PhotosBiographyFacebookTwitter

From Wikipedia, the free encyclopedia

Stephen W. Scherer
Born
Stephen Wayne Scherer

(1964-01-05) January 5, 1964 (age 60)
Windsor, Ontario, Canada
Nationality Canadian
Alma mater University of Waterloo ( B.Sc.)
University of Toronto ( M.Sc., Ph.D.)
Spouse
Jo-Anne Herbrick
( m. 2002)
Children2

Stephen Wayne "Steve" Scherer (born January 5, 1964) is a Canadian scientist who currently serves as the Chief of Research at The Hospital for Sick Children (SickKids) and distinguished University Professor at the University of Toronto. [1] He obtained his PhD at the University of Toronto under Professor Lap-chee Tsui. Together they founded Canada's first human genome centre, the Centre for Applied Genomics (TCAG). He is a Senior Fellow of Massey College at the University of Toronto. [2] In 2014, he was named an esteemed Clarivate (previously Thomson Reuters) Citation laureate in Physiology or Medicine for the “Discovery of large-scale gene copy number variation and its association with specific diseases. [3]

Background

Scherer was born in Windsor, Ontario, and attended Riverside High School. He played competitive hockey and baseball winning provincial and national championships. [4] He completed his Honours Science Degree at the University of Waterloo, Master of Science and Doctor of Philosophy in the Faculty of Medicine at the University of Toronto. [5]

Research

Scherer has co-published over 700 scholarly papers and book chapters. [6] He has been on the Thomson Reuters Highly Cited Researcher and World’s Most Influential Scientific Minds list (2015-2018). [7] [8] His Google Scholar h-index=159; 127,143 citations. [9] In 2023, with Ronald D. Cohn and Ada Hamosh, he edited Thompson & Thompson Genetics and Genomics in Medicine, 9th Edition, Elsevier Publishers. [10]

Chromosome mapping  

From 1988 to 2003 with  Lap-Chee Tsui, Scherer led studies of human chromosome 7, in particular in the mapping phase of the Human Genome Project. [11] [12] [13] Through collaborative research, genes involved in  holoprosencephaly, [14] [15] renal carcinoma, [16] Williams syndrome, [17] [18] sacral agenesis, [19] citrullinemia, [20] renal tubular acidosis [21] and many others were identified. His group also discovered the largest gene in the genome, which was later found to be involved in autism. [22] The sum of this work, including contributions from scientists worldwide and J.  Craig Venter's  Celera Genomics, generated the first published description of human chromosome 7. [23] In other chromosome studies with Berge Minassian, disease genes causing deadly forms of epilepsy were identified. [24] [25] [26]

Discovery of frequent gene copy number variation (CNV) events

Scherer's research contributed to the initial description of genome-wide copy number variations (CNVs) of genes, including defining CNV as a highly abundant form of human genetic variation. [27] Previous theory held that humans were 99.9% DNA identical with the small difference in variation almost entirely accounted for by some 3 million single nucleotide polymorphisms (SNPs) per genome. [28] [29] [30] Larger genomic CNV changes involving losses or gains of thousands or millions of nucleotides encompassing one or several genes were thought to be exceptionally rare, and almost always involved in disease. [31] Scherer's observations of frequent CNV events found in the genomes of all cells in every individual, co-published with Canadian-Korean scientist Charles Lee working at Harvard in 2004, [32] opened a new window for studies of natural genetic variation, evolution and disease. Scherer founded the Database of Genomic Variants, a public database utilized by clinical laboratories around the world to interpret CNV and structural variation data in diagnostics. [33] Scherer, Lee and collaborators led by Matthew Hurles at the Wellcome Trust Sanger Institute, as well as scientists at the University of Tokyo and Affymetrix Corp then generated the first CNV maps of human DNA revealing the structural properties, mechanisms of formation, and population genetics of this previously unrecognized ubiquitous form of natural variation. [34] [35] These studies were also the first to discover that CNVs number in the thousands per genome and encompass at least ten times more DNA letters than SNPs, revealing a 'dynamic patchwork' structure of chromosomes. These findings were further substantiated through work with J.  Craig Venter's team, [36] which contributed to the completion of the first genome sequence of an individual. [37]

Autism-associated CNVs and genes

From 2003-2010, Scherer and collaborators went on to discover numerous disease-associated CNVs, and the corresponding disease-susceptibility genes in upwards of 10% of individuals with autism spectrum disorder. [38] [39] [40] These discoveries have led to broadly available tests facilitating early diagnostic information for autism. [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52]

Similar discoveries to those made in autism were also found in schizophrenia, intellectual disability and other brain disorders (with often the same genes/CNVs involved), thereby establishing a new paradigm to explain how complex human behavioral conditions can have a genetic (biological) basis. With Jacob Vorstman, Christian Schaaf and colleagues, Scherer developed the EAGLE (Evaluation of Autism Gene Link Evidence), which is a highly utilized resource in diagnostic testing for autism. [53]

Determining the genome architecture underlying autism

Scherer has led the Autism Speaks MSSNG project, [54] which uses whole genome sequencing to decode the DNA of thousands of families having a diagnosis of autism. The research underpinned the identification of >100 genes and CNVs involved in autism providing explanations of why autism has occurred for approximately 5-20% of families. [55] [56] [57] [58] [59] [60] [61] These discoveries have enabled faster and more precise diagnoses, early intervention and genetic counselling and have led to the identification of new molecular pathways for the development of therapeutics. [62] [63] [64] [65] In 2022, Scherer’s team published a comprehensive description of the genomic architecture in autism using the largest collection of whole genome sequencing data available to facilitate research studies in autism. [66]

Genome science, data and public policy infrastructure

Scherer co-founded the TCAG genome centre at SickKids in 1998. In 2015 with Marco Marra and Steven Jones at the University of British Columbia and Mark Lathrop at McGill University, the three major Canadian genome centres came together as CGEn, which serves as a Major Science Initiative of the Canada Foundation of Innovation. [67] For the 150th anniversary of Canada (2017), he started the CanSeq150 Project to sequence 150 genomes of species most relevant to Canada’s culture/environment/conservation; notable species completed include many of the “canadensis” members such as the Canadian beaver and Canadian wolverine. [68] [69] [70] Canseq 150 is now part of the Canadian Biogenome Project, an international effort aiming to sequence the genetic material for all complex life on earth. [71] CGEn also led the Covid-19 host genome sequencing project, which completed 10,000 Canadian genomes in April 2022. [72]

Scherer and colleagues launched the Personal Genome Project Canada in 2007, a resource of data that supports evaluation of whole genome sequencing in medicine and public health. [73] [74] These experiences along Scherer’s advocacy with the Canadian Coalition for Genetic Fairness helped to establish Canada’s Genetic Non-Discrimination Act, [75] which passed into law on May 4, 2017. He is also Editor-in-Chief of the scientific journal npj Genomic Medicine, which was co-founded in 2016 with Dr. Magdalena Skipper the current Editor-in-Chief of Nature. [76]

Media and special presentations

Scherer’s discoveries have appeared in the Globe and Mail, New York Times, Washington Post, Playboy, The Independent, Time, Newsweek, Scientific American and many other periodicals. He has appeared on the  Canadian Broadcasting Corporation (CBC), PBS Newshour, TVO Agenda, and other national TV, radio, and media, including  Quirks and Quarks, explaining scientific discoveries. [77] [78] [79] [80] [81] [82] [83] [84] [85] His research was featured in  Roger Martin's book The Design of Business, [86] Bob Wright’s autobiography the Wright Stuff: from NBC to Autism Speaks, [87] Steve Silberman’s NeuroTribes: The Legacy of Autism and the Future of Neurodiversity, [88] amongst others. In 2013, he spoke at the Canadian Broadcast Glenn Gould Studio: ‘Cracking the Autism Enigma’, [89] and in 2015 was a special guest speaker at the United Nations, New York for World Autism Awareness Day. [90] He has been featured the Genome Giants series of interviews. [91] He served as the scientific consultant for two documentaries, the MediCinema Film creation Cracking the Code, the continuing saga of genetics, [92] and the  Gemini Award-winning documentary, After Darwin by GalaFilms- Telefilm Canada. [93] He also hosts the SickKids Discovery Dialogues which takes attendees behind the scenes of research to discuss their research and the path to scientific discovery. [94]

Honours

Scherer holds three Honorary Doctorates from the University of Windsor (2001), the University of Waterloo (2017) and Western University (2018). [113] [114] [115] [116]

References

  1. ^ "Complete List of University Professors – Division of the Vice-President & Provost". Retrieved December 22, 2023.
  2. ^ "Massey News 2014-15 by Massey College - Issuu". issuu.com. October 23, 2015. Retrieved December 22, 2023.
  3. ^ "Thomson Reuters Predicts 2014 Nobel Laureates, Researchers Forecast for Nobel Recognition". www.prnewswire.com (Press release). Reuters. Retrieved December 22, 2023.
  4. ^ Weepers, Bob; Fame, Windsor/Essex County Sports Hall of (2001). We are the Champions : Canadian Championship Sports Teams, Windsor, Ontario, 20th Century. Windsor/Essex County Sports Hall of Fame and Museum. ISBN  978-0-9687666-1-3.
  5. ^ "Stephen Scherer – Division of the Vice-President & Provost". Retrieved December 22, 2023.
  6. ^ Stephen W. Scherer. The National Library of Medicine.
  7. ^ "Hall of Citation Laureates - 2023". Clarivate. Retrieved December 27, 2023.
  8. ^ The World’s Most Influential Scientific Minds list, 2015 (PDF). Thomas Reuters.
  9. ^ "Scherer, Stephen W." scholar.google.ca. Retrieved December 27, 2023.
  10. ^ Cohn, Ronald; Scherer, Stephen W.; Hamosh, Ada (2023). Genetics and Genomics in Medicine (9th ed.). Thompson & Thompson. ISBN  9780323547628.
  11. ^ The treasures of chromosome 7. Autumn 2001. The University of Toronto Magazine. 
  12. ^ Walking the jungles and deserts of chromosome 7. September 2003. Howard Hughes Medical Institute Bulletin.
  13. ^ Milestones in Canadian Health Research; Decoding life. 2010. Canadian Institutes of Health Research.
  14. ^ Belloni, E.; Muenke, M.; Roessler, E.; Traverse, G.; Siegel-Bartelt, J.; Frumkin, A.; Mitchell, H. F.; Donis-Keller, H.; Helms, C.; Hing, A. V.; Heng, H. H. Q.; Koop, B.; Martindale, D.; Rommens, J. M.; Tsui, L.C. (November 1, 1996). "Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly". Nature Genetics. 14 (3): 353–356. doi: 10.1038/ng1196-353. ISSN  1546-1718. PMID  8896571. S2CID  23432640.
  15. ^ Roessler, Erich; Belloni, Elena; Gaudenz, Karin; Jay, Philippe; Berta, Philippe; Scherer, Stephen W.; Tsui, Lap-Chee; Muenke, Maximilian (November 1, 1996). "Mutations in the human Sonic Hedgehog gene cause holoprosencephaly". Nature Genetics. 14 (3): 357–360. doi: 10.1038/ng1196-357. ISSN  1546-1718. PMID  8896572. S2CID  20946001.
  16. ^ Schmidt, Laura; Duh, Fuh-Mei; Chen, Fan; Kishida, Takeshi; Glenn, Gladys; Choyke, Peter; Scherer, Stephen W.; Zhuang, Zhenping; Lubensky, Irina; Dean, Michael; Allikmets, Rando; Chidambaram, Abi; Bergerheim, Ulf R.; Feltis, J. Timothy; Casadevall, Carme (May 1, 1997). "Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas". Nature Genetics. 16 (1): 68–73. doi: 10.1038/ng0597-68. ISSN  1546-1718. PMID  9140397.
  17. ^ Osborne, Lucy R.; Li, Martin; Pober, Barbara; Chitayat, David; Bodurtha, Joann; Mandel, Ariane; Costa, Teresa; Grebe, Theresa; Cox, Sarah; Tsui, Lap-Chee; Scherer, Stephen W. (October 29, 2001). "A 1.5 million–base pair inversion polymorphism in families with Williams-Beuren syndrome". Nature Genetics. 29 (3): 321–325. doi: 10.1038/ng753. ISSN  1061-4036. PMC  2889916. PMID  11685205.
  18. ^ Somerville, Martin J.; Mervis, Carolyn B.; Young, Edwin J.; Seo, Eul-Ju; del Campo, Miguel; Bamforth, Stephen; Peregrine, Ella; Loo, Wayne; Lilley, Margaret; Pérez-Jurado, Luis A.; Morris, Colleen A.; Scherer, Stephen W.; Osborne, Lucy R. (October 20, 2005). "Severe Expressive-Language Delay Related to Duplication of the Williams–Beuren Locus". New England Journal of Medicine. 353 (16): 1694–1701. doi: 10.1056/NEJMoa051962. ISSN  0028-4793. PMC  2893213. PMID  16236740.
  19. ^ Ross, Alison J.; Ruiz-Perez, Victor; Wang, Yiming; Hagan, Donna-Marie; Scherer, Steve; Lynch, Sally A.; Lindsay, Susan; Custard, Emily; Belloni, Elena; Wilson, David I.; Wadey, Roy; Goodman, Frances; Orstavik, Karen Helene; Monclair, Tom; Robson, Steve (December 1, 1998). "A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis". Nature Genetics. 20 (4): 358–361. doi: 10.1038/3828. ISSN  1546-1718. PMID  9843207. S2CID  31062371.
  20. ^ Kobayashi, Keiko; Sinasac, David S.; Iijima, Mikio; Boright, Andrew P.; Begum, Laila; Lee, Jeffrey R.; Yasuda, Tomotsugu; Ikeda, Sayaka; Hirano, Ryuki; Terazono, Hiroki; Crackower, Michael A.; Kondo, Ikuko; Tsui, Lap-Chee; Scherer, Stephen W.; Saheki, Takeyori (June 1999). "The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein". Nature Genetics. 22 (2): 159–163. doi: 10.1038/9667. ISSN  1546-1718. PMID  10369257. S2CID  20137905.
  21. ^ Smith, Annabel N.; Skaug, Jennifer; Choate, Keith A.; Nayir, Ahmet; Bakkaloglu, Aysin; Ozen, Seza; Hulton, Sally A.; Sanjad, Sami A.; Al-Sabban, Essam A.; Lifton, Richard P.; Scherer, Stephen W.; Karet, Fiona E. (September 1, 2000). "Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing". Nature Genetics. 26 (1): 71–75. doi: 10.1038/79208. ISSN  1546-1718. PMID  10973252. S2CID  19880326.
  22. ^ Canadian scientists discover giant gene. February 10th, 2001. Globe and Mail.
  23. ^ Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E. (May 2, 2003). "Human Chromosome 7: DNA Sequence and Biology". Science. 300 (5620): 767–772. Bibcode: 2003Sci...300..767S. doi: 10.1126/science.1083423. ISSN  0036-8075. PMC  2882961. PMID  12690205.
  24. ^ Minassian, Berge A.; Lee, Jeffrey R.; Herbrick, Jo-Anne; Huizenga, Jack; Soder, Sylvia; Mungall, Andrew J.; Dunham, Ian; Gardner, Rebecca; Fong, Chung-yan G.; Carpenter, Stirling; Jardim, Laura; Satishchandra, P.; Andermann, Eva; Snead, O. Carter; Lopes-Cendes, Iscia (October 1, 1998). "Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy". Nature Genetics. 20 (2): 171–174. doi: 10.1038/2470. ISSN  1546-1718. PMID  9771710. S2CID  8277795.
  25. ^ Chan, Elayne M.; Young, Edwin J.; Ianzano, Leonarda; Munteanu, Iulia; Zhao, Xiaochu; Christopoulos, Constantine C.; Avanzini, Giuliano; Elia, Maurizio; Ackerley, Cameron A.; Jovic, Nebojsa J.; Bohlega, Saeed; Andermann, Eva; Rouleau, Guy A.; Delgado-Escueta, Antonio V.; Minassian, Berge A. (September 7, 2003). "Mutations in NHLRC1 cause progressive myoclonus epilepsy". Nature Genetics. 35 (2): 125–127. doi: 10.1038/ng1238. ISSN  1546-1718. PMID  12958597. S2CID  32590557.
  26. ^ Gene hunters race against Lafora curse. September 27th, 2003. National Post
  27. ^ Iafrate, A. John; Feuk, Lars; Rivera, Miguel N.; Listewnik, Marc L.; Donahoe, Patricia K.; Qi, Ying; Scherer, Stephen W.; Lee, Charles (August 1, 2004). "Detection of large-scale variation in the human genome". Nature Genetics. 36 (9): 949–951. doi: 10.1038/ng1416. ISSN  1546-1718. PMID  15286789.
  28. ^ Patchwork people. October 20th, 2005. Nature.
  29. ^ Carolyn Abraham (November 23, 2006). "Study turns human genetics on its head". The Globe and Mail.
  30. ^ Steve Olson (November 2007). "The changing face of DNA" (PDF). Howard Hughes Medical Institute Bulletin.
  31. ^ DNA deletions and duplications help determine health. September 7th, 2007. Science.
  32. ^ Nature. From the archives (2004): Large-scale structural variation in the human genome. (27 April 2017).
  33. ^ "Database of Genomic Variants". Database of Genomic Variants: A curated catalogue of human genomic structural variation.
  34. ^ Redon, Richard; Ishikawa, Shumpei; Fitch, Karen R.; Feuk, Lars; Perry, George H.; Andrews, T. Daniel; Fiegler, Heike; Shapero, Michael H.; Carson, Andrew R.; Chen, Wenwei; Cho, Eun Kyung; Dallaire, Stephanie; Freeman, Jennifer L.; González, Juan R.; Gratacòs, Mònica (November 23, 2006). "Global variation in copy number in the human genome". Nature. 444 (7118): 444–454. Bibcode: 2006Natur.444..444R. doi: 10.1038/nature05329. ISSN  1476-4687. PMC  2669898. PMID  17122850.
  35. ^ Conrad, Donald F.; Pinto, Dalila; Redon, Richard; Feuk, Lars; Gokcumen, Omer; Zhang, Yujun; Aerts, Jan; Andrews, T. Daniel; Barnes, Chris; Campbell, Peter; Fitzgerald, Tomas; Hu, Min; Ihm, Chun Hwa; Kristiansson, Kati; MacArthur, Daniel G. (October 7, 2009). "Origins and functional impact of copy number variation in the human genome". Nature. 464 (7289): 704–712. doi: 10.1038/nature08516. ISSN  1476-4687. PMC  3330748. PMID  19812545.
  36. ^ Khaja, Razi; Zhang, Junjun; MacDonald, Jeffrey R.; He, Yongshu; Joseph-George, Ann M.; Wei, John; Rafiq, Muhammad A.; Qian, Cheng; Shago, Mary; Pantano, Lorena; Aburatani, Hiroyuki; Jones, Keith; Redon, Richard; Hurles, Matthew; Armengol, Lluis (November 22, 2006). "Genome assembly comparison identifies structural variants in the human genome". Nature Genetics. 38 (12): 1413–1418. doi: 10.1038/ng1921. ISSN  1546-1718. PMC  2674632. PMID  17115057.
  37. ^ Levy, Samuel; Sutton, Granger; Ng, Pauline C.; Feuk, Lars; Halpern, Aaron L.; Walenz, Brian P.; Axelrod, Nelson; Huang, Jiaqi; Kirkness, Ewen F.; Denisov, Gennady; Lin, Yuan; MacDonald, Jeffrey R.; Pang, Andy Wing Chun; Shago, Mary; Stockwell, Timothy B. (September 4, 2007). "The Diploid Genome Sequence of an Individual Human". PLOS Biology. 5 (10): e254. doi: 10.1371/journal.pbio.0050254. ISSN  1545-7885. PMC  1964779. PMID  17803354.
  38. ^ Szatmari, Peter; Paterson, Andrew D; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John B; Skaug, Jennifer L; Thompson, Ann P; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan E; Jones, Marshall B; Marshall, Christian R (February 18, 2007). "Mapping autism risk loci using genetic linkage and chromosomal rearrangements". Nature Genetics. 39 (3): 319–328. doi: 10.1038/ng1985. ISSN  1546-1718. PMC  4867008. PMID  17322880.
  39. ^ Marshall, Christian R.; Noor, Abdul; Vincent, John B.; Lionel, Anath C.; Feuk, Lars; Skaug, Jennifer; Shago, Mary; Moessner, Rainald; Pinto, Dalila; Ren, Yan; Thiruvahindrapduram, Bhooma; Fiebig, Andreas; Schreiber, Stefan; Friedman, Jan; Ketelaars, Cees E. J. (January 17, 2008). "Structural variation of chromosomes in autism spectrum disorder". American Journal of Human Genetics. 82 (2): 477–488. doi: 10.1016/j.ajhg.2007.12.009. ISSN  1537-6605. PMC  2426913. PMID  18252227.
  40. ^ Pinto, Dalila; Pagnamenta, Alistair T.; Klei, Lambertus; Anney, Richard; Merico, Daniele; Regan, Regina; Conroy, Judith; Magalhaes, Tiago R.; Correia, Catarina; Abrahams, Brett S.; Almeida, Joana; Bacchelli, Elena; Bader, Gary D.; Bailey, Anthony J.; Baird, Gillian (July 9, 2010). "Functional impact of global rare copy number variation in autism spectrum disorders". Nature. 466 (7304): 368–372. Bibcode: 2010Natur.466..368P. doi: 10.1038/nature09146. hdl: 10400.18/214. ISSN  1476-4687. PMC  3021798. PMID  20531469.
  41. ^ Berkel, Simone; Marshall, Christian R.; Weiss, Birgit; Howe, Jennifer; Roeth, Ralph; Moog, Ute; Endris, Volker; Roberts, Wendy; Szatmari, Peter; Pinto, Dalila; Bonin, Michael; Riess, Angelika; Engels, Hartmut; Sprengel, Rolf; Scherer, Stephen W. (May 16, 2010). "Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation". Nature Genetics. 42 (6): 489–491. doi: 10.1038/ng.589. ISSN  1546-1718. PMID  20473310. S2CID  205356656.
  42. ^ Noor, Abdul; Whibley, Annabel; Marshall, Christian R.; Gianakopoulos, Peter J.; Piton, Amelie; Carson, Andrew R.; Orlic-Milacic, Marija; Lionel, Anath C.; Sato, Daisuke; Pinto, Dalila; Drmic, Irene; Noakes, Carolyn; Senman, Lili; Zhang, Xiaoyun; Mo, Rong (September 15, 2010). "Disruption at the PTCHD1 Locus on Xp22.11 in Autism Spectrum Disorder and Intellectual Disability". Science Translational Medicine. 2 (49): 49ra68. doi: 10.1126/scitranslmed.3001267. ISSN  1946-6234. PMC  2987731. PMID  20844286.
  43. ^ Vaags, Andrea K.; Lionel, Anath C.; Sato, Daisuke; Goodenberger, McKinsey; Stein, Quinn P.; Curran, Sarah; Ogilvie, Caroline; Ahn, Joo Wook; Drmic, Irene; Senman, Lili; Chrysler, Christina; Thompson, Ann; Russell, Carolyn; Prasad, Aparna; Walker, Susan (January 13, 2012). "Rare deletions at the neurexin 3 locus in autism spectrum disorder". American Journal of Human Genetics. 90 (1): 133–141. doi: 10.1016/j.ajhg.2011.11.025. ISSN  1537-6605. PMC  3257896. PMID  22209245.
  44. ^ Sato, Daisuke; Lionel, Anath C.; Leblond, Claire S.; Prasad, Aparna; Pinto, Dalila; Walker, Susan; O'Connor, Irene; Russell, Carolyn; Drmic, Irene E.; Hamdan, Fadi F.; Michaud, Jacques L.; Endris, Volker; Roeth, Ralph; Delorme, Richard; Huguet, Guillaume (May 4, 2012). "SHANK1 Deletions in Males with Autism Spectrum Disorder". American Journal of Human Genetics. 90 (5): 879–887. doi: 10.1016/j.ajhg.2012.03.017. ISSN  1537-6605. PMC  3376495. PMID  22503632.
  45. ^ Science City: Racing to solve the puzzle of autism. January 5th, 2008. Globe and Mail.
  46. ^ Canadian breakthrough offers hope on autism. February 19th, 2007. Globe and Mail
  47. ^ Solving puzzle of son's autism soothes family. January 18th, 2008. Toronto Star
  48. ^ Researchers discover genetic patterns of autism. June 9th, 2010. Time Magazine
  49. ^ Genetic finding paves way for controversial autism testing. June 10th, 2010. Globe and Mail
  50. ^ Autism genetics: A breakthrough that sheds light on a medical mystery. June 10th, 2010. The Independent
  51. ^ Understanding Autism. Spring 2011. University of Toronto Magazine
  52. ^ Special Series: Autism's new frontiers. February 17th, 2013. Ottawa Citizen
  53. ^ "SFARI | SFARI Gene to introduce EAGLE, a new ASD-relevance gene scoring system". SFARI. December 10, 2021. Retrieved December 27, 2023.
  54. ^ "MSSNG". research.mss.ng. Retrieved December 27, 2023.
  55. ^ Jiang, Yong-hui; Yuen, Ryan K. C.; Jin, Xin; Wang, Mingbang; Chen, Nong; Wu, Xueli; Ju, Jia; Mei, Junpu; Shi, Yujian; He, Mingze; Wang, Guangbiao; Liang, Jieqin; Wang, Zhe; Cao, Dandan; Carter, Melissa T. (August 8, 2013). "Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing". American Journal of Human Genetics. 93 (2): 249–263. doi: 10.1016/j.ajhg.2013.06.012. ISSN  1537-6605. PMC  3738824. PMID  23849776.
  56. ^ Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A. S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna (May 1, 2014). "Convergence of genes and cellular pathways dysregulated in autism spectrum disorders". American Journal of Human Genetics. 94 (5): 677–694. doi: 10.1016/j.ajhg.2014.03.018. ISSN  1537-6605. PMC  4067558. PMID  24768552.
  57. ^ Uddin, Mohammed; Tammimies, Kristiina; Pellecchia, Giovanna; Alipanahi, Babak; Hu, Pingzhao; Wang, Zhuozhi; Pinto, Dalila; Lau, Lynette; Nalpathamkalam, Thomas; Marshall, Christian R.; Blencowe, Benjamin J.; Frey, Brendan J.; Merico, Daniele; Yuen, Ryan K. C.; Scherer, Stephen W. (2014). "Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder". Nature Genetics. 46 (7): 742–747. doi: 10.1038/ng.2980. ISSN  1546-1718. PMID  24859339. S2CID  12729162 – via PubMed.
  58. ^ Tammimies, Kristiina; Marshall, Christian R.; Walker, Susan; Kaur, Gaganjot; Thiruvahindrapuram, Bhooma; Lionel, Anath C.; Yuen, Ryan K. C.; Uddin, Mohammed; Roberts, Wendy; Weksberg, Rosanna; Woodbury-Smith, Marc; Zwaigenbaum, Lonnie; Anagnostou, Evdokia; Wang, Zhuozhi; Wei, John (September 1, 2015). "Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder". JAMA. 314 (9): 895–903. doi: 10.1001/jama.2015.10078. ISSN  1538-3598. PMID  26325558.
  59. ^ Yuen, Ryan K. C.; Thiruvahindrapuram, Bhooma; Merico, Daniele; Walker, Susan; Tammimies, Kristiina; Hoang, Ny; Chrysler, Christina; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Liu, Yi; Gazzellone, Matthew J.; D'Abate, Lia; Deneault, Eric; Howe, Jennifer L.; Liu, Richard S. C. (2015). "Whole-genome sequencing of quartet families with autism spectrum disorder". Nature Medicine. 21 (2): 185–191. doi: 10.1038/nm.3792. ISSN  1546-170X. PMID  25621899. S2CID  29439880 – via PubMed.
  60. ^ C Yuen, Ryan K.; Merico, Daniele; Bookman, Matt; L Howe, Jennifer; Thiruvahindrapuram, Bhooma; Patel, Rohan V.; Whitney, Joe; Deflaux, Nicole; Bingham, Jonathan; Wang, Zhuozhi; Pellecchia, Giovanna; Buchanan, Janet A.; Walker, Susan; Marshall, Christian R.; Uddin, Mohammed (2017). "Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder". Nature Neuroscience. 20 (4): 602–611. doi: 10.1038/nn.4524. ISSN  1546-1726. PMC  5501701. PMID  28263302.
  61. ^ Trost, Brett; Engchuan, Worrawat; Nguyen, Charlotte M.; Thiruvahindrapuram, Bhooma; Dolzhenko, Egor; Backstrom, Ian; Mirceta, Mila; Mojarad, Bahareh A.; Yin, Yue; Dov, Alona; Chandrakumar, Induja; Prasolava, Tanya; Shum, Natalie; Hamdan, Omar; Pellecchia, Giovanna (2020). "Genome-wide detection of tandem DNA repeats that are expanded in autism". Nature. 586 (7827): 80–86. Bibcode: 2020Natur.586...80T. doi: 10.1038/s41586-020-2579-z. ISSN  1476-4687. PMC  9348607. PMID  32717741.
  62. ^ Cook, Edwin H.; Scherer, Stephen W. (October 16, 2008). "Copy-number variations associated with neuropsychiatric conditions". Nature. 455 (7215): 919–923. Bibcode: 2008Natur.455..919C. doi: 10.1038/nature07458. ISSN  1476-4687. PMID  18923514. S2CID  4377899.
  63. ^ Marshall, Christian R.; Scherer, Stephen W. (2012). "Detection and characterization of copy number variation in autism spectrum disorder". Genomic Structural Variants. Methods in Molecular Biology (Clifton, N.J.). Vol. 838. pp. 115–135. doi: 10.1007/978-1-61779-507-7_5. ISBN  978-1-61779-506-0. ISSN  1940-6029. PMID  22228009.
  64. ^ Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Szatmari, Peter; Fombonne, Eric; Fernandez, Bridget A.; Woodbury-Smith, Marc; Brian, Jessica; Bryson, Susan; Smith, Isabel M.; Drmic, Irene; Buchanan, Janet A.; Roberts, Wendy; Scherer, Stephen W. (2014). "Autism spectrum disorder: advances in evidence-based practice". Canadian Medical Association Journal. 186 (7): 509–519. doi: 10.1503/cmaj.121756. ISSN  1488-2329. PMC  3986314. PMID  24418986.
  65. ^ Vorstman, Jacob; Scherer, Stephen W. (2021). "What a finding of gene copy number variation can add to the diagnosis of developmental neuropsychiatric disorders". Current Opinion in Genetics & Development. 68: 18–25. doi: 10.1016/j.gde.2020.12.017. ISSN  1879-0380. PMID  33454514. S2CID  231634644.
  66. ^ Trost, Brett; Thiruvahindrapuram, Bhooma; Chan, Ada J. S.; Engchuan, Worrawat; Higginbotham, Edward J.; Howe, Jennifer L.; Loureiro, Livia O.; Reuter, Miriam S.; Roshandel, Delnaz; Whitney, Joe; Zarrei, Mehdi; Bookman, Matthew; Somerville, Cherith; Shaath, Rulan; Abdi, Mona (November 10, 2022). "Genomic architecture of autism from comprehensive whole-genome sequence annotation". Cell. 185 (23): 4409–4427.e18. doi: 10.1016/j.cell.2022.10.009. ISSN  1097-4172. PMC  10726699. PMID  36368308.
  67. ^ Warner, Hillete (August 19, 2022). "CGEn receives $48.9 million in federal funding through the Canada Foundation for Innovation's Major Science Initiatives Fund". Canada's national platform for genome sequencing & analysis.
  68. ^ "CanSeq150". Canada's national platform for genome sequencing & analysis. Retrieved December 27, 2023.
  69. ^ SickKids researchers sequence genome of the Canadian beaver, retrieved December 27, 2023
  70. ^ "Scientists map genome of beaver as gift for Canada's 150th birthday". The Globe and Mail. January 13, 2017. Retrieved December 27, 2023.
  71. ^ "Canada BioGenome Project". Canada's national platform for genome sequencing & analysis. Retrieved December 27, 2023.
  72. ^ "Program Overview". Canada's national platform for genome sequencing & analysis. Retrieved December 27, 2023.
  73. ^ Reuter, Miriam S.; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K. C.; Trost, Brett; Paton, Tara A.; Pereira, Sergio L.; Herbrick, Jo-Anne; Wintle, Richard F.; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R. (February 5, 2018). "The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants". Canadian Medical Association Journal. 190 (5): E126–E136. doi: 10.1503/cmaj.171151. ISSN  0820-3946. PMC  5798982. PMID  29431110.
  74. ^ "Cracks in the code: Why mapping your DNA may be less reliable than you think". The Globe and Mail. February 3, 2018. Retrieved December 27, 2023.
  75. ^ Branch, Legislative Services (May 4, 2017). "Consolidated federal laws of canada, Genetic Non-Discrimination Act". laws-lois.justice.gc.ca. Retrieved December 27, 2023.
  76. ^ "About the Editors | npj Genomic Medicine". www.nature.com. Retrieved March 28, 2024.
  77. ^ CBC Autism Research Story January 26 2015, retrieved December 27, 2023
  78. ^ "This search engine could help unlock autism's secrets". PBS NewsHour. October 21, 2015. Retrieved December 27, 2023.
  79. ^ Stephen Scherer: DNA Testing for Autism, retrieved December 27, 2023
  80. ^ The human genome, and Pandora's box. Counterpoint: an interview with Margaret Wente. June 29th, 2000. Globe and Mail.
  81. ^ Scherer, SW. By knowing our genomes, we will begin to truly know ourselves. Commentary August 7th, 2007. Globe and Mail.
  82. ^ Scherer, SW. Perfect genomics. Question of the Year 2007. Nature Genetics.
  83. ^ Scherer, SW. 25 great ideas from great minds. January 4, 2007. Toronto Star.
  84. ^ Brainwashed. Rethinking man's genetic makeup. November 2010, The Walrus.
  85. ^ Scherer, SW. Genomics is the medium for 21st century biology. Editorial. 2012. Genome 55, v-vi.
  86. ^ Martin, Roger (2009). The Reliability Bias: Why Advancing Knowledge Is So Hard--How Making Room for Validity Will Help You Design a Business That Is Better at Innovation. Harvard Business Publishing.
  87. ^ Wright, Bob (2016). The Wright Stuff: From NBC to Autism Speaks. RosettaBooks. ISBN  978-0795346927.
  88. ^ Silberman, Steve (August 23, 2016). Neurotribes: The Legacy of Autism and the Future of Neurodiversity (2nd ed.). Avery. ISBN  978-0399185618.
  89. ^ Part 1. OBI/CIFAR Public Lecture on Autism, Presented by Autism Speaks, retrieved December 27, 2023
  90. ^ "World Autism Awareness Day, 2 April". www.un.org. Retrieved December 27, 2023.
  91. ^ Genomics, Front Line; Gunn, Shannon (February 22, 2022). "Genome Giants: Stephen Scherer, Director, The Centre for Applied Genomics, SickKids". Front Line Genomics. Retrieved December 27, 2023.
  92. ^ "MediCinema - Creative classroom videos & DVDs - CRACKING THE CODE: The Continuing Saga of Genetics". www.medicinema.com. Retrieved December 27, 2023.
  93. ^ After Darwin (1999) | Full Movie | Lewis Wolpert | Benno Muller-Hill | Troy Duster | Andrea Shugar, retrieved December 27, 2023
  94. ^ "SickKids Discovery Dialogues - YouTube". www.youtube.com. Retrieved December 27, 2023.
  95. ^ "Canada's Top 40 Under 40 - Honourees 1999". canadastop40under40.com. Retrieved December 27, 2023.
  96. ^ "HHMI Awards Canadian, Latin American Research Grants | HHMI". www.hhmi.org. Retrieved December 27, 2023.
  97. ^ "Stephen W. Scherer". CIFAR. Retrieved December 27, 2023.
  98. ^ "Recipients – Steacie Prize for Natural Sciences". steacieprize.ca. Retrieved December 27, 2023.
  99. ^ "Member Directory". The Royal Society of Canada. Retrieved December 27, 2023.
  100. ^ "Science Alumni of Honour Award: 50th Anniversary | Science". uwaterloo.ca. Retrieved December 27, 2023.
  101. ^ "Ontario Newsroom". news.ontario.ca. Retrieved December 27, 2023.
  102. ^ "AAAS Members Elected as Fellows (2011)". AAAS.
  103. ^ "Distinguished Brothers". Sigma Chi Canadian Foundation. Retrieved December 27, 2023.
  104. ^ "Stephen Scherer". The Governor General of Canada. Retrieved December 27, 2023.
  105. ^ Ubelacker, Sheryl (September 25, 2014). "Stephen Scherer of Toronto's Sick Kids Hospital pegged to win Nobel Prize". CBC News.
  106. ^ "Stephen W. Scherer". Web of Science Group. October 7, 2020. Retrieved December 27, 2023.
  107. ^ "Toronto Sick Kids geneticist named potential Nobel Prize recipient". The Globe and Mail. September 24, 2014. Retrieved December 27, 2023.
  108. ^ Maclean's (November 22, 2014). "The Maclean's Power List: The 50 most important people in Canada". Macleans.ca. Retrieved December 27, 2023.
  109. ^ "U of T researchers awarded Killam Prizes for contributions to humanities, health sciences | University of Toronto". www.utoronto.ca. Retrieved December 27, 2023.
  110. ^ "INSAR Fellows - International Society for Autism Research (INSAR)". www.autism-insar.org. Retrieved December 27, 2023.
  111. ^ "Scientific & Academic Chairs". SickKids. Retrieved December 27, 2023.
  112. ^ Government of Canada, Canadian Institutes of Health Research (November 30, 2015). "Just an Ordinary Superstar - CIHR". cihr-irsc.gc.ca. Retrieved December 27, 2023.
  113. ^ "University of Windsor Honorary Degrees Conferred" (PDF). University of Windsor.
  114. ^ "Alumni Profile: Stephen W. Scherer | Science". uwaterloo.ca. Retrieved December 27, 2023.
  115. ^ University, Department of Communications and Public Affairs, Western (April 10, 2018). "Western to honour global science, business, entertainment and sport leaders at 311th Convocation". Media Relations. Retrieved December 27, 2023.{{ cite web}}: CS1 maint: multiple names: authors list ( link)
  116. ^ Western Convocation - June 14, 2018 - Stephen Scherer, retrieved December 27, 2023
From Wikipedia, the free encyclopedia

Stephen W. Scherer
Born
Stephen Wayne Scherer

(1964-01-05) January 5, 1964 (age 60)
Windsor, Ontario, Canada
Nationality Canadian
Alma mater University of Waterloo ( B.Sc.)
University of Toronto ( M.Sc., Ph.D.)
Spouse
Jo-Anne Herbrick
( m. 2002)
Children2

Stephen Wayne "Steve" Scherer (born January 5, 1964) is a Canadian scientist who currently serves as the Chief of Research at The Hospital for Sick Children (SickKids) and distinguished University Professor at the University of Toronto. [1] He obtained his PhD at the University of Toronto under Professor Lap-chee Tsui. Together they founded Canada's first human genome centre, the Centre for Applied Genomics (TCAG). He is a Senior Fellow of Massey College at the University of Toronto. [2] In 2014, he was named an esteemed Clarivate (previously Thomson Reuters) Citation laureate in Physiology or Medicine for the “Discovery of large-scale gene copy number variation and its association with specific diseases. [3]

Background

Scherer was born in Windsor, Ontario, and attended Riverside High School. He played competitive hockey and baseball winning provincial and national championships. [4] He completed his Honours Science Degree at the University of Waterloo, Master of Science and Doctor of Philosophy in the Faculty of Medicine at the University of Toronto. [5]

Research

Scherer has co-published over 700 scholarly papers and book chapters. [6] He has been on the Thomson Reuters Highly Cited Researcher and World’s Most Influential Scientific Minds list (2015-2018). [7] [8] His Google Scholar h-index=159; 127,143 citations. [9] In 2023, with Ronald D. Cohn and Ada Hamosh, he edited Thompson & Thompson Genetics and Genomics in Medicine, 9th Edition, Elsevier Publishers. [10]

Chromosome mapping  

From 1988 to 2003 with  Lap-Chee Tsui, Scherer led studies of human chromosome 7, in particular in the mapping phase of the Human Genome Project. [11] [12] [13] Through collaborative research, genes involved in  holoprosencephaly, [14] [15] renal carcinoma, [16] Williams syndrome, [17] [18] sacral agenesis, [19] citrullinemia, [20] renal tubular acidosis [21] and many others were identified. His group also discovered the largest gene in the genome, which was later found to be involved in autism. [22] The sum of this work, including contributions from scientists worldwide and J.  Craig Venter's  Celera Genomics, generated the first published description of human chromosome 7. [23] In other chromosome studies with Berge Minassian, disease genes causing deadly forms of epilepsy were identified. [24] [25] [26]

Discovery of frequent gene copy number variation (CNV) events

Scherer's research contributed to the initial description of genome-wide copy number variations (CNVs) of genes, including defining CNV as a highly abundant form of human genetic variation. [27] Previous theory held that humans were 99.9% DNA identical with the small difference in variation almost entirely accounted for by some 3 million single nucleotide polymorphisms (SNPs) per genome. [28] [29] [30] Larger genomic CNV changes involving losses or gains of thousands or millions of nucleotides encompassing one or several genes were thought to be exceptionally rare, and almost always involved in disease. [31] Scherer's observations of frequent CNV events found in the genomes of all cells in every individual, co-published with Canadian-Korean scientist Charles Lee working at Harvard in 2004, [32] opened a new window for studies of natural genetic variation, evolution and disease. Scherer founded the Database of Genomic Variants, a public database utilized by clinical laboratories around the world to interpret CNV and structural variation data in diagnostics. [33] Scherer, Lee and collaborators led by Matthew Hurles at the Wellcome Trust Sanger Institute, as well as scientists at the University of Tokyo and Affymetrix Corp then generated the first CNV maps of human DNA revealing the structural properties, mechanisms of formation, and population genetics of this previously unrecognized ubiquitous form of natural variation. [34] [35] These studies were also the first to discover that CNVs number in the thousands per genome and encompass at least ten times more DNA letters than SNPs, revealing a 'dynamic patchwork' structure of chromosomes. These findings were further substantiated through work with J.  Craig Venter's team, [36] which contributed to the completion of the first genome sequence of an individual. [37]

Autism-associated CNVs and genes

From 2003-2010, Scherer and collaborators went on to discover numerous disease-associated CNVs, and the corresponding disease-susceptibility genes in upwards of 10% of individuals with autism spectrum disorder. [38] [39] [40] These discoveries have led to broadly available tests facilitating early diagnostic information for autism. [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52]

Similar discoveries to those made in autism were also found in schizophrenia, intellectual disability and other brain disorders (with often the same genes/CNVs involved), thereby establishing a new paradigm to explain how complex human behavioral conditions can have a genetic (biological) basis. With Jacob Vorstman, Christian Schaaf and colleagues, Scherer developed the EAGLE (Evaluation of Autism Gene Link Evidence), which is a highly utilized resource in diagnostic testing for autism. [53]

Determining the genome architecture underlying autism

Scherer has led the Autism Speaks MSSNG project, [54] which uses whole genome sequencing to decode the DNA of thousands of families having a diagnosis of autism. The research underpinned the identification of >100 genes and CNVs involved in autism providing explanations of why autism has occurred for approximately 5-20% of families. [55] [56] [57] [58] [59] [60] [61] These discoveries have enabled faster and more precise diagnoses, early intervention and genetic counselling and have led to the identification of new molecular pathways for the development of therapeutics. [62] [63] [64] [65] In 2022, Scherer’s team published a comprehensive description of the genomic architecture in autism using the largest collection of whole genome sequencing data available to facilitate research studies in autism. [66]

Genome science, data and public policy infrastructure

Scherer co-founded the TCAG genome centre at SickKids in 1998. In 2015 with Marco Marra and Steven Jones at the University of British Columbia and Mark Lathrop at McGill University, the three major Canadian genome centres came together as CGEn, which serves as a Major Science Initiative of the Canada Foundation of Innovation. [67] For the 150th anniversary of Canada (2017), he started the CanSeq150 Project to sequence 150 genomes of species most relevant to Canada’s culture/environment/conservation; notable species completed include many of the “canadensis” members such as the Canadian beaver and Canadian wolverine. [68] [69] [70] Canseq 150 is now part of the Canadian Biogenome Project, an international effort aiming to sequence the genetic material for all complex life on earth. [71] CGEn also led the Covid-19 host genome sequencing project, which completed 10,000 Canadian genomes in April 2022. [72]

Scherer and colleagues launched the Personal Genome Project Canada in 2007, a resource of data that supports evaluation of whole genome sequencing in medicine and public health. [73] [74] These experiences along Scherer’s advocacy with the Canadian Coalition for Genetic Fairness helped to establish Canada’s Genetic Non-Discrimination Act, [75] which passed into law on May 4, 2017. He is also Editor-in-Chief of the scientific journal npj Genomic Medicine, which was co-founded in 2016 with Dr. Magdalena Skipper the current Editor-in-Chief of Nature. [76]

Media and special presentations

Scherer’s discoveries have appeared in the Globe and Mail, New York Times, Washington Post, Playboy, The Independent, Time, Newsweek, Scientific American and many other periodicals. He has appeared on the  Canadian Broadcasting Corporation (CBC), PBS Newshour, TVO Agenda, and other national TV, radio, and media, including  Quirks and Quarks, explaining scientific discoveries. [77] [78] [79] [80] [81] [82] [83] [84] [85] His research was featured in  Roger Martin's book The Design of Business, [86] Bob Wright’s autobiography the Wright Stuff: from NBC to Autism Speaks, [87] Steve Silberman’s NeuroTribes: The Legacy of Autism and the Future of Neurodiversity, [88] amongst others. In 2013, he spoke at the Canadian Broadcast Glenn Gould Studio: ‘Cracking the Autism Enigma’, [89] and in 2015 was a special guest speaker at the United Nations, New York for World Autism Awareness Day. [90] He has been featured the Genome Giants series of interviews. [91] He served as the scientific consultant for two documentaries, the MediCinema Film creation Cracking the Code, the continuing saga of genetics, [92] and the  Gemini Award-winning documentary, After Darwin by GalaFilms- Telefilm Canada. [93] He also hosts the SickKids Discovery Dialogues which takes attendees behind the scenes of research to discuss their research and the path to scientific discovery. [94]

Honours

Scherer holds three Honorary Doctorates from the University of Windsor (2001), the University of Waterloo (2017) and Western University (2018). [113] [114] [115] [116]

References

  1. ^ "Complete List of University Professors – Division of the Vice-President & Provost". Retrieved December 22, 2023.
  2. ^ "Massey News 2014-15 by Massey College - Issuu". issuu.com. October 23, 2015. Retrieved December 22, 2023.
  3. ^ "Thomson Reuters Predicts 2014 Nobel Laureates, Researchers Forecast for Nobel Recognition". www.prnewswire.com (Press release). Reuters. Retrieved December 22, 2023.
  4. ^ Weepers, Bob; Fame, Windsor/Essex County Sports Hall of (2001). We are the Champions : Canadian Championship Sports Teams, Windsor, Ontario, 20th Century. Windsor/Essex County Sports Hall of Fame and Museum. ISBN  978-0-9687666-1-3.
  5. ^ "Stephen Scherer – Division of the Vice-President & Provost". Retrieved December 22, 2023.
  6. ^ Stephen W. Scherer. The National Library of Medicine.
  7. ^ "Hall of Citation Laureates - 2023". Clarivate. Retrieved December 27, 2023.
  8. ^ The World’s Most Influential Scientific Minds list, 2015 (PDF). Thomas Reuters.
  9. ^ "Scherer, Stephen W." scholar.google.ca. Retrieved December 27, 2023.
  10. ^ Cohn, Ronald; Scherer, Stephen W.; Hamosh, Ada (2023). Genetics and Genomics in Medicine (9th ed.). Thompson & Thompson. ISBN  9780323547628.
  11. ^ The treasures of chromosome 7. Autumn 2001. The University of Toronto Magazine. 
  12. ^ Walking the jungles and deserts of chromosome 7. September 2003. Howard Hughes Medical Institute Bulletin.
  13. ^ Milestones in Canadian Health Research; Decoding life. 2010. Canadian Institutes of Health Research.
  14. ^ Belloni, E.; Muenke, M.; Roessler, E.; Traverse, G.; Siegel-Bartelt, J.; Frumkin, A.; Mitchell, H. F.; Donis-Keller, H.; Helms, C.; Hing, A. V.; Heng, H. H. Q.; Koop, B.; Martindale, D.; Rommens, J. M.; Tsui, L.C. (November 1, 1996). "Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly". Nature Genetics. 14 (3): 353–356. doi: 10.1038/ng1196-353. ISSN  1546-1718. PMID  8896571. S2CID  23432640.
  15. ^ Roessler, Erich; Belloni, Elena; Gaudenz, Karin; Jay, Philippe; Berta, Philippe; Scherer, Stephen W.; Tsui, Lap-Chee; Muenke, Maximilian (November 1, 1996). "Mutations in the human Sonic Hedgehog gene cause holoprosencephaly". Nature Genetics. 14 (3): 357–360. doi: 10.1038/ng1196-357. ISSN  1546-1718. PMID  8896572. S2CID  20946001.
  16. ^ Schmidt, Laura; Duh, Fuh-Mei; Chen, Fan; Kishida, Takeshi; Glenn, Gladys; Choyke, Peter; Scherer, Stephen W.; Zhuang, Zhenping; Lubensky, Irina; Dean, Michael; Allikmets, Rando; Chidambaram, Abi; Bergerheim, Ulf R.; Feltis, J. Timothy; Casadevall, Carme (May 1, 1997). "Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas". Nature Genetics. 16 (1): 68–73. doi: 10.1038/ng0597-68. ISSN  1546-1718. PMID  9140397.
  17. ^ Osborne, Lucy R.; Li, Martin; Pober, Barbara; Chitayat, David; Bodurtha, Joann; Mandel, Ariane; Costa, Teresa; Grebe, Theresa; Cox, Sarah; Tsui, Lap-Chee; Scherer, Stephen W. (October 29, 2001). "A 1.5 million–base pair inversion polymorphism in families with Williams-Beuren syndrome". Nature Genetics. 29 (3): 321–325. doi: 10.1038/ng753. ISSN  1061-4036. PMC  2889916. PMID  11685205.
  18. ^ Somerville, Martin J.; Mervis, Carolyn B.; Young, Edwin J.; Seo, Eul-Ju; del Campo, Miguel; Bamforth, Stephen; Peregrine, Ella; Loo, Wayne; Lilley, Margaret; Pérez-Jurado, Luis A.; Morris, Colleen A.; Scherer, Stephen W.; Osborne, Lucy R. (October 20, 2005). "Severe Expressive-Language Delay Related to Duplication of the Williams–Beuren Locus". New England Journal of Medicine. 353 (16): 1694–1701. doi: 10.1056/NEJMoa051962. ISSN  0028-4793. PMC  2893213. PMID  16236740.
  19. ^ Ross, Alison J.; Ruiz-Perez, Victor; Wang, Yiming; Hagan, Donna-Marie; Scherer, Steve; Lynch, Sally A.; Lindsay, Susan; Custard, Emily; Belloni, Elena; Wilson, David I.; Wadey, Roy; Goodman, Frances; Orstavik, Karen Helene; Monclair, Tom; Robson, Steve (December 1, 1998). "A homeobox gene, HLXB9, is the major locus for dominantly inherited sacral agenesis". Nature Genetics. 20 (4): 358–361. doi: 10.1038/3828. ISSN  1546-1718. PMID  9843207. S2CID  31062371.
  20. ^ Kobayashi, Keiko; Sinasac, David S.; Iijima, Mikio; Boright, Andrew P.; Begum, Laila; Lee, Jeffrey R.; Yasuda, Tomotsugu; Ikeda, Sayaka; Hirano, Ryuki; Terazono, Hiroki; Crackower, Michael A.; Kondo, Ikuko; Tsui, Lap-Chee; Scherer, Stephen W.; Saheki, Takeyori (June 1999). "The gene mutated in adult-onset type II citrullinaemia encodes a putative mitochondrial carrier protein". Nature Genetics. 22 (2): 159–163. doi: 10.1038/9667. ISSN  1546-1718. PMID  10369257. S2CID  20137905.
  21. ^ Smith, Annabel N.; Skaug, Jennifer; Choate, Keith A.; Nayir, Ahmet; Bakkaloglu, Aysin; Ozen, Seza; Hulton, Sally A.; Sanjad, Sami A.; Al-Sabban, Essam A.; Lifton, Richard P.; Scherer, Stephen W.; Karet, Fiona E. (September 1, 2000). "Mutations in ATP6N1B, encoding a new kidney vacuolar proton pump 116-kD subunit, cause recessive distal renal tubular acidosis with preserved hearing". Nature Genetics. 26 (1): 71–75. doi: 10.1038/79208. ISSN  1546-1718. PMID  10973252. S2CID  19880326.
  22. ^ Canadian scientists discover giant gene. February 10th, 2001. Globe and Mail.
  23. ^ Scherer, Stephen W.; Cheung, Joseph; MacDonald, Jeffrey R.; Osborne, Lucy R.; Nakabayashi, Kazuhiko; Herbrick, Jo-Anne; Carson, Andrew R.; Parker-Katiraee, Layla; Skaug, Jennifer; Khaja, Razi; Zhang, Junjun; Hudek, Alexander K.; Li, Martin; Haddad, May; Duggan, Gavin E. (May 2, 2003). "Human Chromosome 7: DNA Sequence and Biology". Science. 300 (5620): 767–772. Bibcode: 2003Sci...300..767S. doi: 10.1126/science.1083423. ISSN  0036-8075. PMC  2882961. PMID  12690205.
  24. ^ Minassian, Berge A.; Lee, Jeffrey R.; Herbrick, Jo-Anne; Huizenga, Jack; Soder, Sylvia; Mungall, Andrew J.; Dunham, Ian; Gardner, Rebecca; Fong, Chung-yan G.; Carpenter, Stirling; Jardim, Laura; Satishchandra, P.; Andermann, Eva; Snead, O. Carter; Lopes-Cendes, Iscia (October 1, 1998). "Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy". Nature Genetics. 20 (2): 171–174. doi: 10.1038/2470. ISSN  1546-1718. PMID  9771710. S2CID  8277795.
  25. ^ Chan, Elayne M.; Young, Edwin J.; Ianzano, Leonarda; Munteanu, Iulia; Zhao, Xiaochu; Christopoulos, Constantine C.; Avanzini, Giuliano; Elia, Maurizio; Ackerley, Cameron A.; Jovic, Nebojsa J.; Bohlega, Saeed; Andermann, Eva; Rouleau, Guy A.; Delgado-Escueta, Antonio V.; Minassian, Berge A. (September 7, 2003). "Mutations in NHLRC1 cause progressive myoclonus epilepsy". Nature Genetics. 35 (2): 125–127. doi: 10.1038/ng1238. ISSN  1546-1718. PMID  12958597. S2CID  32590557.
  26. ^ Gene hunters race against Lafora curse. September 27th, 2003. National Post
  27. ^ Iafrate, A. John; Feuk, Lars; Rivera, Miguel N.; Listewnik, Marc L.; Donahoe, Patricia K.; Qi, Ying; Scherer, Stephen W.; Lee, Charles (August 1, 2004). "Detection of large-scale variation in the human genome". Nature Genetics. 36 (9): 949–951. doi: 10.1038/ng1416. ISSN  1546-1718. PMID  15286789.
  28. ^ Patchwork people. October 20th, 2005. Nature.
  29. ^ Carolyn Abraham (November 23, 2006). "Study turns human genetics on its head". The Globe and Mail.
  30. ^ Steve Olson (November 2007). "The changing face of DNA" (PDF). Howard Hughes Medical Institute Bulletin.
  31. ^ DNA deletions and duplications help determine health. September 7th, 2007. Science.
  32. ^ Nature. From the archives (2004): Large-scale structural variation in the human genome. (27 April 2017).
  33. ^ "Database of Genomic Variants". Database of Genomic Variants: A curated catalogue of human genomic structural variation.
  34. ^ Redon, Richard; Ishikawa, Shumpei; Fitch, Karen R.; Feuk, Lars; Perry, George H.; Andrews, T. Daniel; Fiegler, Heike; Shapero, Michael H.; Carson, Andrew R.; Chen, Wenwei; Cho, Eun Kyung; Dallaire, Stephanie; Freeman, Jennifer L.; González, Juan R.; Gratacòs, Mònica (November 23, 2006). "Global variation in copy number in the human genome". Nature. 444 (7118): 444–454. Bibcode: 2006Natur.444..444R. doi: 10.1038/nature05329. ISSN  1476-4687. PMC  2669898. PMID  17122850.
  35. ^ Conrad, Donald F.; Pinto, Dalila; Redon, Richard; Feuk, Lars; Gokcumen, Omer; Zhang, Yujun; Aerts, Jan; Andrews, T. Daniel; Barnes, Chris; Campbell, Peter; Fitzgerald, Tomas; Hu, Min; Ihm, Chun Hwa; Kristiansson, Kati; MacArthur, Daniel G. (October 7, 2009). "Origins and functional impact of copy number variation in the human genome". Nature. 464 (7289): 704–712. doi: 10.1038/nature08516. ISSN  1476-4687. PMC  3330748. PMID  19812545.
  36. ^ Khaja, Razi; Zhang, Junjun; MacDonald, Jeffrey R.; He, Yongshu; Joseph-George, Ann M.; Wei, John; Rafiq, Muhammad A.; Qian, Cheng; Shago, Mary; Pantano, Lorena; Aburatani, Hiroyuki; Jones, Keith; Redon, Richard; Hurles, Matthew; Armengol, Lluis (November 22, 2006). "Genome assembly comparison identifies structural variants in the human genome". Nature Genetics. 38 (12): 1413–1418. doi: 10.1038/ng1921. ISSN  1546-1718. PMC  2674632. PMID  17115057.
  37. ^ Levy, Samuel; Sutton, Granger; Ng, Pauline C.; Feuk, Lars; Halpern, Aaron L.; Walenz, Brian P.; Axelrod, Nelson; Huang, Jiaqi; Kirkness, Ewen F.; Denisov, Gennady; Lin, Yuan; MacDonald, Jeffrey R.; Pang, Andy Wing Chun; Shago, Mary; Stockwell, Timothy B. (September 4, 2007). "The Diploid Genome Sequence of an Individual Human". PLOS Biology. 5 (10): e254. doi: 10.1371/journal.pbio.0050254. ISSN  1545-7885. PMC  1964779. PMID  17803354.
  38. ^ Szatmari, Peter; Paterson, Andrew D; Zwaigenbaum, Lonnie; Roberts, Wendy; Brian, Jessica; Liu, Xiao-Qing; Vincent, John B; Skaug, Jennifer L; Thompson, Ann P; Senman, Lili; Feuk, Lars; Qian, Cheng; Bryson, Susan E; Jones, Marshall B; Marshall, Christian R (February 18, 2007). "Mapping autism risk loci using genetic linkage and chromosomal rearrangements". Nature Genetics. 39 (3): 319–328. doi: 10.1038/ng1985. ISSN  1546-1718. PMC  4867008. PMID  17322880.
  39. ^ Marshall, Christian R.; Noor, Abdul; Vincent, John B.; Lionel, Anath C.; Feuk, Lars; Skaug, Jennifer; Shago, Mary; Moessner, Rainald; Pinto, Dalila; Ren, Yan; Thiruvahindrapduram, Bhooma; Fiebig, Andreas; Schreiber, Stefan; Friedman, Jan; Ketelaars, Cees E. J. (January 17, 2008). "Structural variation of chromosomes in autism spectrum disorder". American Journal of Human Genetics. 82 (2): 477–488. doi: 10.1016/j.ajhg.2007.12.009. ISSN  1537-6605. PMC  2426913. PMID  18252227.
  40. ^ Pinto, Dalila; Pagnamenta, Alistair T.; Klei, Lambertus; Anney, Richard; Merico, Daniele; Regan, Regina; Conroy, Judith; Magalhaes, Tiago R.; Correia, Catarina; Abrahams, Brett S.; Almeida, Joana; Bacchelli, Elena; Bader, Gary D.; Bailey, Anthony J.; Baird, Gillian (July 9, 2010). "Functional impact of global rare copy number variation in autism spectrum disorders". Nature. 466 (7304): 368–372. Bibcode: 2010Natur.466..368P. doi: 10.1038/nature09146. hdl: 10400.18/214. ISSN  1476-4687. PMC  3021798. PMID  20531469.
  41. ^ Berkel, Simone; Marshall, Christian R.; Weiss, Birgit; Howe, Jennifer; Roeth, Ralph; Moog, Ute; Endris, Volker; Roberts, Wendy; Szatmari, Peter; Pinto, Dalila; Bonin, Michael; Riess, Angelika; Engels, Hartmut; Sprengel, Rolf; Scherer, Stephen W. (May 16, 2010). "Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation". Nature Genetics. 42 (6): 489–491. doi: 10.1038/ng.589. ISSN  1546-1718. PMID  20473310. S2CID  205356656.
  42. ^ Noor, Abdul; Whibley, Annabel; Marshall, Christian R.; Gianakopoulos, Peter J.; Piton, Amelie; Carson, Andrew R.; Orlic-Milacic, Marija; Lionel, Anath C.; Sato, Daisuke; Pinto, Dalila; Drmic, Irene; Noakes, Carolyn; Senman, Lili; Zhang, Xiaoyun; Mo, Rong (September 15, 2010). "Disruption at the PTCHD1 Locus on Xp22.11 in Autism Spectrum Disorder and Intellectual Disability". Science Translational Medicine. 2 (49): 49ra68. doi: 10.1126/scitranslmed.3001267. ISSN  1946-6234. PMC  2987731. PMID  20844286.
  43. ^ Vaags, Andrea K.; Lionel, Anath C.; Sato, Daisuke; Goodenberger, McKinsey; Stein, Quinn P.; Curran, Sarah; Ogilvie, Caroline; Ahn, Joo Wook; Drmic, Irene; Senman, Lili; Chrysler, Christina; Thompson, Ann; Russell, Carolyn; Prasad, Aparna; Walker, Susan (January 13, 2012). "Rare deletions at the neurexin 3 locus in autism spectrum disorder". American Journal of Human Genetics. 90 (1): 133–141. doi: 10.1016/j.ajhg.2011.11.025. ISSN  1537-6605. PMC  3257896. PMID  22209245.
  44. ^ Sato, Daisuke; Lionel, Anath C.; Leblond, Claire S.; Prasad, Aparna; Pinto, Dalila; Walker, Susan; O'Connor, Irene; Russell, Carolyn; Drmic, Irene E.; Hamdan, Fadi F.; Michaud, Jacques L.; Endris, Volker; Roeth, Ralph; Delorme, Richard; Huguet, Guillaume (May 4, 2012). "SHANK1 Deletions in Males with Autism Spectrum Disorder". American Journal of Human Genetics. 90 (5): 879–887. doi: 10.1016/j.ajhg.2012.03.017. ISSN  1537-6605. PMC  3376495. PMID  22503632.
  45. ^ Science City: Racing to solve the puzzle of autism. January 5th, 2008. Globe and Mail.
  46. ^ Canadian breakthrough offers hope on autism. February 19th, 2007. Globe and Mail
  47. ^ Solving puzzle of son's autism soothes family. January 18th, 2008. Toronto Star
  48. ^ Researchers discover genetic patterns of autism. June 9th, 2010. Time Magazine
  49. ^ Genetic finding paves way for controversial autism testing. June 10th, 2010. Globe and Mail
  50. ^ Autism genetics: A breakthrough that sheds light on a medical mystery. June 10th, 2010. The Independent
  51. ^ Understanding Autism. Spring 2011. University of Toronto Magazine
  52. ^ Special Series: Autism's new frontiers. February 17th, 2013. Ottawa Citizen
  53. ^ "SFARI | SFARI Gene to introduce EAGLE, a new ASD-relevance gene scoring system". SFARI. December 10, 2021. Retrieved December 27, 2023.
  54. ^ "MSSNG". research.mss.ng. Retrieved December 27, 2023.
  55. ^ Jiang, Yong-hui; Yuen, Ryan K. C.; Jin, Xin; Wang, Mingbang; Chen, Nong; Wu, Xueli; Ju, Jia; Mei, Junpu; Shi, Yujian; He, Mingze; Wang, Guangbiao; Liang, Jieqin; Wang, Zhe; Cao, Dandan; Carter, Melissa T. (August 8, 2013). "Detection of clinically relevant genetic variants in autism spectrum disorder by whole-genome sequencing". American Journal of Human Genetics. 93 (2): 249–263. doi: 10.1016/j.ajhg.2013.06.012. ISSN  1537-6605. PMC  3738824. PMID  23849776.
  56. ^ Pinto, Dalila; Delaby, Elsa; Merico, Daniele; Barbosa, Mafalda; Merikangas, Alison; Klei, Lambertus; Thiruvahindrapuram, Bhooma; Xu, Xiao; Ziman, Robert; Wang, Zhuozhi; Vorstman, Jacob A. S.; Thompson, Ann; Regan, Regina; Pilorge, Marion; Pellecchia, Giovanna (May 1, 2014). "Convergence of genes and cellular pathways dysregulated in autism spectrum disorders". American Journal of Human Genetics. 94 (5): 677–694. doi: 10.1016/j.ajhg.2014.03.018. ISSN  1537-6605. PMC  4067558. PMID  24768552.
  57. ^ Uddin, Mohammed; Tammimies, Kristiina; Pellecchia, Giovanna; Alipanahi, Babak; Hu, Pingzhao; Wang, Zhuozhi; Pinto, Dalila; Lau, Lynette; Nalpathamkalam, Thomas; Marshall, Christian R.; Blencowe, Benjamin J.; Frey, Brendan J.; Merico, Daniele; Yuen, Ryan K. C.; Scherer, Stephen W. (2014). "Brain-expressed exons under purifying selection are enriched for de novo mutations in autism spectrum disorder". Nature Genetics. 46 (7): 742–747. doi: 10.1038/ng.2980. ISSN  1546-1718. PMID  24859339. S2CID  12729162 – via PubMed.
  58. ^ Tammimies, Kristiina; Marshall, Christian R.; Walker, Susan; Kaur, Gaganjot; Thiruvahindrapuram, Bhooma; Lionel, Anath C.; Yuen, Ryan K. C.; Uddin, Mohammed; Roberts, Wendy; Weksberg, Rosanna; Woodbury-Smith, Marc; Zwaigenbaum, Lonnie; Anagnostou, Evdokia; Wang, Zhuozhi; Wei, John (September 1, 2015). "Molecular Diagnostic Yield of Chromosomal Microarray Analysis and Whole-Exome Sequencing in Children With Autism Spectrum Disorder". JAMA. 314 (9): 895–903. doi: 10.1001/jama.2015.10078. ISSN  1538-3598. PMID  26325558.
  59. ^ Yuen, Ryan K. C.; Thiruvahindrapuram, Bhooma; Merico, Daniele; Walker, Susan; Tammimies, Kristiina; Hoang, Ny; Chrysler, Christina; Nalpathamkalam, Thomas; Pellecchia, Giovanna; Liu, Yi; Gazzellone, Matthew J.; D'Abate, Lia; Deneault, Eric; Howe, Jennifer L.; Liu, Richard S. C. (2015). "Whole-genome sequencing of quartet families with autism spectrum disorder". Nature Medicine. 21 (2): 185–191. doi: 10.1038/nm.3792. ISSN  1546-170X. PMID  25621899. S2CID  29439880 – via PubMed.
  60. ^ C Yuen, Ryan K.; Merico, Daniele; Bookman, Matt; L Howe, Jennifer; Thiruvahindrapuram, Bhooma; Patel, Rohan V.; Whitney, Joe; Deflaux, Nicole; Bingham, Jonathan; Wang, Zhuozhi; Pellecchia, Giovanna; Buchanan, Janet A.; Walker, Susan; Marshall, Christian R.; Uddin, Mohammed (2017). "Whole genome sequencing resource identifies 18 new candidate genes for autism spectrum disorder". Nature Neuroscience. 20 (4): 602–611. doi: 10.1038/nn.4524. ISSN  1546-1726. PMC  5501701. PMID  28263302.
  61. ^ Trost, Brett; Engchuan, Worrawat; Nguyen, Charlotte M.; Thiruvahindrapuram, Bhooma; Dolzhenko, Egor; Backstrom, Ian; Mirceta, Mila; Mojarad, Bahareh A.; Yin, Yue; Dov, Alona; Chandrakumar, Induja; Prasolava, Tanya; Shum, Natalie; Hamdan, Omar; Pellecchia, Giovanna (2020). "Genome-wide detection of tandem DNA repeats that are expanded in autism". Nature. 586 (7827): 80–86. Bibcode: 2020Natur.586...80T. doi: 10.1038/s41586-020-2579-z. ISSN  1476-4687. PMC  9348607. PMID  32717741.
  62. ^ Cook, Edwin H.; Scherer, Stephen W. (October 16, 2008). "Copy-number variations associated with neuropsychiatric conditions". Nature. 455 (7215): 919–923. Bibcode: 2008Natur.455..919C. doi: 10.1038/nature07458. ISSN  1476-4687. PMID  18923514. S2CID  4377899.
  63. ^ Marshall, Christian R.; Scherer, Stephen W. (2012). "Detection and characterization of copy number variation in autism spectrum disorder". Genomic Structural Variants. Methods in Molecular Biology (Clifton, N.J.). Vol. 838. pp. 115–135. doi: 10.1007/978-1-61779-507-7_5. ISBN  978-1-61779-506-0. ISSN  1940-6029. PMID  22228009.
  64. ^ Anagnostou, Evdokia; Zwaigenbaum, Lonnie; Szatmari, Peter; Fombonne, Eric; Fernandez, Bridget A.; Woodbury-Smith, Marc; Brian, Jessica; Bryson, Susan; Smith, Isabel M.; Drmic, Irene; Buchanan, Janet A.; Roberts, Wendy; Scherer, Stephen W. (2014). "Autism spectrum disorder: advances in evidence-based practice". Canadian Medical Association Journal. 186 (7): 509–519. doi: 10.1503/cmaj.121756. ISSN  1488-2329. PMC  3986314. PMID  24418986.
  65. ^ Vorstman, Jacob; Scherer, Stephen W. (2021). "What a finding of gene copy number variation can add to the diagnosis of developmental neuropsychiatric disorders". Current Opinion in Genetics & Development. 68: 18–25. doi: 10.1016/j.gde.2020.12.017. ISSN  1879-0380. PMID  33454514. S2CID  231634644.
  66. ^ Trost, Brett; Thiruvahindrapuram, Bhooma; Chan, Ada J. S.; Engchuan, Worrawat; Higginbotham, Edward J.; Howe, Jennifer L.; Loureiro, Livia O.; Reuter, Miriam S.; Roshandel, Delnaz; Whitney, Joe; Zarrei, Mehdi; Bookman, Matthew; Somerville, Cherith; Shaath, Rulan; Abdi, Mona (November 10, 2022). "Genomic architecture of autism from comprehensive whole-genome sequence annotation". Cell. 185 (23): 4409–4427.e18. doi: 10.1016/j.cell.2022.10.009. ISSN  1097-4172. PMC  10726699. PMID  36368308.
  67. ^ Warner, Hillete (August 19, 2022). "CGEn receives $48.9 million in federal funding through the Canada Foundation for Innovation's Major Science Initiatives Fund". Canada's national platform for genome sequencing & analysis.
  68. ^ "CanSeq150". Canada's national platform for genome sequencing & analysis. Retrieved December 27, 2023.
  69. ^ SickKids researchers sequence genome of the Canadian beaver, retrieved December 27, 2023
  70. ^ "Scientists map genome of beaver as gift for Canada's 150th birthday". The Globe and Mail. January 13, 2017. Retrieved December 27, 2023.
  71. ^ "Canada BioGenome Project". Canada's national platform for genome sequencing & analysis. Retrieved December 27, 2023.
  72. ^ "Program Overview". Canada's national platform for genome sequencing & analysis. Retrieved December 27, 2023.
  73. ^ Reuter, Miriam S.; Walker, Susan; Thiruvahindrapuram, Bhooma; Whitney, Joe; Cohn, Iris; Sondheimer, Neal; Yuen, Ryan K. C.; Trost, Brett; Paton, Tara A.; Pereira, Sergio L.; Herbrick, Jo-Anne; Wintle, Richard F.; Merico, Daniele; Howe, Jennifer; MacDonald, Jeffrey R. (February 5, 2018). "The Personal Genome Project Canada: findings from whole genome sequences of the inaugural 56 participants". Canadian Medical Association Journal. 190 (5): E126–E136. doi: 10.1503/cmaj.171151. ISSN  0820-3946. PMC  5798982. PMID  29431110.
  74. ^ "Cracks in the code: Why mapping your DNA may be less reliable than you think". The Globe and Mail. February 3, 2018. Retrieved December 27, 2023.
  75. ^ Branch, Legislative Services (May 4, 2017). "Consolidated federal laws of canada, Genetic Non-Discrimination Act". laws-lois.justice.gc.ca. Retrieved December 27, 2023.
  76. ^ "About the Editors | npj Genomic Medicine". www.nature.com. Retrieved March 28, 2024.
  77. ^ CBC Autism Research Story January 26 2015, retrieved December 27, 2023
  78. ^ "This search engine could help unlock autism's secrets". PBS NewsHour. October 21, 2015. Retrieved December 27, 2023.
  79. ^ Stephen Scherer: DNA Testing for Autism, retrieved December 27, 2023
  80. ^ The human genome, and Pandora's box. Counterpoint: an interview with Margaret Wente. June 29th, 2000. Globe and Mail.
  81. ^ Scherer, SW. By knowing our genomes, we will begin to truly know ourselves. Commentary August 7th, 2007. Globe and Mail.
  82. ^ Scherer, SW. Perfect genomics. Question of the Year 2007. Nature Genetics.
  83. ^ Scherer, SW. 25 great ideas from great minds. January 4, 2007. Toronto Star.
  84. ^ Brainwashed. Rethinking man's genetic makeup. November 2010, The Walrus.
  85. ^ Scherer, SW. Genomics is the medium for 21st century biology. Editorial. 2012. Genome 55, v-vi.
  86. ^ Martin, Roger (2009). The Reliability Bias: Why Advancing Knowledge Is So Hard--How Making Room for Validity Will Help You Design a Business That Is Better at Innovation. Harvard Business Publishing.
  87. ^ Wright, Bob (2016). The Wright Stuff: From NBC to Autism Speaks. RosettaBooks. ISBN  978-0795346927.
  88. ^ Silberman, Steve (August 23, 2016). Neurotribes: The Legacy of Autism and the Future of Neurodiversity (2nd ed.). Avery. ISBN  978-0399185618.
  89. ^ Part 1. OBI/CIFAR Public Lecture on Autism, Presented by Autism Speaks, retrieved December 27, 2023
  90. ^ "World Autism Awareness Day, 2 April". www.un.org. Retrieved December 27, 2023.
  91. ^ Genomics, Front Line; Gunn, Shannon (February 22, 2022). "Genome Giants: Stephen Scherer, Director, The Centre for Applied Genomics, SickKids". Front Line Genomics. Retrieved December 27, 2023.
  92. ^ "MediCinema - Creative classroom videos & DVDs - CRACKING THE CODE: The Continuing Saga of Genetics". www.medicinema.com. Retrieved December 27, 2023.
  93. ^ After Darwin (1999) | Full Movie | Lewis Wolpert | Benno Muller-Hill | Troy Duster | Andrea Shugar, retrieved December 27, 2023
  94. ^ "SickKids Discovery Dialogues - YouTube". www.youtube.com. Retrieved December 27, 2023.
  95. ^ "Canada's Top 40 Under 40 - Honourees 1999". canadastop40under40.com. Retrieved December 27, 2023.
  96. ^ "HHMI Awards Canadian, Latin American Research Grants | HHMI". www.hhmi.org. Retrieved December 27, 2023.
  97. ^ "Stephen W. Scherer". CIFAR. Retrieved December 27, 2023.
  98. ^ "Recipients – Steacie Prize for Natural Sciences". steacieprize.ca. Retrieved December 27, 2023.
  99. ^ "Member Directory". The Royal Society of Canada. Retrieved December 27, 2023.
  100. ^ "Science Alumni of Honour Award: 50th Anniversary | Science". uwaterloo.ca. Retrieved December 27, 2023.
  101. ^ "Ontario Newsroom". news.ontario.ca. Retrieved December 27, 2023.
  102. ^ "AAAS Members Elected as Fellows (2011)". AAAS.
  103. ^ "Distinguished Brothers". Sigma Chi Canadian Foundation. Retrieved December 27, 2023.
  104. ^ "Stephen Scherer". The Governor General of Canada. Retrieved December 27, 2023.
  105. ^ Ubelacker, Sheryl (September 25, 2014). "Stephen Scherer of Toronto's Sick Kids Hospital pegged to win Nobel Prize". CBC News.
  106. ^ "Stephen W. Scherer". Web of Science Group. October 7, 2020. Retrieved December 27, 2023.
  107. ^ "Toronto Sick Kids geneticist named potential Nobel Prize recipient". The Globe and Mail. September 24, 2014. Retrieved December 27, 2023.
  108. ^ Maclean's (November 22, 2014). "The Maclean's Power List: The 50 most important people in Canada". Macleans.ca. Retrieved December 27, 2023.
  109. ^ "U of T researchers awarded Killam Prizes for contributions to humanities, health sciences | University of Toronto". www.utoronto.ca. Retrieved December 27, 2023.
  110. ^ "INSAR Fellows - International Society for Autism Research (INSAR)". www.autism-insar.org. Retrieved December 27, 2023.
  111. ^ "Scientific & Academic Chairs". SickKids. Retrieved December 27, 2023.
  112. ^ Government of Canada, Canadian Institutes of Health Research (November 30, 2015). "Just an Ordinary Superstar - CIHR". cihr-irsc.gc.ca. Retrieved December 27, 2023.
  113. ^ "University of Windsor Honorary Degrees Conferred" (PDF). University of Windsor.
  114. ^ "Alumni Profile: Stephen W. Scherer | Science". uwaterloo.ca. Retrieved December 27, 2023.
  115. ^ University, Department of Communications and Public Affairs, Western (April 10, 2018). "Western to honour global science, business, entertainment and sport leaders at 311th Convocation". Media Relations. Retrieved December 27, 2023.{{ cite web}}: CS1 maint: multiple names: authors list ( link)
  116. ^ Western Convocation - June 14, 2018 - Stephen Scherer, retrieved December 27, 2023

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook