9596. doi: 10.1021/jo701643h. ISSN  0022-3263.
  10. ^ Movassaghi, Mohammad; Hill, Matthew D. (2006-11-01). "Single-Step Synthesis of Pyrimidine Derivatives". Journal of the American Chemical Society. 128 (44): 14254–14255. doi: 10.1021/ja066405m. ISSN  0002-7863.
  11. ^ Faller, J. W.; D'Alliessi, Darlene G. (2003-06-01). "Planar Chirality in Tethered η 6 :η 1 -(Phosphinophenylenearene -P )ruthenium(II) Complexes and Their Potential Use as Asymmetric Catalysts". Organometallics. 22 (13): 2749–2757. doi: 10.1021/om030080q. ISSN  0276-7333.
  12. ^ Surry, David S.; Buchwald, Stephen L. (2011). "Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide". Chem. Sci. 2 (1): 27–50. doi: 10.1039/C0SC00331J. ISSN  2041-6539. PMC  3306613. PMID  22432049.
  13. ^ Old, David W.; Wolfe, John P.; Buchwald, Stephen L. (September 1998). "A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions: Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides". Journal of the American Chemical Society. 120 (37): 9722–9723. doi: 10.1021/ja982250+.
  14. ^ "Buchwald Phosphine Ligands". Sigma-Aldrich. Retrieved 2023-06-08.
  15. ^ Martin, Ruben; Buchwald, Stephen L. (18 November 2008). "Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands". Accounts of Chemical Research. 41 (11): 1461–1473. doi: 10.1021/ar800036s. ISSN  0001-4842. PMC  2645945. PMID  18620434.
  16. ^ Kaye, Steven; Fox, Joseph M.; Hicks, Frederick A.; Buchwald, Stephen L. (31 December 2001). "The Use of Catalytic Amounts of CuCl and Other Improvements in the Benzyne Route to Biphenyl-Based Phosphine Ligands". Advanced Synthesis & Catalysis. 343 (8): 789–794. doi: 10.1002/1615-4169(20011231)343:8<789::AID-ADSC789>3.0.CO;2-A. ISSN  1615-4169.
  17. ^ Martin, Ruben; Buchwald, Stephen L. (18 November 2008). "Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands". Accounts of Chemical Research. 41 (11): 1461–1473. doi: 10.1021/ar800036s. ISSN  0001-4842. PMC  2645945. PMID  18620434.
  18. ^ Biscoe, Mark R.; Fors, Brett P.; Buchwald, Stephen L. (2008-05-01). "A New Class of Easily Activated Palladium Precatalysts for Facile C−N Cross-Coupling Reactions and the Low Temperature Oxidative Addition of Aryl Chlorides". Journal of the American Chemical Society. 130 (21): 6686–6687. doi: 10.1021/ja801137k. PMC  2587037. PMID  18447360.
  19. ^ Bruno, N. C.; Buchwald, S. L. (2014). Palladium Precatalysts for Cross-Coupling Reactions (PDF). The Strem Chemiker.
  20. ^ Old, David W.; Wolfe, John P.; Buchwald, Stephen L. (September 1998). "A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions: Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides". Journal of the American Chemical Society. 120 (37): 9722–9723. doi: 10.1021/ja982250+.
  21. ^ Fox, Joseph M.; Huang, Xiaohua; Chieffi, André; Buchwald, Stephen L. (1 February 2000). "Highly Active and Selective Catalysts for the Formation of α-Aryl Ketones". Journal of the American Chemical Society. 122 (7): 1360–1370. doi: 10.1021/ja993912d. ISSN  0002-7863.
  22. ^ Moradi, Wahed A.; Buchwald, Stephen L. (2001). "Palladium-Catalyzedα-Arylation of Esters". Journal of the American Chemical Society. 123 (33): 7996–8002. doi: 10.1021/ja010797+. ISSN  0002-7863. PMID  11506555.
  23. ^ Billingsley, Kelvin L.; Barder, Timothy E.; Buchwald, Stephen L. (9 July 2007). "Palladium-Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and Computational Studies". Angewandte Chemie International Edition. 46 (28): 5359–5363. doi: 10.1002/anie.200701551. ISSN  1521-3773. PMID  17562550.
  24. ^ Old, David W.; Harris, Michele C.; Buchwald, Stephen L. (1 May 2000). "Efficient Palladium-Catalyzed N-Arylation of Indoles". Organic Letters. 2 (10): 1403–1406. doi: 10.1021/ol005728z. ISSN  1523-7060. PMID  10814458.
  25. ^ Wolfe, John P.; Singer, Robert A.; Yang, Bryant H.; Buchwald, Stephen L. (1 October 1999). "Highly Active Palladium Catalysts for Suzuki Coupling Reactions". Journal of the American Chemical Society. 121 (41): 9550–9561. doi: 10.1021/ja992130h. ISSN  0002-7863.
  26. ^ Wolfe, John P.; Singer, Robert A.; Yang, Bryant H.; Buchwald, Stephen L. (1 October 1999). "Highly Active Palladium Catalysts for Suzuki Coupling Reactions". Journal of the American Chemical Society. 121 (41): 9550–9561. doi: 10.1021/ja992130h. ISSN  0002-7863.
  27. ^ Wolfe, John P.; Tomori, Hiroshi; Sadighi, Joseph P.; Yin, Jingjun; Buchwald, Stephen L. (1 February 2000). "Simple, Efficient Catalyst System for the Palladium-Catalyzed Amination of Aryl Chlorides, Bromides, and Triflates" (PDF). The Journal of Organic Chemistry. 65 (4): 1158–1174. doi: 10.1021/jo991699y. ISSN  0022-3263. PMID  10814067.
  28. ^ Surry, David S.; Buchwald, Stephen L. (11 August 2008). "Biaryl Phosphane Ligands in Palladium-Catalyzed Amination". Angewandte Chemie International Edition. 47 (34): 6338–6361. doi: 10.1002/anie.200800497. ISSN  1521-3773. PMC  3517088. PMID  18663711.
  29. ^ Okazawa, Toru; Satoh, Tetsuya; Miura, Masahiro; Nomura, Masakatsu (1 May 2002). "Palladium-Catalyzed Multiple Arylation of Thiophenes". Journal of the American Chemical Society. 124 (19): 5286–5287. doi: 10.1021/ja0259279. ISSN  0002-7863. PMID  11996567.
  30. ^ Wolfe, John P.; Singer, Robert A.; Yang, Bryant H.; Buchwald, Stephen L. (1 October 1999). "Highly Active Palladium Catalysts for Suzuki Coupling Reactions". Journal of the American Chemical Society. 121 (41): 9550–9561. doi: 10.1021/ja992130h. ISSN  0002-7863.
  31. ^ Fox, Joseph M.; Huang, Xiaohua; Chieffi, André; Buchwald, Stephen L. (1 February 2000). "Highly Active and Selective Catalysts for the Formation of α-Aryl Ketones". Journal of the American Chemical Society. 122 (7): 1360–1370. doi: 10.1021/ja993912d. ISSN  0002-7863.
  32. ^ Thiel, Oliver; Achmatowicz, Michal; Milburn, Robert (11 June 2012). "Process Research and Development for Heterocyclic p38 MAP Kinase Inhibitors". Synlett. 23 (11): 1564–1574. doi: 10.1055/s-0031-1290425.
  33. ^ Huang, Xiaohua; Anderson, Kevin W.; Zim, Danilo; Jiang, Lei; Klapars, Artis; Buchwald, Stephen L. (1 June 2003). "Expanding Pd-Catalyzed C−N Bond-Forming Processes: The First Amidation of Aryl Sulfonates, Aqueous Amination, and Complementarity with Cu-Catalyzed Reactions". Journal of the American Chemical Society. 125 (22): 6653–6655. doi: 10.1021/ja035483w. ISSN  0002-7863. PMID  12769573.
  34. ^ Billingsley, Kelvin L.; Barder, Timothy E.; Buchwald, Stephen L. (9 July 2007). "Palladium-Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and Computational Studies". Angewandte Chemie International Edition. 46 (28): 5359–5363. doi: 10.1002/anie.200701551. ISSN  1521-3773. PMID  17562550.
  35. ^ Burgos, Carlos H.; Barder, Timothy E.; Huang, Xiaohua; Buchwald, Stephen L. (26 June 2006). "Significantly Improved Method for the Pd-Catalyzed Coupling of Phenols with Aryl Halides: Understanding Ligand Effects". Angewandte Chemie International Edition. 45 (26): 4321–4326. doi: 10.1002/anie.200601253. ISSN  1521-3773. PMID  16733839.
  36. ^ Anderson, Kevin W.; Buchwald, Stephen L. (26 September 2005). "General Catalysts for the Suzuki–Miyaura and Sonogashira Coupling Reactions of Aryl Chlorides and for the Coupling of Challenging Substrate Combinations in Water". Angewandte Chemie International Edition. 44 (38): 6173–6177. doi: 10.1002/anie.200502017. ISSN  1521-3773. PMID  16097019.
  37. ^ Walker, Shawn D.; Barder, Timothy E.; Martinelli, Joseph R.; Buchwald, Stephen L. (26 March 2004). "A Rationally Designed Universal Catalyst for Suzuki–Miyaura Coupling Processes". Angewandte Chemie International Edition. 43 (14): 1871–1876. doi: 10.1002/anie.200353615. ISSN  1521-3773. PMID  15054800.
  38. ^ Billingsley, Kelvin L.; Barder, Timothy E.; Buchwald, Stephen L. (9 July 2007). "Palladium-Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and Computational Studies". Angewandte Chemie International Edition. 46 (28): 5359–5363. doi: 10.1002/anie.200701551. ISSN  1521-3773. PMID  17562550.
  39. ^ Anderson, Kevin W.; Buchwald, Stephen L. (26 September 2005). "General Catalysts for the Suzuki–Miyaura and Sonogashira Coupling Reactions of Aryl Chlorides and for the Coupling of Challenging Substrate Combinations in Water". Angewandte Chemie International Edition. 44 (38): 6173–6177. doi: 10.1002/anie.200502017. ISSN  1521-3773. PMID  16097019.
  40. ^ Carret, Sébastien; Deprés, Jean-Pierre (10 September 2007). "Access to Guaianolides: Highly Efficient Stereocontrolled Total Synthesis of (±)-Geigerin". Angewandte Chemie International Edition. 46 (36): 6870–6873. doi: 10.1002/anie.200702031. ISSN  1521-3773. PMID  17676568.
  41. ^ Milne, Jacqueline E.; Buchwald, Stephen L. (1 October 2004). "An Extremely Active Catalyst for the Negishi Cross-Coupling Reaction". Journal of the American Chemical Society. 126 (40): 13028–13032. doi: 10.1021/ja0474493. ISSN  0002-7863. PMID  15469301.
  42. ^ Cho, Eun Jin; Senecal, Todd D.; Kinzel, Tom; Zhang, Yong; Watson, Donald A.; Buchwald, Stephen L. (25 June 2010). "The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides". Science. 328 (5986): 1679–1681. Bibcode: 2010Sci...328.1679C. doi: 10.1126/science.1190524. ISSN  0036-8075. PMC  3005208. PMID  20576888.
  43. ^ Charles, Mark D.; Schultz, Phillip; Buchwald, Stephen L. (1 September 2005). "Efficient Pd-Catalyzed Amination of Heteroaryl Halides". Organic Letters. 7 (18): 3965–3968. doi: 10.1021/ol0514754. ISSN  1523-7060. PMID  16119943.
  44. ^ Fors, Brett P.; Watson, Donald A.; Biscoe, Mark R.; Buchwald, Stephen L. (15 October 2008). "A Highly Active Catalyst for Pd-Catalyzed Amination Reactions: Cross-Coupling Reactions Using Aryl Mesylates and the Highly Selective Monoarylation of Primary Amines Using Aryl Chlorides". Journal of the American Chemical Society. 130 (41): 13552–13554. doi: 10.1021/ja8055358. ISSN  0002-7863. PMC  2748321. PMID  18798626.
  45. ^ Cho, Eun Jin; Senecal, Todd D.; Kinzel, Tom; Zhang, Yong; Watson, Donald A.; Buchwald, Stephen L. (25 June 2010). "The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides". Science. 328 (5986): 1679–1681. Bibcode: 2010Sci...328.1679C. doi: 10.1126/science.1190524. ISSN  0036-8075. PMC  3005208. PMID  20576888.
  46. ^ Teverovskiy, Georgiy; Surry, David S.; Buchwald, Stephen L. (1 August 2011). "Pd-Catalyzed Synthesis of Ar-SCF3 Compounds under Mild Conditions". Angewandte Chemie International Edition. 50 (32): 7312–7314. doi: 10.1002/anie.201102543. ISSN  1521-3773. PMC  3395331. PMID  21692157.
  47. ^ Bhayana, Brijesh; Fors, Brett P.; Buchwald, Stephen L. (3 September 2009). "A Versatile Catalyst System for Suzuki−Miyaura Cross-Coupling Reactions of C(sp2)-Tosylates and Mesylates". Organic Letters. 11 (17): 3954–3957. doi: 10.1021/ol9015892. ISSN  1523-7060. PMC  2759755. PMID  19663467.
  48. ^ Watson, Donald A.; Su, Mingjuan; Teverovskiy, Georgiy; Zhang, Yong; García-Fortanet, Jorge; Kinzel, Tom; Buchwald, Stephen L. (25 September 2009). "Formation of ArF from LPdAr(F): Catalytic Conversion of Aryl Triflates to Aryl Fluorides". Science. 325 (5948): 1661–1664. Bibcode: 2009Sci...325.1661W. doi: 10.1126/science.1178239. ISSN  0036-8075. PMC  3038120. PMID  19679769.
  49. ^ Fors, Brett P.; Buchwald, Stephen L. (16 September 2009). "Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics". Journal of the American Chemical Society. 131 (36): 12898–12899. doi: 10.1021/ja905768k. ISSN  0002-7863. PMC  2773681. PMID  19737014.
  50. ^ Su, Mingjuan; Buchwald, Stephen L. (7 May 2012). "A Bulky Biaryl Phosphine Ligand Allows for Palladium-Catalyzed Amidation of Five-Membered Heterocycles as Electrophiles". Angewandte Chemie International Edition. 51 (19): 4710–4713. doi: 10.1002/anie.201201244. ISSN  1521-3773. PMC  3407381. PMID  22473747.
  51. ^ Kirsch, Janelle K.; Manske, Jenna L.; Wolfe, John P. (2018-11-02). "Pd-Catalyzed Alkene Carboheteroarylation Reactions for the Synthesis of 3-Cyclopentylindole Derivatives". The Journal of Organic Chemistry. 83 (21): 13568–13573. doi: 10.1021/acs.joc.8b02165. ISSN  0022-3263. PMC  6375689. PMID  30351050.{{ cite journal}}: CS1 maint: PMC format ( link)
  52. ^ Hutt, Johnathon T.; Wolfe, John P. (2016-09-20). "Synthesis of 2,3-dihydrobenzofurans via the palladium catalyzed carboalkoxylation of 2-allylphenols". Organic Chemistry Frontiers. 3 (10): 1314–1318. doi: 10.1039/C6QO00215C. ISSN  2052-4129.
  53. ^ Babij, Nicholas R.; McKenna, Grace M.; Fornwald, Ryan M.; Wolfe, John P. (2014-06-20). "Stereocontrolled Synthesis of Bicyclic Sulfamides via Pd-Catalyzed Alkene Carboamination Reactions. Control of 1,3-Asymmetric Induction by Manipulating Mechanistic Pathways". Organic Letters. 16 (12): 3412–3415. doi: 10.1021/ol5015976. ISSN  1523-7060. PMC  4076003. PMID  24916343.{{ cite journal}}: CS1 maint: PMC format ( link)
  54. ^ Han, Chong; Buchwald, Stephen L. (10 June 2009). "Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides". Journal of the American Chemical Society. 131 (22): 7532–7533. doi: 10.1021/ja902046m. ISSN  0002-7863. PMC  2746668. PMID  19441851.
  55. ^ Yang, Yang; Niedermann, Katrin; Han, Chong; Buchwald, Stephen L. (2014-09-05). "Highly Selective Palladium-Catalyzed Cross-Coupling of Secondary Alkylzinc Reagents with Heteroaryl Halides". Organic Letters. 16 (17): 4638–4641. doi: 10.1021/ol502230p. ISSN  1523-7060. PMC  4156254. PMID  25153332.{{ cite journal}}: CS1 maint: PMC format ( link)
  56. ^ Zhang, Hu; Buchwald, Stephen L. (2017-08-23). "Palladium-Catalyzed Negishi Coupling of α-CF 3 Oxiranyl Zincate: Access to Chiral CF 3 -Substituted Benzylic Tertiary Alcohols". Journal of the American Chemical Society. 139 (33): 11590–11594. doi: 10.1021/jacs.7b06630. ISSN  0002-7863.
  57. ^ "AlPhos and [(AlPhosPd)2•COD] for Pd-Catalyzed Fluorination". Sigma-Aldrich. Retrieved 2018-08-17.
  58. ^ Sather, Aaron C.; Lee, Hong Geun; De La Rosa, Valentina Y.; Yang, Yang; Müller, Peter; Buchwald, Stephen L. (2015-10-21). "A Fluorinated Ligand Enables Room-Temperature and Regioselective Pd-Catalyzed Fluorination of Aryl Triflates and Bromides". Journal of the American Chemical Society. 137 (41): 13433–13438. doi: 10.1021/jacs.5b09308. ISSN  0002-7863. PMC  4721526. PMID  26413908.{{ cite journal}}: CS1 maint: PMC format ( link)
  59. ^ Sather, Aaron C.; Lee, Hong Geun; De La Rosa, Valentina Y.; Yang, Yang; Müller, Peter; Buchwald, Stephen L. (21 October 2015). "A Fluorinated Ligand Enables Room-Temperature and Regioselective Pd-Catalyzed Fluorination of Aryl Triflates and Bromides". Journal of the American Chemical Society. 137 (41): 13433–13438. doi: 10.1021/jacs.5b09308. ISSN  0002-7863. PMC  4721526. PMID  26413908.
  60. ^ Shaughnessy, Kevin H. (2020-03). "Development of Palladium Precatalysts that Efficiently Generate LPd(0) Active Species". Israel Journal of Chemistry. 60 (3–4): 180–194. doi: 10.1002/ijch.201900067. ISSN  0021-2148. {{ cite journal}}: Check date values in: |date= ( help)
  61. ^ Johansson Seechurn, Carin C. C.; Kitching, Matthew O.; Colacot, Thomas J.; Snieckus, Victor (2012-05-21). "Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize". Angewandte Chemie International Edition. 51 (21): 5062–5085. doi: 10.1002/anie.201107017.
  62. ^ Ingoglia, Bryan T.; Buchwald, Stephen L. (2017-06-02). "Oxidative Addition Complexes as Precatalysts for Cross-Coupling Reactions Requiring Extremely Bulky Biarylphosphine Ligands". Organic Letters. 19 (11): 2853–2856. doi: 10.1021/acs.orglett.7b01082. ISSN  1523-7060. PMC  5580394. PMID  28498667.{{ cite journal}}: CS1 maint: PMC format ( link)
  63. ^ Uehling, Mycah R.; King, Ryan P.; Krska, Shane W.; Cernak, Tim; Buchwald, Stephen L. (2019-01-25). "Pharmaceutical diversification via palladium oxidative addition complexes". Science. 363 (6425): 405–408. doi: 10.1126/science.aac6153. ISSN  0036-8075.
  64. ^ Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L. (2015-10). "Organometallic palladium reagents for cysteine bioconjugation". Nature. 526 (7575): 687–691. doi: 10.1038/nature15739. ISSN  0028-0836. PMC  4809359. PMID  26511579. {{ cite journal}}: Check date values in: |date= ( help)CS1 maint: PMC format ( link)
  65. ^ Rojas, Anthony J.; Pentelute, Bradley L.; Buchwald, Stephen L. (2017-08-18). "Water-Soluble Palladium Reagents for Cysteine S -Arylation under Ambient Aqueous Conditions". Organic Letters. 19 (16): 4263–4266. doi: 10.1021/acs.orglett.7b01911. ISSN  1523-7060.
  66. ^ Jbara, Muhammad; Rodriguez, Jacob; Dhanjee, Heemal H.; Loas, Andrei; Buchwald, Stephen L.; Pentelute, Bradley L. (2021-05-17). "Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents". Angewandte Chemie International Edition. 60 (21): 12109–12115. doi: 10.1002/anie.202103180. ISSN  1433-7851. PMC  8143041. PMID  33730425.{{ cite journal}}: CS1 maint: PMC format ( link)
  67. ^ Lee, Hong Geun; Lautrette, Guillaume; Pentelute, Bradley L.; Buchwald, Stephen L. (2017-03-13). "Palladium-Mediated Arylation of Lysine in Unprotected Peptides". Angewandte Chemie International Edition. 56 (12): 3177–3181. doi: 10.1002/anie.201611202.

Category:Phosphines Category:Catalysis Category:Ligands

From Wikipedia, the free encyclopedia

Dialkylbiaryl phosphine ligands are phosphine ligands that are used in homogeneous catalysis. They have proved useful in Buchwald-Hartwig amination and etherification reactions as well as Negishi cross-coupling, Suzuki-Miyaura cross-coupling, and related reactions. [1] In addition to these Pd-based processes, their use has also been extended to transformations catalyzed by nickel, [2] gold, [3] [4] [5] silver, [6] copper, [7] rhodium, [8] [9] and ruthenium, [10] [11] among other transition metals. [12]

History

Dialkylbiaryl phosphine ligands were first described by Stephen L. Buchwald in 1998 for applications in palladium-catalyzed coupling reactions to form carbon-nitrogen and carbon-carbon bonds. [13] Before their development, use of first- or second-generation phosphine ligands for Pd-catalyzed C-N bond-forming cross-coupling (e.g., tris(o-tolyl)phosphine and BINAP, respectively) necessitated harsh conditions, and the scope of the transformation was severely limited. The Suzuki-Miyaura and Negishi cross-coupling reactions were typically performed with Pd(PPh3)4 as catalyst and were mostly limited to aryl bromides and iodides at elevated temperatures, while the widely available aryl chlorides were unreactive. The development of new classes of ligands was needed to address these limitations. In particular, Buchwald's group focused on the development of the dialkylbiaryl phosphine ligands, while Hartwig's group investigated bisphosphinoferrocene and trialkylphosphine ligands. Due to the Buchwald group's discovery and extensive development of the dialkylbiaryl phosphine ligands, they are also informally known as the "Buchwald ligands." [14]

General features

One pot synthesis of dialkylbiaryl phosphine ligands

Dialkylbiaryl phosphine ligands are air-stable solids. Many are available commercially. They often can be synthesized in from inexpensive starting materials. One pot protocols have been conducted on >10 kg scales. [15] [16]

Structural features of the dialkylbiarylphosphines and their impact on the efficacy of catalysts using these ligands

Their enhanced catalytic activity over other ligands in palladium-catalyzed coupling reactions have been attributed to their electron-richness, steric bulk, and some special structural features. In particular, cyclohexyl, t-butyl, and adamantyl groups on the phosphorus are used for this purpose as bulky, electron-donating substituents. The lower ring of the biphenyl system, ortho to the phosphino group, is also a key structural feature. Numerous crystallographic studies have indicated that it behaves as a hemilabile ligand and is believed to play a role in stabilizing the highly reactive, formally 12-electron L–Pd0 intermediate during the catalytic cycle. 2,6-Substitution on the lower ring minimizes catalyst decomposition via Pd-mediated C-H activation of these positions. Extensive experimentation by the Buchwald group has shown that further minor changes to the structure of these ligands can dramatically alter their catalytic activity in cross coupling reactions with different substrates. This has led to the evolution of multiple ligands that are tailored for specific transformations. [17] By providing a means of generating the postulated catalytically active L–Pd0 species under mild conditions (room temperature or lower in many cases), the development of several generations of base-activated, cyclopalladated precatalysts have further broadened the applicability of the ligands and simplified their use. [18] [19]

Common Dialkylbiaryl phosphine ligands

DavePhos

DavePhos

DavePhos, the first reported dialkylbiaryl phosphine ligand, was initially used in Pd-catalyzed Suzuki-Miyaura cross-coupling reactions as well as Buchwald-Hartwig aminations. [20] Complexes of this ligand also catalyze a wide array of reactions, including the arylation of ketones [21] and esters, [22] borylation of aryl chlorides, [23] and the arylation of indoles. [24]

Many modified versions of DavePhos have been synthesized. t-BuDavePhos has been shown to be an even more reactive variant of DavePhos in the room temperature Suzuki-Miyaura coupling of aryl bromides and chlorides. [25] The biphenyl equivalent (PhDavePhos) is also available.

JohnPhos

JohnPhos

JohnPhos supports the Pd-catalyzed Suzuki-Miyaura reactions with aryl bromides and chlorides. [26] It tolerates hindered substrates and operates at room temperature with low catalyst loading. This ligand has been utilized in multiple reactions including the amination of a range of aryl halides and triflates [27] [28] as well as the arylation of thiophenes. [29]

MePhos

MePhos

Like DavePhos and JohnPhos, MePhos is competent in the Pd-catalyzed Suzuki-Miyaura coupling. [30] It can also form the active catalyst in the formation of aryl ketones. [31] Variants of this ligand, including t-BuMePhos, are also commercially available.

The Pd2(dba)3/MePhos catalytic system has been applied to late stage Suzuki cross couplings. This reaction has been conducted on a kilogram scale, and no specific palladium-removal treatment was required as the excess imidazole present in the final amide coupling step coordinated to the Pd and generated a removable byproduct. [32]

Amgen kilogram-acale aynthesis of p38 MAP kinase inhibitor candidate

XPhos

XPhos

XPhos supports Pd-based catalysts for amination and amidation of arylsulfonates and aryl halides. [33] XPhos has also been used in the Pd-catalyzed borylation of aryl and heteroaryl chlorides [34]

Modified versions of XPhos, he more hindered t-BuXPhos and Me4tButylXPhos, have been employed in the formation of diaryl ethers. [35] Incorporation of a sulfonate group at the 4-position allows this ligand to be used for Sonogashira couplings in aqueous biphasic solvents. [36]

SPhos

SPhos

SPhos has proven effective in Pd-catalyzed Suzuki-Miyaura coupling reactions. [37] This ligand enables the cross-coupling of heteroaryl, electron-rich and electron-poor aryl, and vinylboronic acids with a variety of aryl and heteroaryl halides under mild reaction conditions. SPhos has also been used in the Pd-catalyzed borylation of aryl and heteroaryl chlorides. [38]

3-Sulfonate variants of sSPhos have been used in Suzuki-Miyaura couplings in aqueous media. [39] SPhos was used in the 8 step total synthesis of (±)-geigerin. [40]

Synthesis of geigerin through Suzuki-Miyaura Coupling

RuPhos

RuPhos

RuPhos has proven effective for Pd-catalyzed Negishi coupling of organozincs with aryl halides. [41] This ligands tolerates hindered substrates as well as a wide range of functional groups. Its complexes also catalyze the trifluoromethylation of aryl chlorides [42] and aminations of aryl halides. [43]

BrettPhos

BrettPhos

BrettPhos has been evaluated for the Pd-catalyzed amination of aryl mesylates and aryl halides. [44] Pd-BrettPhos complexes catalyze the coupling of weak nucleophiles with aryl halides. Such catalysts are selective for the monoarylation of primary amines. Other applications of BrettPhos in catalysis include trifluoromethylation of aryl chlorides, [45] the formation of aryl trifluoromethyl sulfides, [46] and Suzuki-Miyaura cross-couplings. [47]

Pd- t-BuBrettPhos complexes catalyze the conversion of aryl triflates and aryl bromides to aryl fluorides [48] as well as the synthesis of aromatic nitro compounds. [49] The bulky AdBrettPhos can be used in the amidation of five-membered heterocyclic halides that contain multiple heteroatoms (such as haloimidazoles and halopyrazoles). [50]

CPhos

CPhos

CPhos has been used as a ligand in the Pd-catalyzed synthesis of 3-cyclopentylindole derivatives, [51] dihydrobenzofurans, [52] and trans-bicyclic sulfamides. [53] It has also been used to synthesize palladacycle precatalysts for Negishi coupling of secondary alkylzinc reagents with aryl halides. [54] [55] [56]

AlPhos

AlPhos

AlPhos allows for the mild Pd-catalyzed fluorination of aryl- and heteroaryl triflates. [57] Reported in 2015, this ligand has been used for Buchwald-Hartwig cross-coupling reactions and synthesizing highly regioselective aryl fluorides through Pd-catalyzed fluorination of various activated aryl and heteroaryl triflates and bromides. [58] [59] It has also been used to prepare aryl thioethers by C–S cross-coupling of thiols with aromatic electrophile in the presence of palladium catalyst. [60]

Applications in Bioconjugation

Oxidative Addition Complex

In Pd-catalyzed transformation, an aryl halide substrate undergoes oxidative addition with L–Pd0 to from an oxidative addition complex (OAC). The resulting L–PdII(Ar)X OAC is an electrophilic complex that can react with a nucleophile and form C–C and C–heteroatom bonds after reductive elimination. [61] L–PdII(Ar)X OACs have been used as precatalysts that serve as intermediates in the catalytic cycle for cross coupling and support the use of extremely bulky phosphine ligands such as dialkylbiaryl phosphine ligands. [62] OACs exhibit remarkable stability, allow reactions to proceed under milder conditions and with higher success, and thus have not only been used in organic solutions but also been applied to bioconjugation. [63]

Dialkylbiaryl phosphine ligands has been shown useful and crucial as the ligand for Pd OAC-mediated bioconjugation. For example, RuPhos and sSPhos has been used as the ligand for Pd-mediated cysteine arylation, and the use of BrettPhos and t-BuBrettPhos are critical for lysine arylation. [64] [65] [66] [67]

See also

References

  1. ^ Surry, David S.; Buchwald, Stephen L. (2008-08-11). "Biaryl Phosphane Ligands in Palladium-Catalyzed Amination". Angewandte Chemie International Edition. 47 (34): 6338–6361. doi: 10.1002/anie.200800497. ISSN  1521-3773. PMC  3517088. PMID  18663711.
  2. ^ Newman-Stonebraker, Samuel H.; Wang, Jason Y.; Jeffrey, Philip D.; Doyle, Abigail G. (October 2022). "Structure–Reactivity Relationships of Buchwald-Type Phosphines in Nickel-Catalyzed Cross-Couplings" (PDF). Journal of the American Chemical Society. 144 (42): 19635–19648. doi: 10.1021/jacs.2c09840. PMID  36250758. S2CID  252917338.
  3. ^ Ferrer, Catalina; Amijs, Catelijne H. M.; Echavarren, Antonio M. (2007-02-02). "Intra- and Intermolecular Reactions of Indoles with Alkynes Catalyzed by Gold". Chemistry - A European Journal. 13 (5): 1358–1373. doi: 10.1002/chem.200601324.
  4. ^ Ferrer, Catalina; Echavarren, Antonio M. (2006-02-06). "Gold-Catalyzed Intramolecular Reaction of Indoles with Alkynes: Facile Formation of Eight-Membered Rings and an Unexpected Allenylation". Angewandte Chemie (in German). 118 (7): 1123–1127. doi: 10.1002/ange.200503484. ISSN  0044-8249.
  5. ^ López, Salomé; Herrero-Gómez, Elena; Pérez-Galán, Patricia; Nieto-Oberhuber, Cristina; Echavarren, Antonio M. (2006-09-11). "Gold(I)-Catalyzed Intermolecular Cyclopropanation of Enynes with Alkenes: Trapping of Two Different Gold Carbenes". Angewandte Chemie (in German). 118 (36): 6175–6178. doi: 10.1002/ange.200602448. ISSN  0044-8249.
  6. ^ Porcel, Susana; Echavarren, Antonio M. (2007-03-06). "Intramolecular Carbostannylation of Alkynes Catalyzed by Silver(I) Species". Angewandte Chemie. 119 (15): 2726–2730. doi: 10.1002/ange.200605041.
  7. ^ Haider, Joachim; Kunz, Klaus; Scholz, Ulrich (2004-06). "Highly Selective Copper-Catalyzed Monoarylation of Aniline". Advanced Synthesis & Catalysis. 346 (7): 717–722. doi: 10.1002/adsc.200404011. ISSN  1615-4150. {{ cite journal}}: Check date values in: |date= ( help)
  8. ^ Dhondi, Pawan K.; Chisholm, John D. (2006-01-01). "Rhodium-Catalyzed Addition of Alkynes to Activated Ketones and Aldehydes". Organic Letters. 8 (1): 67–69. doi: 10.1021/ol0525260. ISSN  1523-7060.
  9. ^ Dhondi, Pawan K.; Carberry, Patrick; Choi, Lydia B.; Chisholm, John D. (2007-12-01). "Addition of Alkynes to Aldehydes and Activated Ketones Catalyzed by Rhodium−Phosphine Complexes". The Journal of Organic Chemistry. 72 (25): 9590–9596. doi: 10.1021/jo701643h. ISSN  0022-3263.
  10. ^ Movassaghi, Mohammad; Hill, Matthew D. (2006-11-01). "Single-Step Synthesis of Pyrimidine Derivatives". Journal of the American Chemical Society. 128 (44): 14254–14255. doi: 10.1021/ja066405m. ISSN  0002-7863.
  11. ^ Faller, J. W.; D'Alliessi, Darlene G. (2003-06-01). "Planar Chirality in Tethered η 6 :η 1 -(Phosphinophenylenearene -P )ruthenium(II) Complexes and Their Potential Use as Asymmetric Catalysts". Organometallics. 22 (13): 2749–2757. doi: 10.1021/om030080q. ISSN  0276-7333.
  12. ^ Surry, David S.; Buchwald, Stephen L. (2011). "Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide". Chem. Sci. 2 (1): 27–50. doi: 10.1039/C0SC00331J. ISSN  2041-6539. PMC  3306613. PMID  22432049.
  13. ^ Old, David W.; Wolfe, John P.; Buchwald, Stephen L. (September 1998). "A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions: Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides". Journal of the American Chemical Society. 120 (37): 9722–9723. doi: 10.1021/ja982250+.
  14. ^ "Buchwald Phosphine Ligands". Sigma-Aldrich. Retrieved 2023-06-08.
  15. ^ Martin, Ruben; Buchwald, Stephen L. (18 November 2008). "Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands". Accounts of Chemical Research. 41 (11): 1461–1473. doi: 10.1021/ar800036s. ISSN  0001-4842. PMC  2645945. PMID  18620434.
  16. ^ Kaye, Steven; Fox, Joseph M.; Hicks, Frederick A.; Buchwald, Stephen L. (31 December 2001). "The Use of Catalytic Amounts of CuCl and Other Improvements in the Benzyne Route to Biphenyl-Based Phosphine Ligands". Advanced Synthesis & Catalysis. 343 (8): 789–794. doi: 10.1002/1615-4169(20011231)343:8<789::AID-ADSC789>3.0.CO;2-A. ISSN  1615-4169.
  17. ^ Martin, Ruben; Buchwald, Stephen L. (18 November 2008). "Palladium-Catalyzed Suzuki−Miyaura Cross-Coupling Reactions Employing Dialkylbiaryl Phosphine Ligands". Accounts of Chemical Research. 41 (11): 1461–1473. doi: 10.1021/ar800036s. ISSN  0001-4842. PMC  2645945. PMID  18620434.
  18. ^ Biscoe, Mark R.; Fors, Brett P.; Buchwald, Stephen L. (2008-05-01). "A New Class of Easily Activated Palladium Precatalysts for Facile C−N Cross-Coupling Reactions and the Low Temperature Oxidative Addition of Aryl Chlorides". Journal of the American Chemical Society. 130 (21): 6686–6687. doi: 10.1021/ja801137k. PMC  2587037. PMID  18447360.
  19. ^ Bruno, N. C.; Buchwald, S. L. (2014). Palladium Precatalysts for Cross-Coupling Reactions (PDF). The Strem Chemiker.
  20. ^ Old, David W.; Wolfe, John P.; Buchwald, Stephen L. (September 1998). "A Highly Active Catalyst for Palladium-Catalyzed Cross-Coupling Reactions: Room-Temperature Suzuki Couplings and Amination of Unactivated Aryl Chlorides". Journal of the American Chemical Society. 120 (37): 9722–9723. doi: 10.1021/ja982250+.
  21. ^ Fox, Joseph M.; Huang, Xiaohua; Chieffi, André; Buchwald, Stephen L. (1 February 2000). "Highly Active and Selective Catalysts for the Formation of α-Aryl Ketones". Journal of the American Chemical Society. 122 (7): 1360–1370. doi: 10.1021/ja993912d. ISSN  0002-7863.
  22. ^ Moradi, Wahed A.; Buchwald, Stephen L. (2001). "Palladium-Catalyzedα-Arylation of Esters". Journal of the American Chemical Society. 123 (33): 7996–8002. doi: 10.1021/ja010797+. ISSN  0002-7863. PMID  11506555.
  23. ^ Billingsley, Kelvin L.; Barder, Timothy E.; Buchwald, Stephen L. (9 July 2007). "Palladium-Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and Computational Studies". Angewandte Chemie International Edition. 46 (28): 5359–5363. doi: 10.1002/anie.200701551. ISSN  1521-3773. PMID  17562550.
  24. ^ Old, David W.; Harris, Michele C.; Buchwald, Stephen L. (1 May 2000). "Efficient Palladium-Catalyzed N-Arylation of Indoles". Organic Letters. 2 (10): 1403–1406. doi: 10.1021/ol005728z. ISSN  1523-7060. PMID  10814458.
  25. ^ Wolfe, John P.; Singer, Robert A.; Yang, Bryant H.; Buchwald, Stephen L. (1 October 1999). "Highly Active Palladium Catalysts for Suzuki Coupling Reactions". Journal of the American Chemical Society. 121 (41): 9550–9561. doi: 10.1021/ja992130h. ISSN  0002-7863.
  26. ^ Wolfe, John P.; Singer, Robert A.; Yang, Bryant H.; Buchwald, Stephen L. (1 October 1999). "Highly Active Palladium Catalysts for Suzuki Coupling Reactions". Journal of the American Chemical Society. 121 (41): 9550–9561. doi: 10.1021/ja992130h. ISSN  0002-7863.
  27. ^ Wolfe, John P.; Tomori, Hiroshi; Sadighi, Joseph P.; Yin, Jingjun; Buchwald, Stephen L. (1 February 2000). "Simple, Efficient Catalyst System for the Palladium-Catalyzed Amination of Aryl Chlorides, Bromides, and Triflates" (PDF). The Journal of Organic Chemistry. 65 (4): 1158–1174. doi: 10.1021/jo991699y. ISSN  0022-3263. PMID  10814067.
  28. ^ Surry, David S.; Buchwald, Stephen L. (11 August 2008). "Biaryl Phosphane Ligands in Palladium-Catalyzed Amination". Angewandte Chemie International Edition. 47 (34): 6338–6361. doi: 10.1002/anie.200800497. ISSN  1521-3773. PMC  3517088. PMID  18663711.
  29. ^ Okazawa, Toru; Satoh, Tetsuya; Miura, Masahiro; Nomura, Masakatsu (1 May 2002). "Palladium-Catalyzed Multiple Arylation of Thiophenes". Journal of the American Chemical Society. 124 (19): 5286–5287. doi: 10.1021/ja0259279. ISSN  0002-7863. PMID  11996567.
  30. ^ Wolfe, John P.; Singer, Robert A.; Yang, Bryant H.; Buchwald, Stephen L. (1 October 1999). "Highly Active Palladium Catalysts for Suzuki Coupling Reactions". Journal of the American Chemical Society. 121 (41): 9550–9561. doi: 10.1021/ja992130h. ISSN  0002-7863.
  31. ^ Fox, Joseph M.; Huang, Xiaohua; Chieffi, André; Buchwald, Stephen L. (1 February 2000). "Highly Active and Selective Catalysts for the Formation of α-Aryl Ketones". Journal of the American Chemical Society. 122 (7): 1360–1370. doi: 10.1021/ja993912d. ISSN  0002-7863.
  32. ^ Thiel, Oliver; Achmatowicz, Michal; Milburn, Robert (11 June 2012). "Process Research and Development for Heterocyclic p38 MAP Kinase Inhibitors". Synlett. 23 (11): 1564–1574. doi: 10.1055/s-0031-1290425.
  33. ^ Huang, Xiaohua; Anderson, Kevin W.; Zim, Danilo; Jiang, Lei; Klapars, Artis; Buchwald, Stephen L. (1 June 2003). "Expanding Pd-Catalyzed C−N Bond-Forming Processes: The First Amidation of Aryl Sulfonates, Aqueous Amination, and Complementarity with Cu-Catalyzed Reactions". Journal of the American Chemical Society. 125 (22): 6653–6655. doi: 10.1021/ja035483w. ISSN  0002-7863. PMID  12769573.
  34. ^ Billingsley, Kelvin L.; Barder, Timothy E.; Buchwald, Stephen L. (9 July 2007). "Palladium-Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and Computational Studies". Angewandte Chemie International Edition. 46 (28): 5359–5363. doi: 10.1002/anie.200701551. ISSN  1521-3773. PMID  17562550.
  35. ^ Burgos, Carlos H.; Barder, Timothy E.; Huang, Xiaohua; Buchwald, Stephen L. (26 June 2006). "Significantly Improved Method for the Pd-Catalyzed Coupling of Phenols with Aryl Halides: Understanding Ligand Effects". Angewandte Chemie International Edition. 45 (26): 4321–4326. doi: 10.1002/anie.200601253. ISSN  1521-3773. PMID  16733839.
  36. ^ Anderson, Kevin W.; Buchwald, Stephen L. (26 September 2005). "General Catalysts for the Suzuki–Miyaura and Sonogashira Coupling Reactions of Aryl Chlorides and for the Coupling of Challenging Substrate Combinations in Water". Angewandte Chemie International Edition. 44 (38): 6173–6177. doi: 10.1002/anie.200502017. ISSN  1521-3773. PMID  16097019.
  37. ^ Walker, Shawn D.; Barder, Timothy E.; Martinelli, Joseph R.; Buchwald, Stephen L. (26 March 2004). "A Rationally Designed Universal Catalyst for Suzuki–Miyaura Coupling Processes". Angewandte Chemie International Edition. 43 (14): 1871–1876. doi: 10.1002/anie.200353615. ISSN  1521-3773. PMID  15054800.
  38. ^ Billingsley, Kelvin L.; Barder, Timothy E.; Buchwald, Stephen L. (9 July 2007). "Palladium-Catalyzed Borylation of Aryl Chlorides: Scope, Applications, and Computational Studies". Angewandte Chemie International Edition. 46 (28): 5359–5363. doi: 10.1002/anie.200701551. ISSN  1521-3773. PMID  17562550.
  39. ^ Anderson, Kevin W.; Buchwald, Stephen L. (26 September 2005). "General Catalysts for the Suzuki–Miyaura and Sonogashira Coupling Reactions of Aryl Chlorides and for the Coupling of Challenging Substrate Combinations in Water". Angewandte Chemie International Edition. 44 (38): 6173–6177. doi: 10.1002/anie.200502017. ISSN  1521-3773. PMID  16097019.
  40. ^ Carret, Sébastien; Deprés, Jean-Pierre (10 September 2007). "Access to Guaianolides: Highly Efficient Stereocontrolled Total Synthesis of (±)-Geigerin". Angewandte Chemie International Edition. 46 (36): 6870–6873. doi: 10.1002/anie.200702031. ISSN  1521-3773. PMID  17676568.
  41. ^ Milne, Jacqueline E.; Buchwald, Stephen L. (1 October 2004). "An Extremely Active Catalyst for the Negishi Cross-Coupling Reaction". Journal of the American Chemical Society. 126 (40): 13028–13032. doi: 10.1021/ja0474493. ISSN  0002-7863. PMID  15469301.
  42. ^ Cho, Eun Jin; Senecal, Todd D.; Kinzel, Tom; Zhang, Yong; Watson, Donald A.; Buchwald, Stephen L. (25 June 2010). "The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides". Science. 328 (5986): 1679–1681. Bibcode: 2010Sci...328.1679C. doi: 10.1126/science.1190524. ISSN  0036-8075. PMC  3005208. PMID  20576888.
  43. ^ Charles, Mark D.; Schultz, Phillip; Buchwald, Stephen L. (1 September 2005). "Efficient Pd-Catalyzed Amination of Heteroaryl Halides". Organic Letters. 7 (18): 3965–3968. doi: 10.1021/ol0514754. ISSN  1523-7060. PMID  16119943.
  44. ^ Fors, Brett P.; Watson, Donald A.; Biscoe, Mark R.; Buchwald, Stephen L. (15 October 2008). "A Highly Active Catalyst for Pd-Catalyzed Amination Reactions: Cross-Coupling Reactions Using Aryl Mesylates and the Highly Selective Monoarylation of Primary Amines Using Aryl Chlorides". Journal of the American Chemical Society. 130 (41): 13552–13554. doi: 10.1021/ja8055358. ISSN  0002-7863. PMC  2748321. PMID  18798626.
  45. ^ Cho, Eun Jin; Senecal, Todd D.; Kinzel, Tom; Zhang, Yong; Watson, Donald A.; Buchwald, Stephen L. (25 June 2010). "The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides". Science. 328 (5986): 1679–1681. Bibcode: 2010Sci...328.1679C. doi: 10.1126/science.1190524. ISSN  0036-8075. PMC  3005208. PMID  20576888.
  46. ^ Teverovskiy, Georgiy; Surry, David S.; Buchwald, Stephen L. (1 August 2011). "Pd-Catalyzed Synthesis of Ar-SCF3 Compounds under Mild Conditions". Angewandte Chemie International Edition. 50 (32): 7312–7314. doi: 10.1002/anie.201102543. ISSN  1521-3773. PMC  3395331. PMID  21692157.
  47. ^ Bhayana, Brijesh; Fors, Brett P.; Buchwald, Stephen L. (3 September 2009). "A Versatile Catalyst System for Suzuki−Miyaura Cross-Coupling Reactions of C(sp2)-Tosylates and Mesylates". Organic Letters. 11 (17): 3954–3957. doi: 10.1021/ol9015892. ISSN  1523-7060. PMC  2759755. PMID  19663467.
  48. ^ Watson, Donald A.; Su, Mingjuan; Teverovskiy, Georgiy; Zhang, Yong; García-Fortanet, Jorge; Kinzel, Tom; Buchwald, Stephen L. (25 September 2009). "Formation of ArF from LPdAr(F): Catalytic Conversion of Aryl Triflates to Aryl Fluorides". Science. 325 (5948): 1661–1664. Bibcode: 2009Sci...325.1661W. doi: 10.1126/science.1178239. ISSN  0036-8075. PMC  3038120. PMID  19679769.
  49. ^ Fors, Brett P.; Buchwald, Stephen L. (16 September 2009). "Pd-Catalyzed Conversion of Aryl Chlorides, Triflates, and Nonaflates to Nitroaromatics". Journal of the American Chemical Society. 131 (36): 12898–12899. doi: 10.1021/ja905768k. ISSN  0002-7863. PMC  2773681. PMID  19737014.
  50. ^ Su, Mingjuan; Buchwald, Stephen L. (7 May 2012). "A Bulky Biaryl Phosphine Ligand Allows for Palladium-Catalyzed Amidation of Five-Membered Heterocycles as Electrophiles". Angewandte Chemie International Edition. 51 (19): 4710–4713. doi: 10.1002/anie.201201244. ISSN  1521-3773. PMC  3407381. PMID  22473747.
  51. ^ Kirsch, Janelle K.; Manske, Jenna L.; Wolfe, John P. (2018-11-02). "Pd-Catalyzed Alkene Carboheteroarylation Reactions for the Synthesis of 3-Cyclopentylindole Derivatives". The Journal of Organic Chemistry. 83 (21): 13568–13573. doi: 10.1021/acs.joc.8b02165. ISSN  0022-3263. PMC  6375689. PMID  30351050.{{ cite journal}}: CS1 maint: PMC format ( link)
  52. ^ Hutt, Johnathon T.; Wolfe, John P. (2016-09-20). "Synthesis of 2,3-dihydrobenzofurans via the palladium catalyzed carboalkoxylation of 2-allylphenols". Organic Chemistry Frontiers. 3 (10): 1314–1318. doi: 10.1039/C6QO00215C. ISSN  2052-4129.
  53. ^ Babij, Nicholas R.; McKenna, Grace M.; Fornwald, Ryan M.; Wolfe, John P. (2014-06-20). "Stereocontrolled Synthesis of Bicyclic Sulfamides via Pd-Catalyzed Alkene Carboamination Reactions. Control of 1,3-Asymmetric Induction by Manipulating Mechanistic Pathways". Organic Letters. 16 (12): 3412–3415. doi: 10.1021/ol5015976. ISSN  1523-7060. PMC  4076003. PMID  24916343.{{ cite journal}}: CS1 maint: PMC format ( link)
  54. ^ Han, Chong; Buchwald, Stephen L. (10 June 2009). "Negishi Coupling of Secondary Alkylzinc Halides with Aryl Bromides and Chlorides". Journal of the American Chemical Society. 131 (22): 7532–7533. doi: 10.1021/ja902046m. ISSN  0002-7863. PMC  2746668. PMID  19441851.
  55. ^ Yang, Yang; Niedermann, Katrin; Han, Chong; Buchwald, Stephen L. (2014-09-05). "Highly Selective Palladium-Catalyzed Cross-Coupling of Secondary Alkylzinc Reagents with Heteroaryl Halides". Organic Letters. 16 (17): 4638–4641. doi: 10.1021/ol502230p. ISSN  1523-7060. PMC  4156254. PMID  25153332.{{ cite journal}}: CS1 maint: PMC format ( link)
  56. ^ Zhang, Hu; Buchwald, Stephen L. (2017-08-23). "Palladium-Catalyzed Negishi Coupling of α-CF 3 Oxiranyl Zincate: Access to Chiral CF 3 -Substituted Benzylic Tertiary Alcohols". Journal of the American Chemical Society. 139 (33): 11590–11594. doi: 10.1021/jacs.7b06630. ISSN  0002-7863.
  57. ^ "AlPhos and [(AlPhosPd)2•COD] for Pd-Catalyzed Fluorination". Sigma-Aldrich. Retrieved 2018-08-17.
  58. ^ Sather, Aaron C.; Lee, Hong Geun; De La Rosa, Valentina Y.; Yang, Yang; Müller, Peter; Buchwald, Stephen L. (2015-10-21). "A Fluorinated Ligand Enables Room-Temperature and Regioselective Pd-Catalyzed Fluorination of Aryl Triflates and Bromides". Journal of the American Chemical Society. 137 (41): 13433–13438. doi: 10.1021/jacs.5b09308. ISSN  0002-7863. PMC  4721526. PMID  26413908.{{ cite journal}}: CS1 maint: PMC format ( link)
  59. ^ Sather, Aaron C.; Lee, Hong Geun; De La Rosa, Valentina Y.; Yang, Yang; Müller, Peter; Buchwald, Stephen L. (21 October 2015). "A Fluorinated Ligand Enables Room-Temperature and Regioselective Pd-Catalyzed Fluorination of Aryl Triflates and Bromides". Journal of the American Chemical Society. 137 (41): 13433–13438. doi: 10.1021/jacs.5b09308. ISSN  0002-7863. PMC  4721526. PMID  26413908.
  60. ^ Shaughnessy, Kevin H. (2020-03). "Development of Palladium Precatalysts that Efficiently Generate LPd(0) Active Species". Israel Journal of Chemistry. 60 (3–4): 180–194. doi: 10.1002/ijch.201900067. ISSN  0021-2148. {{ cite journal}}: Check date values in: |date= ( help)
  61. ^ Johansson Seechurn, Carin C. C.; Kitching, Matthew O.; Colacot, Thomas J.; Snieckus, Victor (2012-05-21). "Palladium-Catalyzed Cross-Coupling: A Historical Contextual Perspective to the 2010 Nobel Prize". Angewandte Chemie International Edition. 51 (21): 5062–5085. doi: 10.1002/anie.201107017.
  62. ^ Ingoglia, Bryan T.; Buchwald, Stephen L. (2017-06-02). "Oxidative Addition Complexes as Precatalysts for Cross-Coupling Reactions Requiring Extremely Bulky Biarylphosphine Ligands". Organic Letters. 19 (11): 2853–2856. doi: 10.1021/acs.orglett.7b01082. ISSN  1523-7060. PMC  5580394. PMID  28498667.{{ cite journal}}: CS1 maint: PMC format ( link)
  63. ^ Uehling, Mycah R.; King, Ryan P.; Krska, Shane W.; Cernak, Tim; Buchwald, Stephen L. (2019-01-25). "Pharmaceutical diversification via palladium oxidative addition complexes". Science. 363 (6425): 405–408. doi: 10.1126/science.aac6153. ISSN  0036-8075.
  64. ^ Vinogradova, Ekaterina V.; Zhang, Chi; Spokoyny, Alexander M.; Pentelute, Bradley L.; Buchwald, Stephen L. (2015-10). "Organometallic palladium reagents for cysteine bioconjugation". Nature. 526 (7575): 687–691. doi: 10.1038/nature15739. ISSN  0028-0836. PMC  4809359. PMID  26511579. {{ cite journal}}: Check date values in: |date= ( help)CS1 maint: PMC format ( link)
  65. ^ Rojas, Anthony J.; Pentelute, Bradley L.; Buchwald, Stephen L. (2017-08-18). "Water-Soluble Palladium Reagents for Cysteine S -Arylation under Ambient Aqueous Conditions". Organic Letters. 19 (16): 4263–4266. doi: 10.1021/acs.orglett.7b01911. ISSN  1523-7060.
  66. ^ Jbara, Muhammad; Rodriguez, Jacob; Dhanjee, Heemal H.; Loas, Andrei; Buchwald, Stephen L.; Pentelute, Bradley L. (2021-05-17). "Oligonucleotide Bioconjugation with Bifunctional Palladium Reagents". Angewandte Chemie International Edition. 60 (21): 12109–12115. doi: 10.1002/anie.202103180. ISSN  1433-7851. PMC  8143041. PMID  33730425.{{ cite journal}}: CS1 maint: PMC format ( link)
  67. ^ Lee, Hong Geun; Lautrette, Guillaume; Pentelute, Bradley L.; Buchwald, Stephen L. (2017-03-13). "Palladium-Mediated Arylation of Lysine in Unprotected Peptides". Angewandte Chemie International Edition. 56 (12): 3177–3181. doi: 10.1002/anie.201611202.

Category:Phosphines Category:Catalysis Category:Ligands


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook