From Wikipedia, the free encyclopedia

Article Draft

Lead

The tumor microenvironment (TME) is a complex ecosystem surrounding a tumor, composed of a variety of non-cancerous cells including blood vessels, immune cells, fibroblasts, signaling molecules and the extracellular matrix (ECM). [1] [2] [3] [4] Mutual interaction between cancer cells and the different components of the TME support its growth and invasion in healthy tissues which correlates with tumor resistance to current treatments and poor prognosis.

Article body

Research and Clinical implications

Models of the tumor microenvironment

Recent advancement is the use of microfluidic platforms, also called tumor-on-a-chip platforms, in investigating cancer-immune crosstalk. [5] [6] These devices can be used to recapitulate the TME allowing broader understanding of specific interactions of cancer cells and the surrounding environment, as well as assess the efficacy of different immunotherapies available. [6]

Drug development

Advances in TME remodeling nanotherapeutics suppress cancer metastasis and recurrence. [7] Numerous strategies employing nanotechnology to control TAM polarization have been created and examined. Zanganeh and colleagues discovered that the use of ferumoxytol suppress tumor growth by inducing transition of M2 macrophage to pro-inflammatory M1 phenotype. [8]

Therapies

CAR T cell therapy

Chimeric antigen receptors (CAR) T cell therapy is an immunotherapy treatment that uses genetically modified T lymphocytes to effectively target tumor cells. [9] [10] Since the TME is known for several barriers that limits the ability of CAR T cells to infiltrate the tumor, several strategies have been developed to address this. Localized delivery of CAR T cells in glioblastoma suggested improved anti-tumor activity and engineering these cells to overexpress chemokine receptors suggested improvement of CAR T cell trafficking to the TME. [11] [12] [13]

References

  1. ^ Alfarouk KO, Muddathir AK, Shayoub ME (January 2011). "Tumor acidity as evolutionary spite". Cancers. 3 (1): 408–14. doi: 10.3390/cancers3010408. PMC  3756368. PMID  24310355.
  2. ^ "NCI Dictionary of Cancer Terms". National Cancer Institute. 2011-02-02.
  3. ^ Joyce JA, Fearon DT (April 2015). "T cell exclusion, immune privilege, and the tumor microenvironment". Science. 348 (6230): 74–80. Bibcode: 2015Sci...348...74J. doi: 10.1126/science.aaa6204. PMID  25838376.
  4. ^ Spill F, Reynolds DS, Kamm RD, Zaman MH (August 2016). "Impact of the physical microenvironment on tumor progression and metastasis". Current Opinion in Biotechnology. 40: 41–48. doi: 10.1016/j.copbio.2016.02.007. PMC  4975620. PMID  26938687.
  5. ^ Maulana, Tengku Ibrahim; Kromidas, Elena; Wallstabe, Lars; Cipriano, Madalena; Alb, Miriam; Zaupa, Cécile; Hudecek, Michael; Fogal, Birgit; Loskill, Peter (2021-06-01). "Immunocompetent cancer-on-chip models to assess immuno-oncology therapy". Advanced Drug Delivery Reviews. 173: 281–305. doi: 10.1016/j.addr.2021.03.015. ISSN  0169-409X.
  6. ^ a b Zhang, Jie; Tavakoli, Hamed; Ma, Lei; Li, Xiaochun; Han, Lichun; Li, XiuJun (2022-08-01). "Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment". Advanced Drug Delivery Reviews. 187: 114365. doi: 10.1016/j.addr.2022.114365. ISSN  0169-409X.
  7. ^ Feng, Yi; Liao, Zhen; Zhang, Hanxi; Xie, Xiaoxue; You, Fengming; Liao, Xiaoling; Wu, Chunhui; Zhang, Wei; Yang, Hong; Liu, Yiyao (2023-01-15). "Emerging nanomedicines strategies focused on tumor microenvironment against cancer recurrence and metastasis". Chemical Engineering Journal. 452: 139506. doi: 10.1016/j.cej.2022.139506. ISSN  1385-8947.
  8. ^ Raju, Ganji Seeta Rama; Pavitra, Eluri; Varaprasad, Ganji Lakshmi; Bandaru, Sai Samyuktha; Nagaraju, Ganji Purnachandra; Farran, Batoul; Huh, Yun Suk; Han, Young-Kyu (2022-06-14). "Nanoparticles mediated tumor microenvironment modulation: current advances and applications". Journal of Nanobiotechnology. 20 (1): 274. doi: 10.1186/s12951-022-01476-9. ISSN  1477-3155. PMC  9195263. PMID  35701781.{{ cite journal}}: CS1 maint: PMC format ( link) CS1 maint: unflagged free DOI ( link)
  9. ^ Sadelain, Michel; Rivière, Isabelle; Brentjens, Renier (2003-01). "Targeting tumours with genetically enhanced T lymphocytes". Nature Reviews Cancer. 3 (1): 35–45. doi: 10.1038/nrc971. ISSN  1474-1768. {{ cite journal}}: Check date values in: |date= ( help)
  10. ^ Kankeu Fonkoua, Lionel A.; Sirpilla, Olivia; Sakemura, Reona; Siegler, Elizabeth L.; Kenderian, Saad S. (2022-06). "CAR T cell therapy and the tumor microenvironment: Current challenges and opportunities". Molecular Therapy - Oncolytics. 25: 69–77. doi: 10.1016/j.omto.2022.03.009. ISSN  2372-7705. PMC  8980704. PMID  35434273. {{ cite journal}}: Check date values in: |date= ( help); no-break space character in |title= at position 6 ( help)CS1 maint: PMC format ( link)
  11. ^ Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig (2014-05). "Elimination of Progressive Mammary Cancer by Repeated Administrations of Chimeric Antigen Receptor-Modified T Cells". Molecular Therapy. 22 (5): 1029–1038. doi: 10.1038/mt.2014.28. ISSN  1525-0016. PMC  4015244. PMID  24572294. {{ cite journal}}: Check date values in: |date= ( help)CS1 maint: PMC format ( link)
  12. ^ Brown, Christine E.; Badie, Behnam; Barish, Michael E.; Weng, Lihong; Ostberg, Julie R.; Chang, Wen-Chung; Naranjo, Araceli; Starr, Renate; Wagner, Jamie; Wright, Christine; Zhai, Yubo; Bading, James R.; Ressler, Julie A.; Portnow, Jana; D'Apuzzo, Massimo (2015-09-15). "Bioactivity and Safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma". Clinical Cancer Research. 21 (18): 4062–4072. doi: 10.1158/1078-0432.CCR-15-0428. ISSN  1078-0432. PMC  4632968. PMID  26059190.{{ cite journal}}: CS1 maint: PMC format ( link)
  13. ^ Brown, Christine E.; Aguilar, Brenda; Starr, Renate; Yang, Xin; Chang, Wen-Chung; Weng, Lihong; Chang, Brenda; Sarkissian, Aniee; Brito, Alfonso; Sanchez, James F.; Ostberg, Julie R.; D’Apuzzo, Massimo; Badie, Behnam; Barish, Michael E.; Forman, Stephen J. (2018-01). "Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma". Molecular Therapy. 26 (1): 31–44. doi: 10.1016/j.ymthe.2017.10.002. ISSN  1525-0016. PMC  5763077. PMID  29103912. {{ cite journal}}: Check date values in: |date= ( help)CS1 maint: PMC format ( link)
From Wikipedia, the free encyclopedia

Article Draft

Lead

The tumor microenvironment (TME) is a complex ecosystem surrounding a tumor, composed of a variety of non-cancerous cells including blood vessels, immune cells, fibroblasts, signaling molecules and the extracellular matrix (ECM). [1] [2] [3] [4] Mutual interaction between cancer cells and the different components of the TME support its growth and invasion in healthy tissues which correlates with tumor resistance to current treatments and poor prognosis.

Article body

Research and Clinical implications

Models of the tumor microenvironment

Recent advancement is the use of microfluidic platforms, also called tumor-on-a-chip platforms, in investigating cancer-immune crosstalk. [5] [6] These devices can be used to recapitulate the TME allowing broader understanding of specific interactions of cancer cells and the surrounding environment, as well as assess the efficacy of different immunotherapies available. [6]

Drug development

Advances in TME remodeling nanotherapeutics suppress cancer metastasis and recurrence. [7] Numerous strategies employing nanotechnology to control TAM polarization have been created and examined. Zanganeh and colleagues discovered that the use of ferumoxytol suppress tumor growth by inducing transition of M2 macrophage to pro-inflammatory M1 phenotype. [8]

Therapies

CAR T cell therapy

Chimeric antigen receptors (CAR) T cell therapy is an immunotherapy treatment that uses genetically modified T lymphocytes to effectively target tumor cells. [9] [10] Since the TME is known for several barriers that limits the ability of CAR T cells to infiltrate the tumor, several strategies have been developed to address this. Localized delivery of CAR T cells in glioblastoma suggested improved anti-tumor activity and engineering these cells to overexpress chemokine receptors suggested improvement of CAR T cell trafficking to the TME. [11] [12] [13]

References

  1. ^ Alfarouk KO, Muddathir AK, Shayoub ME (January 2011). "Tumor acidity as evolutionary spite". Cancers. 3 (1): 408–14. doi: 10.3390/cancers3010408. PMC  3756368. PMID  24310355.
  2. ^ "NCI Dictionary of Cancer Terms". National Cancer Institute. 2011-02-02.
  3. ^ Joyce JA, Fearon DT (April 2015). "T cell exclusion, immune privilege, and the tumor microenvironment". Science. 348 (6230): 74–80. Bibcode: 2015Sci...348...74J. doi: 10.1126/science.aaa6204. PMID  25838376.
  4. ^ Spill F, Reynolds DS, Kamm RD, Zaman MH (August 2016). "Impact of the physical microenvironment on tumor progression and metastasis". Current Opinion in Biotechnology. 40: 41–48. doi: 10.1016/j.copbio.2016.02.007. PMC  4975620. PMID  26938687.
  5. ^ Maulana, Tengku Ibrahim; Kromidas, Elena; Wallstabe, Lars; Cipriano, Madalena; Alb, Miriam; Zaupa, Cécile; Hudecek, Michael; Fogal, Birgit; Loskill, Peter (2021-06-01). "Immunocompetent cancer-on-chip models to assess immuno-oncology therapy". Advanced Drug Delivery Reviews. 173: 281–305. doi: 10.1016/j.addr.2021.03.015. ISSN  0169-409X.
  6. ^ a b Zhang, Jie; Tavakoli, Hamed; Ma, Lei; Li, Xiaochun; Han, Lichun; Li, XiuJun (2022-08-01). "Immunotherapy discovery on tumor organoid-on-a-chip platforms that recapitulate the tumor microenvironment". Advanced Drug Delivery Reviews. 187: 114365. doi: 10.1016/j.addr.2022.114365. ISSN  0169-409X.
  7. ^ Feng, Yi; Liao, Zhen; Zhang, Hanxi; Xie, Xiaoxue; You, Fengming; Liao, Xiaoling; Wu, Chunhui; Zhang, Wei; Yang, Hong; Liu, Yiyao (2023-01-15). "Emerging nanomedicines strategies focused on tumor microenvironment against cancer recurrence and metastasis". Chemical Engineering Journal. 452: 139506. doi: 10.1016/j.cej.2022.139506. ISSN  1385-8947.
  8. ^ Raju, Ganji Seeta Rama; Pavitra, Eluri; Varaprasad, Ganji Lakshmi; Bandaru, Sai Samyuktha; Nagaraju, Ganji Purnachandra; Farran, Batoul; Huh, Yun Suk; Han, Young-Kyu (2022-06-14). "Nanoparticles mediated tumor microenvironment modulation: current advances and applications". Journal of Nanobiotechnology. 20 (1): 274. doi: 10.1186/s12951-022-01476-9. ISSN  1477-3155. PMC  9195263. PMID  35701781.{{ cite journal}}: CS1 maint: PMC format ( link) CS1 maint: unflagged free DOI ( link)
  9. ^ Sadelain, Michel; Rivière, Isabelle; Brentjens, Renier (2003-01). "Targeting tumours with genetically enhanced T lymphocytes". Nature Reviews Cancer. 3 (1): 35–45. doi: 10.1038/nrc971. ISSN  1474-1768. {{ cite journal}}: Check date values in: |date= ( help)
  10. ^ Kankeu Fonkoua, Lionel A.; Sirpilla, Olivia; Sakemura, Reona; Siegler, Elizabeth L.; Kenderian, Saad S. (2022-06). "CAR T cell therapy and the tumor microenvironment: Current challenges and opportunities". Molecular Therapy - Oncolytics. 25: 69–77. doi: 10.1016/j.omto.2022.03.009. ISSN  2372-7705. PMC  8980704. PMID  35434273. {{ cite journal}}: Check date values in: |date= ( help); no-break space character in |title= at position 6 ( help)CS1 maint: PMC format ( link)
  11. ^ Globerson-Levin, Anat; Waks, Tova; Eshhar, Zelig (2014-05). "Elimination of Progressive Mammary Cancer by Repeated Administrations of Chimeric Antigen Receptor-Modified T Cells". Molecular Therapy. 22 (5): 1029–1038. doi: 10.1038/mt.2014.28. ISSN  1525-0016. PMC  4015244. PMID  24572294. {{ cite journal}}: Check date values in: |date= ( help)CS1 maint: PMC format ( link)
  12. ^ Brown, Christine E.; Badie, Behnam; Barish, Michael E.; Weng, Lihong; Ostberg, Julie R.; Chang, Wen-Chung; Naranjo, Araceli; Starr, Renate; Wagner, Jamie; Wright, Christine; Zhai, Yubo; Bading, James R.; Ressler, Julie A.; Portnow, Jana; D'Apuzzo, Massimo (2015-09-15). "Bioactivity and Safety of IL13Rα2-Redirected Chimeric Antigen Receptor CD8+ T Cells in Patients with Recurrent Glioblastoma". Clinical Cancer Research. 21 (18): 4062–4072. doi: 10.1158/1078-0432.CCR-15-0428. ISSN  1078-0432. PMC  4632968. PMID  26059190.{{ cite journal}}: CS1 maint: PMC format ( link)
  13. ^ Brown, Christine E.; Aguilar, Brenda; Starr, Renate; Yang, Xin; Chang, Wen-Chung; Weng, Lihong; Chang, Brenda; Sarkissian, Aniee; Brito, Alfonso; Sanchez, James F.; Ostberg, Julie R.; D’Apuzzo, Massimo; Badie, Behnam; Barish, Michael E.; Forman, Stephen J. (2018-01). "Optimization of IL13Rα2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma". Molecular Therapy. 26 (1): 31–44. doi: 10.1016/j.ymthe.2017.10.002. ISSN  1525-0016. PMC  5763077. PMID  29103912. {{ cite journal}}: Check date values in: |date= ( help)CS1 maint: PMC format ( link)

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook