tres-4b Latitude and Longitude:

Sky map 17h 53m 13s, +37° 12′ 42″
From Wikipedia, the free encyclopedia
TrES-4b
Size comparison of TrES-4 with Jupiter
Discovery
Discovered byMandushev et al [1]
Discovery date2006–2007
Transit
Orbital characteristics
0.05091 ± 0.00071 AU (7.616 ± 0.106 million km) [2]
Eccentricity0
3.553945 ± 0.000075 d
Inclination82.86 ± 0.33 [2]
Semi-amplitude86.1
Star GSC 02620-00648 A [2]
Physical characteristics
1.799 ± 0.063 [2] RJ
Mass0.919 ± 0.073 [2] MJ
7.04 ± 1.12  m/s2 (23.1 ± 3.7  ft/s2)
0.718 ± 0.114 g
Temperature1782±29  K (1,509 °C; 2,748 °F, equilibrium) [2]

TrES-4b is an extrasolar planet, and one of the largest exoplanets ever found. It was discovered in 2006, and announced in 2007, by the Trans-Atlantic Exoplanet Survey, using the transit method. It is approximately 1,400 light-years (430  pc) away orbiting the star GSC 02620-00648, in the constellation Hercules. [1]

Orbit

A 2008 study concluded that the GSC 06200-00648 system (among others) is a binary star system allowing even more accurate determination of stellar and planetary parameters. [2]

TrES-4 orbits its primary star every 3.543 days and eclipses it when viewed from Earth.

The study in 2012, utilizing a Rossiter–McLaughlin effect, have determined the planetary orbit is probably aligned with the equatorial plane of the star, misalignment equal to 6.3±4.7°. [3]

Physical characteristics

The planet is slightly less massive than Jupiter (0.919 ± 0.073 MJ) but its diameter is 79.9% larger; it was considered the largest planet ever found at the time, giving it an average density of only about a third of a gram per cubic centimetre, approximately the same as Saturn's moon Methone. This made TrES-4b both the largest-known planet and the planet with the lowest-known density at the time of its discovery. [2] [1]

TrES-4b's orbital radius is 0.05091 AU, giving it a predicted surface temperature of about 1,782  K (1,509  °C; 2,748  °F). This by itself is not enough to explain the planet's low density, however. It is not currently known why TrES-4b is so large. The probable causes are the proximity to a parent star that is three to four times more luminous than the Sun as well as the internal heat within the planet. [2] [1]

See also

References

  1. ^ a b c d Mandushev, Georgi; et al. (2007). "TrES-4: A Transiting Hot Jupiter of Very Low Density". The Astrophysical Journal Letters. 667 (2): L195–L198. arXiv: 0708.0834. Bibcode: 2007ApJ...667L.195M. doi: 10.1086/522115. S2CID  6087170.
  2. ^ a b c d e f g h i Daemgen, S.; Hormuth, F.; Brandner, W.; Bergfors, C.; Janson, M.; Hippler, S.; Henning, T. (2009). "Binarity of transit host stars - Implications for planetary parameters" (PDF). Astronomy and Astrophysics. 498 (2): 567–574. arXiv: 0902.2179. Bibcode: 2009A&A...498..567D. doi: 10.1051/0004-6361/200810988. S2CID  9893376.
  3. ^ Albrecht, Simon; Winn, Joshua N.; Johnson, John A.; Howard, Andrew W.; Marcy, Geoffrey W.; Butler, R. Paul; Arriagada, Pamela; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Hirano, Teruyuki; Bakos, Gaspar; Hartman, Joel D. (2012), "Obliquities of Hot Jupiter Host Stars: Evidence for Tidal Interactions and Primordial Misalignments", The Astrophysical Journal, 757 (1): 18, arXiv: 1206.6105, Bibcode: 2012ApJ...757...18A, doi: 10.1088/0004-637X/757/1/18, S2CID  17174530

Media related to TrES-4 at Wikimedia Commons



tres-4b Latitude and Longitude:

Sky map 17h 53m 13s, +37° 12′ 42″
From Wikipedia, the free encyclopedia
TrES-4b
Size comparison of TrES-4 with Jupiter
Discovery
Discovered byMandushev et al [1]
Discovery date2006–2007
Transit
Orbital characteristics
0.05091 ± 0.00071 AU (7.616 ± 0.106 million km) [2]
Eccentricity0
3.553945 ± 0.000075 d
Inclination82.86 ± 0.33 [2]
Semi-amplitude86.1
Star GSC 02620-00648 A [2]
Physical characteristics
1.799 ± 0.063 [2] RJ
Mass0.919 ± 0.073 [2] MJ
7.04 ± 1.12  m/s2 (23.1 ± 3.7  ft/s2)
0.718 ± 0.114 g
Temperature1782±29  K (1,509 °C; 2,748 °F, equilibrium) [2]

TrES-4b is an extrasolar planet, and one of the largest exoplanets ever found. It was discovered in 2006, and announced in 2007, by the Trans-Atlantic Exoplanet Survey, using the transit method. It is approximately 1,400 light-years (430  pc) away orbiting the star GSC 02620-00648, in the constellation Hercules. [1]

Orbit

A 2008 study concluded that the GSC 06200-00648 system (among others) is a binary star system allowing even more accurate determination of stellar and planetary parameters. [2]

TrES-4 orbits its primary star every 3.543 days and eclipses it when viewed from Earth.

The study in 2012, utilizing a Rossiter–McLaughlin effect, have determined the planetary orbit is probably aligned with the equatorial plane of the star, misalignment equal to 6.3±4.7°. [3]

Physical characteristics

The planet is slightly less massive than Jupiter (0.919 ± 0.073 MJ) but its diameter is 79.9% larger; it was considered the largest planet ever found at the time, giving it an average density of only about a third of a gram per cubic centimetre, approximately the same as Saturn's moon Methone. This made TrES-4b both the largest-known planet and the planet with the lowest-known density at the time of its discovery. [2] [1]

TrES-4b's orbital radius is 0.05091 AU, giving it a predicted surface temperature of about 1,782  K (1,509  °C; 2,748  °F). This by itself is not enough to explain the planet's low density, however. It is not currently known why TrES-4b is so large. The probable causes are the proximity to a parent star that is three to four times more luminous than the Sun as well as the internal heat within the planet. [2] [1]

See also

References

  1. ^ a b c d Mandushev, Georgi; et al. (2007). "TrES-4: A Transiting Hot Jupiter of Very Low Density". The Astrophysical Journal Letters. 667 (2): L195–L198. arXiv: 0708.0834. Bibcode: 2007ApJ...667L.195M. doi: 10.1086/522115. S2CID  6087170.
  2. ^ a b c d e f g h i Daemgen, S.; Hormuth, F.; Brandner, W.; Bergfors, C.; Janson, M.; Hippler, S.; Henning, T. (2009). "Binarity of transit host stars - Implications for planetary parameters" (PDF). Astronomy and Astrophysics. 498 (2): 567–574. arXiv: 0902.2179. Bibcode: 2009A&A...498..567D. doi: 10.1051/0004-6361/200810988. S2CID  9893376.
  3. ^ Albrecht, Simon; Winn, Joshua N.; Johnson, John A.; Howard, Andrew W.; Marcy, Geoffrey W.; Butler, R. Paul; Arriagada, Pamela; Crane, Jeffrey D.; Shectman, Stephen A.; Thompson, Ian B.; Hirano, Teruyuki; Bakos, Gaspar; Hartman, Joel D. (2012), "Obliquities of Hot Jupiter Host Stars: Evidence for Tidal Interactions and Primordial Misalignments", The Astrophysical Journal, 757 (1): 18, arXiv: 1206.6105, Bibcode: 2012ApJ...757...18A, doi: 10.1088/0004-637X/757/1/18, S2CID  17174530

Media related to TrES-4 at Wikimedia Commons



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook