From Wikipedia, the free encyclopedia

In applied mathematics, stretching fields provide the local deformation of an infinitesimal circular fluid element over a finite time interval ∆t. The logarithm of the stretching (after first dividing by ∆t) gives the finite-time Lyapunov exponent λ for separation of nearby fluid elements at each point in a flow. For periodic two-dimensional flows, stretching fields have been shown to be closely related to the mixing of a passive scalar concentration field. Until recently, however, the extension of these ideas to systems that are non-periodic or weakly turbulent has been possible only in numerical simulations.


From Wikipedia, the free encyclopedia

In applied mathematics, stretching fields provide the local deformation of an infinitesimal circular fluid element over a finite time interval ∆t. The logarithm of the stretching (after first dividing by ∆t) gives the finite-time Lyapunov exponent λ for separation of nearby fluid elements at each point in a flow. For periodic two-dimensional flows, stretching fields have been shown to be closely related to the mixing of a passive scalar concentration field. Until recently, however, the extension of these ideas to systems that are non-periodic or weakly turbulent has been possible only in numerical simulations.



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook