From Wikipedia, the free encyclopedia

A Geochemical code is a computer program using equations to solve the equilibrium problem using chemical thermodynamics. The codes calculate the speciation of aqueous solutions and specified instantaneous reactions or time-dependent reactions.

Solution of equilibrium problem

The majority of the codes uses the law of mass action for calculating the state of equilibrium [1]. The codes bring along thermodynamic databases, which incorporate equilibrium constants (KEq ) for the specified mineral, aquatic and gaseous reactions.

Another set of codes uses the method of the Gibbs Energy Minimization (GEM) [2] [3] [4] [5]. Geochemical codes including this approach are Gem-Selektor and FactSage (ChemApp). The advantage of this approach is, that the Gibbs Energy is calculated at every temperature-pressure (T-P) condition. A major disadvantage is that i.e. FactSage does not incorporate activity calculation ().

Activity calculation

The geochemical codes use the ion-dissociation and ion-association models to calculate activity coefficients (i) of aquatic species. Equations calculating activity coefficients following the theory of ion-dissociation are i.e. the Davies [6] and the different types of the Debye-Hückel [7] equation. For example, PHREEQC uses the different activity equations dynamically depending on the available database parameters [8]. The different activity models are restricted to different ranges of ionc strength.

Activity model range of ionic strength validity
Davies < 0.5 ≈ < 0.7
Debye-Hückel < 0.005
Extended Debye-Hückel equation [9] < 0.1
WATEQ Debye-Hückel equation < 1.0
Setchenow equation < 1.0

A different approach calculating activity coefficients following the theory of ion-association is the framework of Pitzer equations. The Pitzer equations include interaction parameters for representing the ionic interactions. The range of validity with respect to ionic strength is much higher compared to the equations following the ion-dissociation theory [10] [11]. However, this activity model does not include data for the aquatic species Al and Si. Most of the interaction parameters are only valid at 25°C. Thereby, simulation of reaction processes of feldspars is not possible, which are of high importance for most hydrogeochemical problems.

The Harvie-Möller-Weare model (HMW) is also based on the Pitzer framework [12]. The HMW model incorporates the components Na, K, Mg, Ca, H, Cl, SO4, OH, HCO3-CO3, CO2 and H2O.

The Specific ion interaction theory (SIT theory) uses interaction coefficients to estimate activity coefficients at high concentrations [13] [14]. The integration coefficients are derived from equilibrium coefficients. The SIT theory calculates acceptable results up to ionic strength of 3 mol/kgw [15].

The mineral solubility model of Harvie and Weare (1980) is extended to the eight component system, Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O at 25°C to high concentrations. The model is based on the semi-empirical equations of Pitzer(1973) and co-workers for the thermodynamics of aqueous electrolyte solutions. The model is parameterized using many of the available isopiestic, electromotive force, and solubility data available for many of the subsystems. The predictive abilities of the model are demonstrated by comparison to experimental data in systems more complex than those used in parameterization. The essential features of a chemical model for aqueous electrolyte solutions and the relationship between pH and the equilibrium properties of a solution are discussed.

List of geochemical codes

Code Website Cost Citation Comment
Aqion www.aqion.de free uses PhreeqC to calculate ion balance
CHEAQS Next www.cheaqs.eu
ChemApp http://gtt.mch.rwth-aachen.de/ free light version

http://gtt.mch.rwth-aachen.de/

Petersen & Hack (2007) [16] applied GEM method, can be coupled to OGS
ChemEQL www.eawag.ch/

www.vseit.de/

free Müller (1996) [17]; Müller (2004) [18]
ChemPlugin https://chemplugin.gwb.com/index.php $ 3999 (Perpetual licenses)
CHEPROO http://h2ogeo.upc.edu free Bea et al. (2009) [19]
CHESS http://chess.geosciences.ensmp.fr ? van der Lee & De Windt (2000) [20];

van der Lee & De Windt (2002) [21]

CHILLER ? ? Reed (1982) [22]
CrunchFlow http://www.csteefel.com/ Steefel & Lasaga (1994) [23]; Steefel (2001) [24]; Steefel (2009) [25]; Beismann et al. (2013) [26] developed by C. Steefel
EQ3/EQ6 https://missions.llnl.gov/

http://w.wipp.ws/library/

$ 500 Wolery & Jarek (2003) [27]
FactSage http://www.factsage.com/

http://gtt.mch.rwth-aachen.de/

10813-UM-8.0-00 Bale et al. (2002) [28]
GEM-Selektor http://gems.web.psi.ch/ Kulik et al. (2002) [29]; Kulik et al. (2013) [30]
GEOCHEM-PC Parker et al. (1995) [31]
HCh www.geol.msu.ru/ Shvarov (2008) [32]
HSC Chemistry www.hsc-chemistry.net/ $ 1215 - $ 3037 Smith (1996) [33]; Jeon et al. (2011) [34] contains 24 calculation modules, based on .NET environment
HYDROGEOCHEM www.scisoftware.com/ $ 3000 (version 4.0, 2D)

$ 5000 (version 5.0, 3D)

Gwo & Yeh [35]; Yeh et al. (2012) [36] HYDROGEOCHEM 5.0 simulates fluid flow, thermal transport, hydrologic transport, and biogeochemical kinetic/equilibrium reactions in both saturated and unsaturated media. 
HYTEC www.geosciences.mines-paristech.fr/

http://hr.geosciences.ensmp.fr/

van der Lee et al. (2002) [37]; van der Lee et al. (2003) [38]; Lagneau & van der Lee (2010)Cite error: The opening <ref> tag is malformed or has a bad name (see the help page). coupling of reactive transport code R2D2 and CHESS for geochemical calculations
MINTEQA2/PRODEFA2 www.epa.gov/ free Allison et al. (1991) [39] current version 4.03
MINEQL+5.0 http://www.mineql.com/ $ 635 Westall et al. (1976) [40]; Scherer & McAvoy (1994) [41]
OpenGeoSys http://www.opengeosys.org/ free Kolditz et al. (2012) [42]; Li et al. (2014) [43] coupling of thermo, hydro, mechanical and chemical (THMC) processes
SOLVEQ Reed & Spycher (2001) [44]
SOLTHERM http://pages.uoregon.edu/ Reed & Spycher (1990) [45]
The Geochemist's Workbench https://www.gwb.com/ Bethke (2007) [46] current version 11.0
TOUGHREACT http://esd1.lbl.gov/ Core: $ 5520 (executable, commercial use); detailed pricing see http://esd1.lbl.gov/;

additional charge for EOS modules

Xu et al. (2006) [47] current version: V3.0-OMP, includes parallelization in reactive transport simulations. TOUGHREACT-Pitzer includes the Pitzer aqueous activitiy model
WATEQ4F free
WHAM7 http://www.ceh.ac.uk/ £ 300 (single user licencse) Tipping (1994) [48]
Visual MINTEQ http://vminteq.lwr.kth.se/ free current version 3.1

More information on geochemical codes can be found in Steefel et al. (2015) [49], especially on the codes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN.

Special Issue in Applied Geochemistry (2015), Volume 55, Pages 1-198 (April 2015)

Geochemical Speciation Codes and Databases

Edited by Dmitrii A Kulik, Wolfgang Hummel, Johannes Lützenkirchen and Grégory Lefèvre

http://www.sciencedirect.com/science/journal/08832927/55

Xu, T., E.L. Sonnenthal, N. Spycher and K. Pruess, 2004

References

  1. ^ Nordstrom, D. K.; Campbell, K. M. "Modeling Low-Temperature Geochemical Processes". Treatise on Geochemistry.
  2. ^ Lwin, Y. (2000). "Chemical equilibrium by Gibbs energy minimization on spreadsheets" (PDF). International Journal of Engineering Education. 16 (4): 335-339.
  3. ^ Rossia, C.C.R.S.; Cardozo-Filhoa, L.; Guirardello, R. (2009). "Gibbs free energy minimization for the calculation of chemical and phase equilibrium using linear programming". Fluid Phase Equilibria. 278 (1–2). doi: 10.1016/j.fluid.2009.01.007.
  4. ^ Leal, Allan M.M.; Kulik, Dmitrii A.; Kosakowski, Georg (2016). "Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations". Advances in Water Resources. 88: 231–240. doi: 10.1016/j.advwatres.2015.11.021.
  5. ^ Kulik, Dmitrii A. (2002). "Gibbs energy minimization approach to modeling sorption equilibria at the mineral-water interface: Thermodynamic relations for multi-site-surface complexation". American Journal of Science. 302 (3): 227-279. doi: 10.2475/ajs.302.3.227.
  6. ^ Davies, C.W. (1962). Ion association. Butterworths.
  7. ^ Debye, P.; Hückel, E. (1923). "Zur Theorie der Elektrolyte". Physikalische Zeitschrift. 24 (9): 185-205.
  8. ^ Parkhurst, D.L.; Appelo, C.A.J. (2013). "PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations". U.S. Department of the Interior, U.S. Geological Survey. Chapter 43.
  9. ^ http://www.umich.edu/~chem241/lecture11final.pdf
  10. ^ Pitzer, K.S. (1973). "Thermodynamics of electrolytes. I. Theoretical basis and general equations". The Journal of Physical Chemistry. doi: 10.1021/j100621a026.
  11. ^ Pitzer, Kenneth S.; Mayorga, Guillermo (1973-09-01). "Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent". The Journal of Physical Chemistry. 77 (19): 2300–2308. doi: 10.1021/j100638a009. ISSN  0022-3654.
  12. ^ Harvie, Charles E; Møller, Nancy; Weare, John H (1984-04-01). "The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C". Geochimica et Cosmochimica Acta. 48 (4): 723–751. doi: 10.1016/0016-7037(84)90098-X.
  13. ^ Guggenheim, E. A.; Turgeon, J. C. (1955-01-01). "Specific interaction of ions". Transactions of the Faraday Society. 51 (0). doi: 10.1039/tf9555100747. ISSN  0014-7672.
  14. ^ Ciavatta, L. (1980). "The Specific Interaction Theory in evaluating Ionic Equilibria". Annali Di Chimica. 70: 551–567.{{ cite journal}}: CS1 maint: date and year ( link)
  15. ^ Elizalde, M. P.; Aparicio, J. L. (1995-03-01). "Current theories in the calculation of activity coefficients—II. Specific interaction theories applied to some equilibria studies in solution chemistry". Talanta. 42 (3): 395–400. doi: 10.1016/0039-9140(95)01422-8.
  16. ^ Petersen, Stephan; Hack, Klaus (2007-10-01). "The thermochemistry library ChemApp and its applications". International Journal of Materials Research. 98 (10): 935–945. doi: 10.3139/146.101551. ISSN  1862-5282.
  17. ^ Müller, B. (1996). ChemEQL: A program to calculate chemical speciation equilibria, titrations, dissolutions, precipitation, adsorption, simple kinetics, and pX–pY diagrams. Zürich: EAWAG.
  18. ^ Muller, B., 2004, CHEMEQL V3.0, A program to calculate chemical speciation equilibria, titrations, dissolution, precipitation, adsorption, kinetics, pX-pY diagrams, solubility diagrams. Limnological Research Center EAWAG/ETH, Kastanienbaum, Switzerland
  19. ^ Bea, S. A.; Carrera, J.; Ayora, C.; Batlle, F.; Saaltink, M. W. (2009-06-01). "CHEPROO: A Fortran 90 object-oriented module to solve chemical processes in Earth Science models". Computers & Geosciences. 35 (6): 1098–1112. doi: 10.1016/j.cageo.2008.08.010.
  20. ^ van der Lee, J., and L. De Windt, 2000, CHESS, another speciation and complexation computer code. Technical Report no. LHM/RD/93/39, Ecole des Mines de Paris, Fontainebleau
  21. ^ van der Lee, J.; De Windt, Laurent (2002). CHESS Tutorial and Cookbook - Updated for version 3.0 (User’s Manual LHM/RD/02/13). Fontainebleau, France: Ecole des Mines de Paris - Centre d’Informatique Geologique (Fontainebleau, France).
  22. ^ Reed, M.H., 1982, Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and aqueous phase. Geochimica et Cosmochemica Acta 46, 513-528.
  23. ^ Steefel, Carl I.; Lasaga, Antonio C. (1994-05-01). "A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems". American Journal of Science. 294 (5): 529–592. doi: 10.2475/ajs.294.5.529. ISSN  0002-9599.
  24. ^ Steefel, C.I., 2001, GIMRT, Version 1.2: Software for modeling multicomponent, multidimensional reactive transport, User's Guide. Report UCRL-MA-143182, Lawrence Livermore National Laboratory, Livermore, California.
  25. ^ Steefel, C.I. (2009). CrunchFlow - Software for Modeling Multicomponent Reactive Flow and Transport - USER’S MANUAL (PDF) (Technical Report). Earth Sciences Division - Lawrence Berkeley National Laboratory.
  26. ^ Beisman, J. J., J.J.; Maxwell, R.M.; Steefel, C.I.; Sitchler, A.; Molins, S. (2013). "High-resolution reactive transport: A coupled parallel hydrogeochemical model". American Geophysical Union, Fall Meeting 2013. Retrieved 2016-06-15.
  27. ^ Wolery, T.J.; Jarek, R.L. (2003). Software User's Manual: EQ3/6, Version 8.0 (10813-UM-8.0-00) (PDF). Sandia National Laboratories P.O. Box 5800, Albuquerque, New Mexico 87185.
  28. ^ Bale, C. W.; Chartrand, P.; Degterov, S. A.; Eriksson, G.; Hack, K.; Ben Mahfoud, R.; Melançon, J.; Pelton, A. D.; Petersen, S. (2002-06-01). "FactSage thermochemical software and databases". Calphad. 26 (2): 189–228. doi: 10.1016/S0364-5916(02)00035-4.
  29. ^ Kulik, D.A., 2002, Gibbs energy minimization approach to model sorption equilibria at the mineral-water interface: Thermodynamic relations for multi-site surface complexation. American Journal of Science 302, 227-279
  30. ^ Kulik, Dmitrii A.; Wagner, Thomas; Dmytrieva, Svitlana V.; Kosakowski, Georg; Hingerl, Ferdinand F.; Chudnenko, Konstantin V.; Berner, Urs R. (2012-08-24). "GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes". Computational Geosciences. 17 (1): 1–24. doi: 10.1007/s10596-012-9310-6. ISSN  1420-0597.
  31. ^ Loeppert, Richard H.; Schwab, A. Paul; Goldberg, Sabine; Parker, David R.; Norvell, Wendell A.; Chaney, R. L. (1995-01-01). GEOCHEM-PC—A Chemical Speciation Program for IBM and Compatible Personal Computers. Vol. sssaspecialpubl. Soil Science Society of America and American Society of Agronomy. doi: 10.2136/sssaspecpub42.c13.
  32. ^ Shvarov, Y. V. (2008). "HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by windows". Short Communications - Geochemistry International. 834 (46). Retrieved 2016. {{ cite journal}}: Check date values in: |access-date= ( help)
  33. ^ Smith, William R. (1996). "HSC Chemistry for Windows, 2.0". Journal of Chemical Information and Computer Sciences. 36 (1): 151–152. doi: 10.1021/ci9503570. ISSN  0095-2338.
  34. ^ Jeon, Min Ku; Lee, Jae Won; Kang, Kweon Ho; Park, Geun Il; Lee, Chang Hwa; Yang, Jae Hwan; Heo, Chul Min (2011-04-16). "Simulation of chlorination reaction behavior of hull wastes by using the HSC code". Journal of Radioanalytical and Nuclear Chemistry. 289 (2): 417–422. doi: 10.1007/s10967-011-1081-3. ISSN  0236-5731.
  35. ^ Gwo, J.P.; Yeh, G.-T. "A Parallel 3-Dimensional HYDROGEOCHEM and an Application to a Proposed Waste Disposal Site at the Oak Ridge National Laboratory". Oak Ridge National Laboratory, Oak Ridge. Retrieved 2016-06-16. {{ cite journal}}: Cite journal requires |journal= ( help)
  36. ^ Yeh, G.-T.; Tripathi, V.S. (2012). "HYDROGEOCHEM: A coupled model of variably saturated flow thermal transport, and reactive biogeochemical Transport". In Zhang, F.; Yeh, G.-T.; Parker, J. C. (eds.). Groundwater Reactive Transport Models. Bentham Books. pp. 3–41. ISBN  978-1-60805-306-3.
  37. ^ van der Lee, J.; De Windt, L.; Lagneau, V.; Goblet, P. (2002-01-01). S. Majid Hassanizadeh, Ruud J. Schotting, William G. Gray and George F. Pinder (ed.). Presentation and application of the reactive transport code HYTEC. Computational Methods in Water ResourcesProceedings of the XIVth International Conference on Computational Methods in Water Resources (CMWR XIV). Vol. 47. Elsevier. pp. 599–606. doi: 10.1016/s0167-5648(02)80114-9.{{ cite book}}: CS1 maint: multiple names: editors list ( link)
  38. ^ van der Lee, J.; De Windt, L.; Lagneau, V.; Goblet, P. (2003). "Module-oriented modeling of reactive transport with HYTEC". Computers & Geosciences. Reactive Transport Modeling in the Geosciences. 29 (3): 265–275. doi: 10.1016/S0098-3004(03)00004-9.
  39. ^ Allison, J.D.; Brown, D.S.; Kevin, J. (1991). MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3.0 user’s manual (EPA/600/3-91/021 (PDF). Environmental Research Laboratory, Office of Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency Athens, Georgia 30605.
  40. ^ Westall, J.C., J.L. Zachary and F.F.M. Morel, 1976, MINEQL, a computer program for the calculation of chemical equilibrium composition of aqueous systems. Technical Note 18, R.M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA.
  41. ^ Scherer, W.D. and D.C. McAvoy, 1994, MINEQL+ , A Chemical Equilibrium Program for Personal Computers, User's Manual, version 3.0. Environmental Research Software, Inc., Hallowell, ME.
  42. ^ Kolditz, O.; Bauer, S.; Bilke, L.; Böttcher, N.; Delfs, J. O.; Fischer, T.; Görke, U. J.; Kalbacher, T.; Kosakowski, G. (2012-02-01). "OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media". Environmental Earth Sciences. 67 (2): 589–599. doi: 10.1007/s12665-012-1546-x. ISSN  1866-6280.
  43. ^ Li, Dedong; Bauer, Sebastian; Benisch, Katharina; Graupner, Bastian; Beyer, Christof (2013-09-26). "OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany". Acta Geotechnica. 9 (1): 67–79. doi: 10.1007/s11440-013-0234-7. ISSN  1861-1125.
  44. ^ Reed, M.H.; Spycher, N.F. (2001). User guide SOLVEQ, a program for computing aqueous and mineral and gas equilibrium. Oregon: Department of geological sciences, University of Oregon.
  45. ^ Reed, M.H.; Spycher, N.F. (1990). SOLTHERM: Data base of equilibrium constants for aqueous-mineral-gas equilibria. Oregon, USA: University of Oregon.
  46. ^ Bethke, C.M. (2007). Geochemical and biogeochemical reaction modeling. Cambridge University Press.
  47. ^ Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten (2006-03-01). "TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration". Computers & Geosciences. 32 (2): 145–165. doi: 10.1016/j.cageo.2005.06.014.
  48. ^ Tipping, E. (1994-07-01). "WHAMC—A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances". Computers & Geosciences. 20 (6): 973–1023. doi: 10.1016/0098-3004(94)90038-8.
  49. ^ Steefel, C. I.; Appelo, C. a. J.; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.; Lichtner, P. C.; Mayer, K. U. (2014-09-26). "Reactive transport codes for subsurface environmental simulation". Computational Geosciences. 19 (3): 445–478. doi: 10.1007/s10596-014-9443-x. ISSN  1420-0597.
  50. ^ Cheng, H.P. and G.T. Yeh, 1998, Development of a three-dimensional model of subsurface flow, heat transfer, and reactive chemical transport: 3DHYDROGEOCHEM. Journal of Contaminant Hydrology 34, 47-83
  51. ^ Parkhurst, D.L.; Appelo, C.A.J. (2013). "PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations". U.S. Department of the Interior, U.S. Geological Survey. Chapter 43.
  52. ^ Perkins, E.H., 1992, Integration of intensive variable diagrams and fluid phase equilibria with SOLMINEQ.88 pc/shell. In Y.K. Kharaka and A.S. Maest (eds.), Water-Rock Interaction, Balkema, Rotterdam, p. 1079-1081.
  53. ^ Gustafsson, J.P. (2011). Visual MINTEQ ver. 3.0. KTH Department of Land and Water Resources.
  54. ^ Ball, J.W.; D.K., Nordstrom (1991). WATEQ4F - User's manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters. Open-File Report 90-129. pp. 185 p.
From Wikipedia, the free encyclopedia

A Geochemical code is a computer program using equations to solve the equilibrium problem using chemical thermodynamics. The codes calculate the speciation of aqueous solutions and specified instantaneous reactions or time-dependent reactions.

Solution of equilibrium problem

The majority of the codes uses the law of mass action for calculating the state of equilibrium [1]. The codes bring along thermodynamic databases, which incorporate equilibrium constants (KEq ) for the specified mineral, aquatic and gaseous reactions.

Another set of codes uses the method of the Gibbs Energy Minimization (GEM) [2] [3] [4] [5]. Geochemical codes including this approach are Gem-Selektor and FactSage (ChemApp). The advantage of this approach is, that the Gibbs Energy is calculated at every temperature-pressure (T-P) condition. A major disadvantage is that i.e. FactSage does not incorporate activity calculation ().

Activity calculation

The geochemical codes use the ion-dissociation and ion-association models to calculate activity coefficients (i) of aquatic species. Equations calculating activity coefficients following the theory of ion-dissociation are i.e. the Davies [6] and the different types of the Debye-Hückel [7] equation. For example, PHREEQC uses the different activity equations dynamically depending on the available database parameters [8]. The different activity models are restricted to different ranges of ionc strength.

Activity model range of ionic strength validity
Davies < 0.5 ≈ < 0.7
Debye-Hückel < 0.005
Extended Debye-Hückel equation [9] < 0.1
WATEQ Debye-Hückel equation < 1.0
Setchenow equation < 1.0

A different approach calculating activity coefficients following the theory of ion-association is the framework of Pitzer equations. The Pitzer equations include interaction parameters for representing the ionic interactions. The range of validity with respect to ionic strength is much higher compared to the equations following the ion-dissociation theory [10] [11]. However, this activity model does not include data for the aquatic species Al and Si. Most of the interaction parameters are only valid at 25°C. Thereby, simulation of reaction processes of feldspars is not possible, which are of high importance for most hydrogeochemical problems.

The Harvie-Möller-Weare model (HMW) is also based on the Pitzer framework [12]. The HMW model incorporates the components Na, K, Mg, Ca, H, Cl, SO4, OH, HCO3-CO3, CO2 and H2O.

The Specific ion interaction theory (SIT theory) uses interaction coefficients to estimate activity coefficients at high concentrations [13] [14]. The integration coefficients are derived from equilibrium coefficients. The SIT theory calculates acceptable results up to ionic strength of 3 mol/kgw [15].

The mineral solubility model of Harvie and Weare (1980) is extended to the eight component system, Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O at 25°C to high concentrations. The model is based on the semi-empirical equations of Pitzer(1973) and co-workers for the thermodynamics of aqueous electrolyte solutions. The model is parameterized using many of the available isopiestic, electromotive force, and solubility data available for many of the subsystems. The predictive abilities of the model are demonstrated by comparison to experimental data in systems more complex than those used in parameterization. The essential features of a chemical model for aqueous electrolyte solutions and the relationship between pH and the equilibrium properties of a solution are discussed.

List of geochemical codes

Code Website Cost Citation Comment
Aqion www.aqion.de free uses PhreeqC to calculate ion balance
CHEAQS Next www.cheaqs.eu
ChemApp http://gtt.mch.rwth-aachen.de/ free light version

http://gtt.mch.rwth-aachen.de/

Petersen & Hack (2007) [16] applied GEM method, can be coupled to OGS
ChemEQL www.eawag.ch/

www.vseit.de/

free Müller (1996) [17]; Müller (2004) [18]
ChemPlugin https://chemplugin.gwb.com/index.php $ 3999 (Perpetual licenses)
CHEPROO http://h2ogeo.upc.edu free Bea et al. (2009) [19]
CHESS http://chess.geosciences.ensmp.fr ? van der Lee & De Windt (2000) [20];

van der Lee & De Windt (2002) [21]

CHILLER ? ? Reed (1982) [22]
CrunchFlow http://www.csteefel.com/ Steefel & Lasaga (1994) [23]; Steefel (2001) [24]; Steefel (2009) [25]; Beismann et al. (2013) [26] developed by C. Steefel
EQ3/EQ6 https://missions.llnl.gov/

http://w.wipp.ws/library/

$ 500 Wolery & Jarek (2003) [27]
FactSage http://www.factsage.com/

http://gtt.mch.rwth-aachen.de/

10813-UM-8.0-00 Bale et al. (2002) [28]
GEM-Selektor http://gems.web.psi.ch/ Kulik et al. (2002) [29]; Kulik et al. (2013) [30]
GEOCHEM-PC Parker et al. (1995) [31]
HCh www.geol.msu.ru/ Shvarov (2008) [32]
HSC Chemistry www.hsc-chemistry.net/ $ 1215 - $ 3037 Smith (1996) [33]; Jeon et al. (2011) [34] contains 24 calculation modules, based on .NET environment
HYDROGEOCHEM www.scisoftware.com/ $ 3000 (version 4.0, 2D)

$ 5000 (version 5.0, 3D)

Gwo & Yeh [35]; Yeh et al. (2012) [36] HYDROGEOCHEM 5.0 simulates fluid flow, thermal transport, hydrologic transport, and biogeochemical kinetic/equilibrium reactions in both saturated and unsaturated media. 
HYTEC www.geosciences.mines-paristech.fr/

http://hr.geosciences.ensmp.fr/

van der Lee et al. (2002) [37]; van der Lee et al. (2003) [38]; Lagneau & van der Lee (2010)Cite error: The opening <ref> tag is malformed or has a bad name (see the help page). coupling of reactive transport code R2D2 and CHESS for geochemical calculations
MINTEQA2/PRODEFA2 www.epa.gov/ free Allison et al. (1991) [39] current version 4.03
MINEQL+5.0 http://www.mineql.com/ $ 635 Westall et al. (1976) [40]; Scherer & McAvoy (1994) [41]
OpenGeoSys http://www.opengeosys.org/ free Kolditz et al. (2012) [42]; Li et al. (2014) [43] coupling of thermo, hydro, mechanical and chemical (THMC) processes
SOLVEQ Reed & Spycher (2001) [44]
SOLTHERM http://pages.uoregon.edu/ Reed & Spycher (1990) [45]
The Geochemist's Workbench https://www.gwb.com/ Bethke (2007) [46] current version 11.0
TOUGHREACT http://esd1.lbl.gov/ Core: $ 5520 (executable, commercial use); detailed pricing see http://esd1.lbl.gov/;

additional charge for EOS modules

Xu et al. (2006) [47] current version: V3.0-OMP, includes parallelization in reactive transport simulations. TOUGHREACT-Pitzer includes the Pitzer aqueous activitiy model
WATEQ4F free
WHAM7 http://www.ceh.ac.uk/ £ 300 (single user licencse) Tipping (1994) [48]
Visual MINTEQ http://vminteq.lwr.kth.se/ free current version 3.1

More information on geochemical codes can be found in Steefel et al. (2015) [49], especially on the codes PHREEQC, HPx, PHT3D, OpenGeoSys (OGS), HYTEC, ORCHESTRA, TOUGHREACT, eSTOMP, HYDROGEOCHEM, CrunchFlow, MIN3P, and PFLOTRAN.

Special Issue in Applied Geochemistry (2015), Volume 55, Pages 1-198 (April 2015)

Geochemical Speciation Codes and Databases

Edited by Dmitrii A Kulik, Wolfgang Hummel, Johannes Lützenkirchen and Grégory Lefèvre

http://www.sciencedirect.com/science/journal/08832927/55

Xu, T., E.L. Sonnenthal, N. Spycher and K. Pruess, 2004

References

  1. ^ Nordstrom, D. K.; Campbell, K. M. "Modeling Low-Temperature Geochemical Processes". Treatise on Geochemistry.
  2. ^ Lwin, Y. (2000). "Chemical equilibrium by Gibbs energy minimization on spreadsheets" (PDF). International Journal of Engineering Education. 16 (4): 335-339.
  3. ^ Rossia, C.C.R.S.; Cardozo-Filhoa, L.; Guirardello, R. (2009). "Gibbs free energy minimization for the calculation of chemical and phase equilibrium using linear programming". Fluid Phase Equilibria. 278 (1–2). doi: 10.1016/j.fluid.2009.01.007.
  4. ^ Leal, Allan M.M.; Kulik, Dmitrii A.; Kosakowski, Georg (2016). "Computational methods for reactive transport modeling: A Gibbs energy minimization approach for multiphase equilibrium calculations". Advances in Water Resources. 88: 231–240. doi: 10.1016/j.advwatres.2015.11.021.
  5. ^ Kulik, Dmitrii A. (2002). "Gibbs energy minimization approach to modeling sorption equilibria at the mineral-water interface: Thermodynamic relations for multi-site-surface complexation". American Journal of Science. 302 (3): 227-279. doi: 10.2475/ajs.302.3.227.
  6. ^ Davies, C.W. (1962). Ion association. Butterworths.
  7. ^ Debye, P.; Hückel, E. (1923). "Zur Theorie der Elektrolyte". Physikalische Zeitschrift. 24 (9): 185-205.
  8. ^ Parkhurst, D.L.; Appelo, C.A.J. (2013). "PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations". U.S. Department of the Interior, U.S. Geological Survey. Chapter 43.
  9. ^ http://www.umich.edu/~chem241/lecture11final.pdf
  10. ^ Pitzer, K.S. (1973). "Thermodynamics of electrolytes. I. Theoretical basis and general equations". The Journal of Physical Chemistry. doi: 10.1021/j100621a026.
  11. ^ Pitzer, Kenneth S.; Mayorga, Guillermo (1973-09-01). "Thermodynamics of electrolytes. II. Activity and osmotic coefficients for strong electrolytes with one or both ions univalent". The Journal of Physical Chemistry. 77 (19): 2300–2308. doi: 10.1021/j100638a009. ISSN  0022-3654.
  12. ^ Harvie, Charles E; Møller, Nancy; Weare, John H (1984-04-01). "The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-CO2-H2O system to high ionic strengths at 25°C". Geochimica et Cosmochimica Acta. 48 (4): 723–751. doi: 10.1016/0016-7037(84)90098-X.
  13. ^ Guggenheim, E. A.; Turgeon, J. C. (1955-01-01). "Specific interaction of ions". Transactions of the Faraday Society. 51 (0). doi: 10.1039/tf9555100747. ISSN  0014-7672.
  14. ^ Ciavatta, L. (1980). "The Specific Interaction Theory in evaluating Ionic Equilibria". Annali Di Chimica. 70: 551–567.{{ cite journal}}: CS1 maint: date and year ( link)
  15. ^ Elizalde, M. P.; Aparicio, J. L. (1995-03-01). "Current theories in the calculation of activity coefficients—II. Specific interaction theories applied to some equilibria studies in solution chemistry". Talanta. 42 (3): 395–400. doi: 10.1016/0039-9140(95)01422-8.
  16. ^ Petersen, Stephan; Hack, Klaus (2007-10-01). "The thermochemistry library ChemApp and its applications". International Journal of Materials Research. 98 (10): 935–945. doi: 10.3139/146.101551. ISSN  1862-5282.
  17. ^ Müller, B. (1996). ChemEQL: A program to calculate chemical speciation equilibria, titrations, dissolutions, precipitation, adsorption, simple kinetics, and pX–pY diagrams. Zürich: EAWAG.
  18. ^ Muller, B., 2004, CHEMEQL V3.0, A program to calculate chemical speciation equilibria, titrations, dissolution, precipitation, adsorption, kinetics, pX-pY diagrams, solubility diagrams. Limnological Research Center EAWAG/ETH, Kastanienbaum, Switzerland
  19. ^ Bea, S. A.; Carrera, J.; Ayora, C.; Batlle, F.; Saaltink, M. W. (2009-06-01). "CHEPROO: A Fortran 90 object-oriented module to solve chemical processes in Earth Science models". Computers & Geosciences. 35 (6): 1098–1112. doi: 10.1016/j.cageo.2008.08.010.
  20. ^ van der Lee, J., and L. De Windt, 2000, CHESS, another speciation and complexation computer code. Technical Report no. LHM/RD/93/39, Ecole des Mines de Paris, Fontainebleau
  21. ^ van der Lee, J.; De Windt, Laurent (2002). CHESS Tutorial and Cookbook - Updated for version 3.0 (User’s Manual LHM/RD/02/13). Fontainebleau, France: Ecole des Mines de Paris - Centre d’Informatique Geologique (Fontainebleau, France).
  22. ^ Reed, M.H., 1982, Calculation of multicomponent chemical equilibria and reaction processes in systems involving minerals, gases, and aqueous phase. Geochimica et Cosmochemica Acta 46, 513-528.
  23. ^ Steefel, Carl I.; Lasaga, Antonio C. (1994-05-01). "A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems". American Journal of Science. 294 (5): 529–592. doi: 10.2475/ajs.294.5.529. ISSN  0002-9599.
  24. ^ Steefel, C.I., 2001, GIMRT, Version 1.2: Software for modeling multicomponent, multidimensional reactive transport, User's Guide. Report UCRL-MA-143182, Lawrence Livermore National Laboratory, Livermore, California.
  25. ^ Steefel, C.I. (2009). CrunchFlow - Software for Modeling Multicomponent Reactive Flow and Transport - USER’S MANUAL (PDF) (Technical Report). Earth Sciences Division - Lawrence Berkeley National Laboratory.
  26. ^ Beisman, J. J., J.J.; Maxwell, R.M.; Steefel, C.I.; Sitchler, A.; Molins, S. (2013). "High-resolution reactive transport: A coupled parallel hydrogeochemical model". American Geophysical Union, Fall Meeting 2013. Retrieved 2016-06-15.
  27. ^ Wolery, T.J.; Jarek, R.L. (2003). Software User's Manual: EQ3/6, Version 8.0 (10813-UM-8.0-00) (PDF). Sandia National Laboratories P.O. Box 5800, Albuquerque, New Mexico 87185.
  28. ^ Bale, C. W.; Chartrand, P.; Degterov, S. A.; Eriksson, G.; Hack, K.; Ben Mahfoud, R.; Melançon, J.; Pelton, A. D.; Petersen, S. (2002-06-01). "FactSage thermochemical software and databases". Calphad. 26 (2): 189–228. doi: 10.1016/S0364-5916(02)00035-4.
  29. ^ Kulik, D.A., 2002, Gibbs energy minimization approach to model sorption equilibria at the mineral-water interface: Thermodynamic relations for multi-site surface complexation. American Journal of Science 302, 227-279
  30. ^ Kulik, Dmitrii A.; Wagner, Thomas; Dmytrieva, Svitlana V.; Kosakowski, Georg; Hingerl, Ferdinand F.; Chudnenko, Konstantin V.; Berner, Urs R. (2012-08-24). "GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes". Computational Geosciences. 17 (1): 1–24. doi: 10.1007/s10596-012-9310-6. ISSN  1420-0597.
  31. ^ Loeppert, Richard H.; Schwab, A. Paul; Goldberg, Sabine; Parker, David R.; Norvell, Wendell A.; Chaney, R. L. (1995-01-01). GEOCHEM-PC—A Chemical Speciation Program for IBM and Compatible Personal Computers. Vol. sssaspecialpubl. Soil Science Society of America and American Society of Agronomy. doi: 10.2136/sssaspecpub42.c13.
  32. ^ Shvarov, Y. V. (2008). "HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by windows". Short Communications - Geochemistry International. 834 (46). Retrieved 2016. {{ cite journal}}: Check date values in: |access-date= ( help)
  33. ^ Smith, William R. (1996). "HSC Chemistry for Windows, 2.0". Journal of Chemical Information and Computer Sciences. 36 (1): 151–152. doi: 10.1021/ci9503570. ISSN  0095-2338.
  34. ^ Jeon, Min Ku; Lee, Jae Won; Kang, Kweon Ho; Park, Geun Il; Lee, Chang Hwa; Yang, Jae Hwan; Heo, Chul Min (2011-04-16). "Simulation of chlorination reaction behavior of hull wastes by using the HSC code". Journal of Radioanalytical and Nuclear Chemistry. 289 (2): 417–422. doi: 10.1007/s10967-011-1081-3. ISSN  0236-5731.
  35. ^ Gwo, J.P.; Yeh, G.-T. "A Parallel 3-Dimensional HYDROGEOCHEM and an Application to a Proposed Waste Disposal Site at the Oak Ridge National Laboratory". Oak Ridge National Laboratory, Oak Ridge. Retrieved 2016-06-16. {{ cite journal}}: Cite journal requires |journal= ( help)
  36. ^ Yeh, G.-T.; Tripathi, V.S. (2012). "HYDROGEOCHEM: A coupled model of variably saturated flow thermal transport, and reactive biogeochemical Transport". In Zhang, F.; Yeh, G.-T.; Parker, J. C. (eds.). Groundwater Reactive Transport Models. Bentham Books. pp. 3–41. ISBN  978-1-60805-306-3.
  37. ^ van der Lee, J.; De Windt, L.; Lagneau, V.; Goblet, P. (2002-01-01). S. Majid Hassanizadeh, Ruud J. Schotting, William G. Gray and George F. Pinder (ed.). Presentation and application of the reactive transport code HYTEC. Computational Methods in Water ResourcesProceedings of the XIVth International Conference on Computational Methods in Water Resources (CMWR XIV). Vol. 47. Elsevier. pp. 599–606. doi: 10.1016/s0167-5648(02)80114-9.{{ cite book}}: CS1 maint: multiple names: editors list ( link)
  38. ^ van der Lee, J.; De Windt, L.; Lagneau, V.; Goblet, P. (2003). "Module-oriented modeling of reactive transport with HYTEC". Computers & Geosciences. Reactive Transport Modeling in the Geosciences. 29 (3): 265–275. doi: 10.1016/S0098-3004(03)00004-9.
  39. ^ Allison, J.D.; Brown, D.S.; Kevin, J. (1991). MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3.0 user’s manual (EPA/600/3-91/021 (PDF). Environmental Research Laboratory, Office of Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency Athens, Georgia 30605.
  40. ^ Westall, J.C., J.L. Zachary and F.F.M. Morel, 1976, MINEQL, a computer program for the calculation of chemical equilibrium composition of aqueous systems. Technical Note 18, R.M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA.
  41. ^ Scherer, W.D. and D.C. McAvoy, 1994, MINEQL+ , A Chemical Equilibrium Program for Personal Computers, User's Manual, version 3.0. Environmental Research Software, Inc., Hallowell, ME.
  42. ^ Kolditz, O.; Bauer, S.; Bilke, L.; Böttcher, N.; Delfs, J. O.; Fischer, T.; Görke, U. J.; Kalbacher, T.; Kosakowski, G. (2012-02-01). "OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media". Environmental Earth Sciences. 67 (2): 589–599. doi: 10.1007/s12665-012-1546-x. ISSN  1866-6280.
  43. ^ Li, Dedong; Bauer, Sebastian; Benisch, Katharina; Graupner, Bastian; Beyer, Christof (2013-09-26). "OpenGeoSys-ChemApp: a coupled simulator for reactive transport in multiphase systems and application to CO2 storage formation in Northern Germany". Acta Geotechnica. 9 (1): 67–79. doi: 10.1007/s11440-013-0234-7. ISSN  1861-1125.
  44. ^ Reed, M.H.; Spycher, N.F. (2001). User guide SOLVEQ, a program for computing aqueous and mineral and gas equilibrium. Oregon: Department of geological sciences, University of Oregon.
  45. ^ Reed, M.H.; Spycher, N.F. (1990). SOLTHERM: Data base of equilibrium constants for aqueous-mineral-gas equilibria. Oregon, USA: University of Oregon.
  46. ^ Bethke, C.M. (2007). Geochemical and biogeochemical reaction modeling. Cambridge University Press.
  47. ^ Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten (2006-03-01). "TOUGHREACT—A simulation program for non-isothermal multiphase reactive geochemical transport in variably saturated geologic media: Applications to geothermal injectivity and CO2 geological sequestration". Computers & Geosciences. 32 (2): 145–165. doi: 10.1016/j.cageo.2005.06.014.
  48. ^ Tipping, E. (1994-07-01). "WHAMC—A chemical equilibrium model and computer code for waters, sediments, and soils incorporating a discrete site/electrostatic model of ion-binding by humic substances". Computers & Geosciences. 20 (6): 973–1023. doi: 10.1016/0098-3004(94)90038-8.
  49. ^ Steefel, C. I.; Appelo, C. a. J.; Arora, B.; Jacques, D.; Kalbacher, T.; Kolditz, O.; Lagneau, V.; Lichtner, P. C.; Mayer, K. U. (2014-09-26). "Reactive transport codes for subsurface environmental simulation". Computational Geosciences. 19 (3): 445–478. doi: 10.1007/s10596-014-9443-x. ISSN  1420-0597.
  50. ^ Cheng, H.P. and G.T. Yeh, 1998, Development of a three-dimensional model of subsurface flow, heat transfer, and reactive chemical transport: 3DHYDROGEOCHEM. Journal of Contaminant Hydrology 34, 47-83
  51. ^ Parkhurst, D.L.; Appelo, C.A.J. (2013). "PHREEQC (Version 3)--A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations". U.S. Department of the Interior, U.S. Geological Survey. Chapter 43.
  52. ^ Perkins, E.H., 1992, Integration of intensive variable diagrams and fluid phase equilibria with SOLMINEQ.88 pc/shell. In Y.K. Kharaka and A.S. Maest (eds.), Water-Rock Interaction, Balkema, Rotterdam, p. 1079-1081.
  53. ^ Gustafsson, J.P. (2011). Visual MINTEQ ver. 3.0. KTH Department of Land and Water Resources.
  54. ^ Ball, J.W.; D.K., Nordstrom (1991). WATEQ4F - User's manual with revised thermodynamic data base and test cases for calculating speciation of major, trace and redox elements in natural waters. Open-File Report 90-129. pp. 185 p.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook