From Wikipedia, the free encyclopedia

Line waves are electromagnetic waves that propagate between planar impedance discontinuities. Being localized in the vicinity of the discontinuity, they are regarded as the one-dimensional counterpart of surface waves.

Impedance discontinuities that are necessary for line wave propagation are facilitated by two-dimensional structures such as metasurfaces and/or graphene, whose structural or electrical properties may be tuned to achieve the desired impedance.

Background

See also

References

  1. ^ Bisharat, Dia’aaldin J.; Sievenpiper, Daniel F. (2017). "Guiding waves along an infinitesimal line between impedance surfaces". Physical Review Letters. 119: 106802. doi: 10.1103/PhysRevLett.119.106802.
  2. ^ Bisharat, Dia’aaldin J.; Sievenpiper, Daniel F. (2018). "Manipulating line waves in flat graphene for agile terahertz applications". Nanophotonics. 7 (5): 893–903. doi: 10.1515/nanoph-2017-0133.
  3. ^ Horsley, S. A. R.; Hooper, I. R. (2014). "One dimensional electromagnetic waves on flat surfaces". Journal of Physics D. 47: 435103. doi: 10.1088/0022-3727/47/43/435103.
  4. ^ Kong, Xianghong; Bisharat, Dia'aaldin J.; Xiao, Gaobiao; Sievenpiper, Daniel F. (2019). "Analytic theory of an edge mode between impedance surfaces". Physical Review A. 99: 033842. doi: 10.1103/PhysRevA.99.033842.
  5. ^ Moccia, Massimo; Castaldi, Giuseppe; Alù, Andrea; Galdi, Vincenzo (2020). "Line waves in non-Hermitian metasurfaces". ACS Photonics. 7 (8): 2064–2072. doi: 10.1021/acsphotonics.0c00465.
  6. ^ Moccia, Massimo; Castaldi, Giuseppe; Monticone, Francesco; Galdi, Vincenzo (2021). "Exceptional points in flat optics: A non-Hermitian line-wave scenario". Physical Review Applied. 15: 064067. doi: 10.1103/PhysRevApplied.15.064067.
  7. ^ Xu, Zhixia; Yin, Xiaoxing; Sievenpiper, Daniel F. (2019). "Adiabatic mode-matching techniques for coupling between conventional microwave transmission lines and one-dimensional impedance-interface waveguides". Physical Review Applied. 11: 044071. doi: 10.1103/PhysRevApplied.11.044071.
  8. ^ Xu, Zhixia; Chang, Jie; Fang, Shaojun; Zhang, Qiuyi; Davis, Robert J.; Sievenpiper, Dan; Cui, Tie Jun (2021). "Line waves existing at junctions of dual-impedance metasurfaces". ACS Photonics. 8 (8): 2285–2293. doi: 10.1021/acsphotonics.1c00344.
  9. ^ Zafari, Kazem; Oraizi, Homayoon (2020). "Surface Waveguide and Y Splitter Enabled by Complementary Impedance Surfaces". Physical Review Applied. 13: 064025. doi: 10.1103/PhysRevApplied.13.064025.
From Wikipedia, the free encyclopedia

Line waves are electromagnetic waves that propagate between planar impedance discontinuities. Being localized in the vicinity of the discontinuity, they are regarded as the one-dimensional counterpart of surface waves.

Impedance discontinuities that are necessary for line wave propagation are facilitated by two-dimensional structures such as metasurfaces and/or graphene, whose structural or electrical properties may be tuned to achieve the desired impedance.

Background

See also

References

  1. ^ Bisharat, Dia’aaldin J.; Sievenpiper, Daniel F. (2017). "Guiding waves along an infinitesimal line between impedance surfaces". Physical Review Letters. 119: 106802. doi: 10.1103/PhysRevLett.119.106802.
  2. ^ Bisharat, Dia’aaldin J.; Sievenpiper, Daniel F. (2018). "Manipulating line waves in flat graphene for agile terahertz applications". Nanophotonics. 7 (5): 893–903. doi: 10.1515/nanoph-2017-0133.
  3. ^ Horsley, S. A. R.; Hooper, I. R. (2014). "One dimensional electromagnetic waves on flat surfaces". Journal of Physics D. 47: 435103. doi: 10.1088/0022-3727/47/43/435103.
  4. ^ Kong, Xianghong; Bisharat, Dia'aaldin J.; Xiao, Gaobiao; Sievenpiper, Daniel F. (2019). "Analytic theory of an edge mode between impedance surfaces". Physical Review A. 99: 033842. doi: 10.1103/PhysRevA.99.033842.
  5. ^ Moccia, Massimo; Castaldi, Giuseppe; Alù, Andrea; Galdi, Vincenzo (2020). "Line waves in non-Hermitian metasurfaces". ACS Photonics. 7 (8): 2064–2072. doi: 10.1021/acsphotonics.0c00465.
  6. ^ Moccia, Massimo; Castaldi, Giuseppe; Monticone, Francesco; Galdi, Vincenzo (2021). "Exceptional points in flat optics: A non-Hermitian line-wave scenario". Physical Review Applied. 15: 064067. doi: 10.1103/PhysRevApplied.15.064067.
  7. ^ Xu, Zhixia; Yin, Xiaoxing; Sievenpiper, Daniel F. (2019). "Adiabatic mode-matching techniques for coupling between conventional microwave transmission lines and one-dimensional impedance-interface waveguides". Physical Review Applied. 11: 044071. doi: 10.1103/PhysRevApplied.11.044071.
  8. ^ Xu, Zhixia; Chang, Jie; Fang, Shaojun; Zhang, Qiuyi; Davis, Robert J.; Sievenpiper, Dan; Cui, Tie Jun (2021). "Line waves existing at junctions of dual-impedance metasurfaces". ACS Photonics. 8 (8): 2285–2293. doi: 10.1021/acsphotonics.1c00344.
  9. ^ Zafari, Kazem; Oraizi, Homayoon (2020). "Surface Waveguide and Y Splitter Enabled by Complementary Impedance Surfaces". Physical Review Applied. 13: 064025. doi: 10.1103/PhysRevApplied.13.064025.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook