Details for log entry 37,627,486

11:05, 2 May 2024: 85.112.71.30 ( talk) triggered filter 1,233, performing the action "edit" on Parallelogram. Actions taken: Disallow; Filter description: Long string of characters with no punctuation or markup ( examine)

Changes made in edit

{{Short description|Quadrilateral with two pairs of parallel sides}}
{{About|the quadrilateral shape|the album by Linda Perhacs|Parallelograms (album)}}
{{Infobox polygon
| name = Parallelogram
| image = Parallelogram.svg
| caption = This parallelogram is a [[rhomboid]] as it has no right angles and unequal sides.
| type = [[quadrilateral]], [[trapezoid|trapezium]]
| edges = 4
| symmetry = [[Point reflection|C<sub>2</sub>]], [2]<sup>+</sup>,
| area = ''b'' × ''h'' (base × height);<br>''ab'' sin ''θ'' (product of adjacent sides and sine of the vertex angle determined by them)
| properties = [[convex polygon|convex]]}}
In [[Euclidean geometry]], a '''parallelogram''' is a [[simple polygon|simple]] (non-[[list of self-intersecting polygons|self-intersecting]]) [[quadrilateral]] with two pairs of [[Parallel (geometry)|parallel]] sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The [[congruence (geometry)|congruence]] of opposite sides and opposite angles is a direct consequence of the Euclidean [[parallel postulate]] and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.


Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make
By comparison, a quadrilateral with at least one pair of parallel sides is a [[trapezoid]] in American English or a trapezium in British English.

The three-dimensional counterpart of a parallelogram is a [[parallelepiped]].

The word comes from the Greek παραλληλό-γραμμον, ''parallēló-grammon'', which means a shape "of parallel lines".


==Special cases==
==Special cases==

Action parameters

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'85.112.71.30'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmyprivateinfo', 6 => 'editmyprivateinfo', 7 => 'editmyoptions', 8 => 'abusefilter-log-detail', 9 => 'urlshortener-create-url', 10 => 'centralauth-merge', 11 => 'abusefilter-view', 12 => 'abusefilter-log', 13 => 'vipsscaler-test' ]
Whether or not a user is editing through the mobile interface (user_mobile)
true
Whether the user is editing from mobile app (user_app)
false
Page ID (page_id)
133496
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Parallelogram'
Full page title (page_prefixedtitle)
'Parallelogram'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'Jacobolus', 1 => 'Tamfang', 2 => 'AnomieBOT', 3 => 'EV stuff', 4 => 'AKidFromBethany', 5 => '75.174.86.243', 6 => 'ClueBot NG', 7 => '103.181.69.232', 8 => 'Discospinster', 9 => '184.64.124.97' ]
Page age in seconds (page_age)
679137599
Action (action)
'edit'
Edit summary/reason (summary)
''
Time since last page edit in seconds (page_last_edit_age)
488294
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{Short description|Quadrilateral with two pairs of parallel sides}} {{About|the quadrilateral shape|the album by Linda Perhacs|Parallelograms (album)}} {{Infobox polygon | name = Parallelogram | image = Parallelogram.svg | caption = This parallelogram is a [[rhomboid]] as it has no right angles and unequal sides. | type = [[quadrilateral]], [[trapezoid|trapezium]] | edges = 4 | symmetry = [[Point reflection|C<sub>2</sub>]], [2]<sup>+</sup>, | area = ''b'' × ''h'' (base × height);<br>''ab'' sin ''θ'' (product of adjacent sides and sine of the vertex angle determined by them) | properties = [[convex polygon|convex]]}} In [[Euclidean geometry]], a '''parallelogram''' is a [[simple polygon|simple]] (non-[[list of self-intersecting polygons|self-intersecting]]) [[quadrilateral]] with two pairs of [[Parallel (geometry)|parallel]] sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The [[congruence (geometry)|congruence]] of opposite sides and opposite angles is a direct consequence of the Euclidean [[parallel postulate]] and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations. By comparison, a quadrilateral with at least one pair of parallel sides is a [[trapezoid]] in American English or a trapezium in British English. The three-dimensional counterpart of a parallelogram is a [[parallelepiped]]. The word comes from the Greek παραλληλό-γραμμον, ''parallēló-grammon'', which means a shape "of parallel lines". ==Special cases== *[[Rectangle]] – A parallelogram with four angles of equal size (right angles). *[[Rhombus]] – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a [[rhomboid]] but this term is not used in modern mathematics.<ref>{{cite web|url=http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|title=CIMT - Page no longer available at Plymouth University servers|website=www.cimt.plymouth.ac.uk|url-status=dead|archive-url=https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|archive-date=2014-05-14}}</ref> *[[Square (geometry)|Square]] – A parallelogram with four sides of equal length and angles of equal size (right angles). ==Characterizations== A [[simple polygon|simple]] (non-self-intersecting) [[quadrilateral]] is a parallelogram [[if and only if]] any one of the following statements is true:<ref>Owen Byer, Felix Lazebnik and [[Deirdre Smeltzer]], ''Methods for Euclidean Geometry'', Mathematical Association of America, 2010, pp. 51-52.</ref><ref>Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, p. 22.</ref> *Two pairs of opposite sides are parallel (by definition). *Two pairs of opposite sides are equal in length. *Two pairs of opposite angles are equal in measure. *The [[diagonal]]s bisect each other. *One pair of opposite sides is [[Parallel (geometry)|parallel]] and equal in length. *[[Adjacent angles]] are [[supplementary angles|supplementary]]. *Each diagonal divides the quadrilateral into two [[congruence (geometry)|congruent]] [[triangle]]s. *The sum of the [[Square number|square]]s of the sides equals the sum of the squares of the diagonals. (This is the [[parallelogram law]].) *It has [[rotational symmetry]] of order 2. *The sum of the distances from any interior point to the sides is independent of the location of the point.<ref>Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", ''[[The College Mathematics Journal]]'' 37(5), 2006, pp. 390–391.</ref> (This is an extension of [[Viviani's theorem]].) *There is a point ''X'' in the plane of the quadrilateral with the property that every straight line through ''X'' divides the quadrilateral into two regions of equal area.<ref>Problem 5, ''2006 British Mathematical Olympiad'', [http://artofproblemsolving.com/downloads/printable_post_collections/5063].</ref> Thus all parallelograms have all the properties listed above, and [[Converse (logic)|conversely]], if just one of these statements is true in a simple quadrilateral, then it is a parallelogram. ==Other properties== *Opposite sides of a parallelogram are parallel (by definition) and so will never intersect. *The area of a parallelogram is twice the area of a triangle created by one of its diagonals. *The area of a parallelogram is also equal to the magnitude of the [[vector cross product]] of two [[adjacent side (polygon)|adjacent]] sides. *Any line through the midpoint of a parallelogram bisects the area.<ref>Dunn, J.A., and J.E. Pretty, "Halving a triangle", ''Mathematical Gazette'' 56, May 1972, p. 105.</ref> *Any non-degenerate [[affine transformation]] takes a parallelogram to another parallelogram. *A parallelogram has [[rotational symmetry]] of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of [[reflectional symmetry]] then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a [[square]]. *The perimeter of a parallelogram is 2(''a'' + ''b'') where ''a'' and ''b'' are the lengths of adjacent sides. *Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area.<ref>{{cite web|last=Weisstein|first=Eric W|title=Triangle Circumscribing|url=http://mathworld.wolfram.com/TriangleCircumscribing.html|work=Wolfram Math World}}</ref> *The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square.<ref name=Weisstein>Weisstein, Eric W. "Parallelogram." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Parallelogram.html</ref> *If two lines parallel to sides of a parallelogram are constructed [[concurrent lines|concurrent]] to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area.<ref name=Weisstein/> *The diagonals of a parallelogram divide it into four triangles of equal area. ==Area formula{{anchor|Area}}== [[File:ParallelogramArea.svg|thumb|180px|alt=A diagram showing how a parallelogram can be re-arranged into the shape of a rectangle|A parallelogram can be rearranged into a rectangle with the same area.]] [[File:Parallelogram area animated.gif|thumb|180px|Animation for the area formula <math>K = bh</math>.]] All of the [[Quadrilateral#Area of a convex quadrilateral|area formulas for general convex quadrilaterals]] apply to parallelograms. Further formulas are specific to parallelograms: A parallelogram with base ''b'' and height ''h'' can be divided into a [[trapezoid]] and a [[right triangle]], and rearranged into a [[rectangle]], as shown in the figure to the left. This means that the [[area]] of a parallelogram is the same as that of a rectangle with the same base and height: :<math>K = bh.</math> [[File:Parallelogram area.svg|thumb|The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram]] The base × height area formula can also be derived using the figure to the right. The area ''K'' of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the rectangle is :<math>K_\text{rect} = (B+A) \times H\,</math> and the area of a single triangle is :<math>K_\text{tri} = \frac{A}{2} \times H. \,</math> Therefore, the area of the parallelogram is :<math>K = K_\text{rect} - 2 \times K_\text{tri} = ( (B+A) \times H) - ( A \times H) = B \times H.</math> Another area formula, for two sides ''B'' and ''C'' and angle θ, is :<math>K = B \cdot C \cdot \sin \theta.\,</math> The area of a parallelogram with sides ''B'' and ''C'' (''B'' ≠ ''C'') and angle <math>\gamma</math> at the intersection of the diagonals is given by<ref>Mitchell, Douglas W., "The area of a quadrilateral", ''Mathematical Gazette'', July 2009.</ref> :<math>K = \frac{|\tan \gamma|}{2} \cdot \left| B^2 - C^2 \right|.</math> When the parallelogram is specified from the lengths ''B'' and ''C'' of two adjacent sides together with the length ''D''<sub>1</sub> of either diagonal, then the area can be found from [[Heron's formula]]. Specifically it is :<math>K=2\sqrt{S(S-B)(S-C)(S-D_1)}</math> where <math>S=(B+C+D_1)/2</math> and the leading factor 2 comes from the fact that the chosen diagonal divides the parallelogram into ''two'' congruent triangles. === From vertex coordinates === Let vectors <math>\mathbf{a},\mathbf{b}\in\R^2</math> and let <math>V = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \in\R^{2 \times 2}</math> denote the matrix with elements of '''a''' and '''b'''. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>|\det(V)| = |a_1b_2 - a_2b_1|\,</math>. Let vectors <math>\mathbf{a},\mathbf{b}\in\R^n</math> and let <math>V = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{bmatrix} \in\R^{2 \times n}</math>. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>\sqrt{\det(V V^\mathrm{T})}</math>. Let points <math>a,b,c\in\R^2</math>. Then the [[signed area]] of the parallelogram with vertices at ''a'', ''b'' and ''c'' is equivalent to the determinant of a matrix built using ''a'', ''b'' and ''c'' as rows with the last column padded using ones as follows: :<math>K = \left| \begin{matrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{matrix} \right|. </math> ==Proof that diagonals bisect each other== [[File:Parallelogram1.svg|right|Parallelogram ABCD]] To prove that the diagonals of a parallelogram bisect each other, we will use [[congruence (geometry)|congruent]] [[Triangle#Basic facts|triangle]]s: :<math>\angle ABE \cong \angle CDE</math> ''(alternate interior angles are equal in measure)'' :<math>\angle BAE \cong \angle DCE</math> ''(alternate interior angles are equal in measure)''. (since these are angles that a transversal makes with [[Parallel (geometry)|parallel lines]] ''AB'' and ''DC''). Also, side ''AB'' is equal in length to side ''DC'', since opposite sides of a parallelogram are equal in length. Therefore, triangles ''ABE'' and ''CDE'' are congruent (ASA postulate, ''two corresponding angles and the included side''). Therefore, :<math>AE = CE</math> :<math>BE = DE.</math> Since the diagonals ''AC'' and ''BD'' divide each other into segments of equal length, the diagonals bisect each other. Separately, since the diagonals ''AC'' and ''BD'' bisect each other at point ''E'', point ''E'' is the midpoint of each diagonal. == Lattice of parallelograms== Parallelograms can tile the plane by translation. If edges are equal, or angles are right, the symmetry of the lattice is higher. These represent the four [[Bravais_lattice#In_2_dimensions|Bravais lattices in 2 dimensions]]. {| class=wikitable |+ Lattices |- !Form||Square||Rectangle||Rhombus||Rhomboid |- !System !Square<BR>(tetragonal) !Rectangular<BR>(orthorhombic) !Centered rectangular<BR>(orthorhombic) !Oblique<BR>(monoclinic) |- align=center !Constraints |&alpha;=90°, a=b |&alpha;=90° |a=b |None |- align=center ![[List_of_planar_symmetry_groups#Wallpaper_groups|Symmetry]] |p4m, [4,4], order 8''n''||colspan=2|pmm, [&infin;,2,&infin;], order 4''n''||p1, [&infin;<sup>+</sup>,2,&infin;<sup>+</sup>], order 2''n'' |- align=center !Form |[[File:Isohedral tiling p4-56.png|160px]] |[[File:Isohedral tiling p4-54.png|160px]] |[[File:Isohedral tiling p4-55.png|160px]] |[[File:Isohedral tiling p4-50.png|160px]] |} ==Parallelograms arising from other figures== ===Automedian triangle=== An [[automedian triangle]] is one whose [[median (geometry)|medians]] are in the same proportions as its sides (though in a different order). If ''ABC'' is an automedian triangle in which vertex ''A'' stands opposite the side ''a'', ''G'' is the [[centroid]] (where the three medians of ''ABC'' intersect), and ''AL'' is one of the extended medians of ''ABC'' with ''L'' lying on the circumcircle of ''ABC'', then ''BGCL'' is a parallelogram. ===Varignon parallelogram=== {{main|Varignon's theorem}} [[File:varignon_parallelogram.svg|thumb|Proof without words of Varignon's theorem ]] [[Varignon's theorem]] holds that the [[midpoint]]s of the sides of an arbitrary quadrilateral are the vertices of a parallelogram, called its ''Varignon parallelogram''. If the quadrilateral is [[Convex polygon|convex]] or [[Concave polygon|concave]] (that is, not self-intersecting), then the area of the Varignon parallelogram is half the area of the quadrilateral. [[Proof without words]] (see figure): # An arbitrary quadrilateral and its diagonals. # Bases of similar triangles are parallel to the blue diagonal. # Ditto for the red diagonal. # The base pairs form a parallelogram with half the area of the quadrilateral, ''A<sub>q</sub>'', as the sum of the areas of the four large triangles, ''A<sub>l</sub>'' is 2 ''A<sub>q</sub>'' (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, ''A<sub>s</sub>'' is a quarter of ''A<sub>l</sub>'' (half linear dimensions yields quarter area), and the area of the parallelogram is ''A<sub>q</sub>'' minus ''A<sub>s</sub>''. ===Tangent parallelogram of an ellipse=== For an [[ellipse]], two diameters are said to be [[Conjugate diameters|conjugate]] if and only if the [[tangent line]] to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding [[tangent parallelogram]], sometimes called a bounding parallelogram, formed by the tangent lines to the ellipse at the four endpoints of the conjugate diameters. All tangent parallelograms for a given ellipse have the same area. It is possible to [[Compass and straightedge constructions|reconstruct]] an ellipse from any pair of conjugate diameters, or from any tangent parallelogram. ===Faces of a parallelepiped=== A [[parallelepiped]] is a three-dimensional figure whose six [[face (geometry)|faces]] are parallelograms. ==See also== *[[Fundamental parallelogram (disambiguation)]] *[[Antiparallelogram]] * [[Levi-Civita parallelogramoid]] ==References== {{reflist}} ==External links== {{Commons category|Parallelograms}} *[http://www.elsy.at/kurse/index.php?kurs=Parallelogram+and+Rhombus&status=public Parallelogram and Rhombus - Animated course (Construction, Circumference, Area)] *{{MathWorld |urlname=Parallelogram |title=Parallelogram}} *[http://www.mathwarehouse.com/geometry/quadrilaterals/parallelograms/index.php Interactive Parallelogram --sides, angles and slope] *[http://www.cut-the-knot.org/Curriculum/Geometry/AreaOfParallelogram.shtml Area of Parallelogram] at [[cut-the-knot]] *[http://www.cut-the-knot.org/Curriculum/Geometry/EquiTriOnPara.shtml Equilateral Triangles On Sides of a Parallelogram] at [[cut-the-knot]] *[http://www.mathopenref.com/parallelogram.html Definition and properties of a parallelogram] with animated applet *[http://www.mathopenref.com/parallelogramarea.html Interactive applet showing parallelogram area calculation] interactive applet {{Polygons}} [[Category:Types of quadrilaterals]] [[Category:Elementary shapes]]'
New page wikitext, after the edit (new_wikitext)
' Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make ==Special cases== *[[Rectangle]] – A parallelogram with four angles of equal size (right angles). *[[Rhombus]] – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a [[rhomboid]] but this term is not used in modern mathematics.<ref>{{cite web|url=http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|title=CIMT - Page no longer available at Plymouth University servers|website=www.cimt.plymouth.ac.uk|url-status=dead|archive-url=https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|archive-date=2014-05-14}}</ref> *[[Square (geometry)|Square]] – A parallelogram with four sides of equal length and angles of equal size (right angles). ==Characterizations== A [[simple polygon|simple]] (non-self-intersecting) [[quadrilateral]] is a parallelogram [[if and only if]] any one of the following statements is true:<ref>Owen Byer, Felix Lazebnik and [[Deirdre Smeltzer]], ''Methods for Euclidean Geometry'', Mathematical Association of America, 2010, pp. 51-52.</ref><ref>Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, p. 22.</ref> *Two pairs of opposite sides are parallel (by definition). *Two pairs of opposite sides are equal in length. *Two pairs of opposite angles are equal in measure. *The [[diagonal]]s bisect each other. *One pair of opposite sides is [[Parallel (geometry)|parallel]] and equal in length. *[[Adjacent angles]] are [[supplementary angles|supplementary]]. *Each diagonal divides the quadrilateral into two [[congruence (geometry)|congruent]] [[triangle]]s. *The sum of the [[Square number|square]]s of the sides equals the sum of the squares of the diagonals. (This is the [[parallelogram law]].) *It has [[rotational symmetry]] of order 2. *The sum of the distances from any interior point to the sides is independent of the location of the point.<ref>Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", ''[[The College Mathematics Journal]]'' 37(5), 2006, pp. 390–391.</ref> (This is an extension of [[Viviani's theorem]].) *There is a point ''X'' in the plane of the quadrilateral with the property that every straight line through ''X'' divides the quadrilateral into two regions of equal area.<ref>Problem 5, ''2006 British Mathematical Olympiad'', [http://artofproblemsolving.com/downloads/printable_post_collections/5063].</ref> Thus all parallelograms have all the properties listed above, and [[Converse (logic)|conversely]], if just one of these statements is true in a simple quadrilateral, then it is a parallelogram. ==Other properties== *Opposite sides of a parallelogram are parallel (by definition) and so will never intersect. *The area of a parallelogram is twice the area of a triangle created by one of its diagonals. *The area of a parallelogram is also equal to the magnitude of the [[vector cross product]] of two [[adjacent side (polygon)|adjacent]] sides. *Any line through the midpoint of a parallelogram bisects the area.<ref>Dunn, J.A., and J.E. Pretty, "Halving a triangle", ''Mathematical Gazette'' 56, May 1972, p. 105.</ref> *Any non-degenerate [[affine transformation]] takes a parallelogram to another parallelogram. *A parallelogram has [[rotational symmetry]] of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of [[reflectional symmetry]] then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a [[square]]. *The perimeter of a parallelogram is 2(''a'' + ''b'') where ''a'' and ''b'' are the lengths of adjacent sides. *Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area.<ref>{{cite web|last=Weisstein|first=Eric W|title=Triangle Circumscribing|url=http://mathworld.wolfram.com/TriangleCircumscribing.html|work=Wolfram Math World}}</ref> *The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square.<ref name=Weisstein>Weisstein, Eric W. "Parallelogram." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Parallelogram.html</ref> *If two lines parallel to sides of a parallelogram are constructed [[concurrent lines|concurrent]] to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area.<ref name=Weisstein/> *The diagonals of a parallelogram divide it into four triangles of equal area. ==Area formula{{anchor|Area}}== [[File:ParallelogramArea.svg|thumb|180px|alt=A diagram showing how a parallelogram can be re-arranged into the shape of a rectangle|A parallelogram can be rearranged into a rectangle with the same area.]] [[File:Parallelogram area animated.gif|thumb|180px|Animation for the area formula <math>K = bh</math>.]] All of the [[Quadrilateral#Area of a convex quadrilateral|area formulas for general convex quadrilaterals]] apply to parallelograms. Further formulas are specific to parallelograms: A parallelogram with base ''b'' and height ''h'' can be divided into a [[trapezoid]] and a [[right triangle]], and rearranged into a [[rectangle]], as shown in the figure to the left. This means that the [[area]] of a parallelogram is the same as that of a rectangle with the same base and height: :<math>K = bh.</math> [[File:Parallelogram area.svg|thumb|The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram]] The base × height area formula can also be derived using the figure to the right. The area ''K'' of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the rectangle is :<math>K_\text{rect} = (B+A) \times H\,</math> and the area of a single triangle is :<math>K_\text{tri} = \frac{A}{2} \times H. \,</math> Therefore, the area of the parallelogram is :<math>K = K_\text{rect} - 2 \times K_\text{tri} = ( (B+A) \times H) - ( A \times H) = B \times H.</math> Another area formula, for two sides ''B'' and ''C'' and angle θ, is :<math>K = B \cdot C \cdot \sin \theta.\,</math> The area of a parallelogram with sides ''B'' and ''C'' (''B'' ≠ ''C'') and angle <math>\gamma</math> at the intersection of the diagonals is given by<ref>Mitchell, Douglas W., "The area of a quadrilateral", ''Mathematical Gazette'', July 2009.</ref> :<math>K = \frac{|\tan \gamma|}{2} \cdot \left| B^2 - C^2 \right|.</math> When the parallelogram is specified from the lengths ''B'' and ''C'' of two adjacent sides together with the length ''D''<sub>1</sub> of either diagonal, then the area can be found from [[Heron's formula]]. Specifically it is :<math>K=2\sqrt{S(S-B)(S-C)(S-D_1)}</math> where <math>S=(B+C+D_1)/2</math> and the leading factor 2 comes from the fact that the chosen diagonal divides the parallelogram into ''two'' congruent triangles. === From vertex coordinates === Let vectors <math>\mathbf{a},\mathbf{b}\in\R^2</math> and let <math>V = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \in\R^{2 \times 2}</math> denote the matrix with elements of '''a''' and '''b'''. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>|\det(V)| = |a_1b_2 - a_2b_1|\,</math>. Let vectors <math>\mathbf{a},\mathbf{b}\in\R^n</math> and let <math>V = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{bmatrix} \in\R^{2 \times n}</math>. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>\sqrt{\det(V V^\mathrm{T})}</math>. Let points <math>a,b,c\in\R^2</math>. Then the [[signed area]] of the parallelogram with vertices at ''a'', ''b'' and ''c'' is equivalent to the determinant of a matrix built using ''a'', ''b'' and ''c'' as rows with the last column padded using ones as follows: :<math>K = \left| \begin{matrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{matrix} \right|. </math> ==Proof that diagonals bisect each other== [[File:Parallelogram1.svg|right|Parallelogram ABCD]] To prove that the diagonals of a parallelogram bisect each other, we will use [[congruence (geometry)|congruent]] [[Triangle#Basic facts|triangle]]s: :<math>\angle ABE \cong \angle CDE</math> ''(alternate interior angles are equal in measure)'' :<math>\angle BAE \cong \angle DCE</math> ''(alternate interior angles are equal in measure)''. (since these are angles that a transversal makes with [[Parallel (geometry)|parallel lines]] ''AB'' and ''DC''). Also, side ''AB'' is equal in length to side ''DC'', since opposite sides of a parallelogram are equal in length. Therefore, triangles ''ABE'' and ''CDE'' are congruent (ASA postulate, ''two corresponding angles and the included side''). Therefore, :<math>AE = CE</math> :<math>BE = DE.</math> Since the diagonals ''AC'' and ''BD'' divide each other into segments of equal length, the diagonals bisect each other. Separately, since the diagonals ''AC'' and ''BD'' bisect each other at point ''E'', point ''E'' is the midpoint of each diagonal. == Lattice of parallelograms== Parallelograms can tile the plane by translation. If edges are equal, or angles are right, the symmetry of the lattice is higher. These represent the four [[Bravais_lattice#In_2_dimensions|Bravais lattices in 2 dimensions]]. {| class=wikitable |+ Lattices |- !Form||Square||Rectangle||Rhombus||Rhomboid |- !System !Square<BR>(tetragonal) !Rectangular<BR>(orthorhombic) !Centered rectangular<BR>(orthorhombic) !Oblique<BR>(monoclinic) |- align=center !Constraints |&alpha;=90°, a=b |&alpha;=90° |a=b |None |- align=center ![[List_of_planar_symmetry_groups#Wallpaper_groups|Symmetry]] |p4m, [4,4], order 8''n''||colspan=2|pmm, [&infin;,2,&infin;], order 4''n''||p1, [&infin;<sup>+</sup>,2,&infin;<sup>+</sup>], order 2''n'' |- align=center !Form |[[File:Isohedral tiling p4-56.png|160px]] |[[File:Isohedral tiling p4-54.png|160px]] |[[File:Isohedral tiling p4-55.png|160px]] |[[File:Isohedral tiling p4-50.png|160px]] |} ==Parallelograms arising from other figures== ===Automedian triangle=== An [[automedian triangle]] is one whose [[median (geometry)|medians]] are in the same proportions as its sides (though in a different order). If ''ABC'' is an automedian triangle in which vertex ''A'' stands opposite the side ''a'', ''G'' is the [[centroid]] (where the three medians of ''ABC'' intersect), and ''AL'' is one of the extended medians of ''ABC'' with ''L'' lying on the circumcircle of ''ABC'', then ''BGCL'' is a parallelogram. ===Varignon parallelogram=== {{main|Varignon's theorem}} [[File:varignon_parallelogram.svg|thumb|Proof without words of Varignon's theorem ]] [[Varignon's theorem]] holds that the [[midpoint]]s of the sides of an arbitrary quadrilateral are the vertices of a parallelogram, called its ''Varignon parallelogram''. If the quadrilateral is [[Convex polygon|convex]] or [[Concave polygon|concave]] (that is, not self-intersecting), then the area of the Varignon parallelogram is half the area of the quadrilateral. [[Proof without words]] (see figure): # An arbitrary quadrilateral and its diagonals. # Bases of similar triangles are parallel to the blue diagonal. # Ditto for the red diagonal. # The base pairs form a parallelogram with half the area of the quadrilateral, ''A<sub>q</sub>'', as the sum of the areas of the four large triangles, ''A<sub>l</sub>'' is 2 ''A<sub>q</sub>'' (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, ''A<sub>s</sub>'' is a quarter of ''A<sub>l</sub>'' (half linear dimensions yields quarter area), and the area of the parallelogram is ''A<sub>q</sub>'' minus ''A<sub>s</sub>''. ===Tangent parallelogram of an ellipse=== For an [[ellipse]], two diameters are said to be [[Conjugate diameters|conjugate]] if and only if the [[tangent line]] to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding [[tangent parallelogram]], sometimes called a bounding parallelogram, formed by the tangent lines to the ellipse at the four endpoints of the conjugate diameters. All tangent parallelograms for a given ellipse have the same area. It is possible to [[Compass and straightedge constructions|reconstruct]] an ellipse from any pair of conjugate diameters, or from any tangent parallelogram. ===Faces of a parallelepiped=== A [[parallelepiped]] is a three-dimensional figure whose six [[face (geometry)|faces]] are parallelograms. ==See also== *[[Fundamental parallelogram (disambiguation)]] *[[Antiparallelogram]] * [[Levi-Civita parallelogramoid]] ==References== {{reflist}} ==External links== {{Commons category|Parallelograms}} *[http://www.elsy.at/kurse/index.php?kurs=Parallelogram+and+Rhombus&status=public Parallelogram and Rhombus - Animated course (Construction, Circumference, Area)] *{{MathWorld |urlname=Parallelogram |title=Parallelogram}} *[http://www.mathwarehouse.com/geometry/quadrilaterals/parallelograms/index.php Interactive Parallelogram --sides, angles and slope] *[http://www.cut-the-knot.org/Curriculum/Geometry/AreaOfParallelogram.shtml Area of Parallelogram] at [[cut-the-knot]] *[http://www.cut-the-knot.org/Curriculum/Geometry/EquiTriOnPara.shtml Equilateral Triangles On Sides of a Parallelogram] at [[cut-the-knot]] *[http://www.mathopenref.com/parallelogram.html Definition and properties of a parallelogram] with animated applet *[http://www.mathopenref.com/parallelogramarea.html Interactive applet showing parallelogram area calculation] interactive applet {{Polygons}} [[Category:Types of quadrilaterals]] [[Category:Elementary shapes]]'
Unified diff of changes made by edit (edit_diff)
'@@ -1,20 +1,4 @@ -{{Short description|Quadrilateral with two pairs of parallel sides}} -{{About|the quadrilateral shape|the album by Linda Perhacs|Parallelograms (album)}} -{{Infobox polygon -| name = Parallelogram -| image = Parallelogram.svg -| caption = This parallelogram is a [[rhomboid]] as it has no right angles and unequal sides. -| type = [[quadrilateral]], [[trapezoid|trapezium]] -| edges = 4 -| symmetry = [[Point reflection|C<sub>2</sub>]], [2]<sup>+</sup>, -| area = ''b'' × ''h'' (base × height);<br>''ab'' sin ''θ'' (product of adjacent sides and sine of the vertex angle determined by them) -| properties = [[convex polygon|convex]]}} -In [[Euclidean geometry]], a '''parallelogram''' is a [[simple polygon|simple]] (non-[[list of self-intersecting polygons|self-intersecting]]) [[quadrilateral]] with two pairs of [[Parallel (geometry)|parallel]] sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The [[congruence (geometry)|congruence]] of opposite sides and opposite angles is a direct consequence of the Euclidean [[parallel postulate]] and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations. -By comparison, a quadrilateral with at least one pair of parallel sides is a [[trapezoid]] in American English or a trapezium in British English. - -The three-dimensional counterpart of a parallelogram is a [[parallelepiped]]. - -The word comes from the Greek παραλληλό-γραμμον, ''parallēló-grammon'', which means a shape "of parallel lines". +Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make ==Special cases== '
New page size (new_size)
14787
Old page size (old_size)
15454
Size change in edit (edit_delta)
-667
Lines added in edit (added_lines)
[ 0 => 'Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make' ]
Lines removed in edit (removed_lines)
[ 0 => '{{Short description|Quadrilateral with two pairs of parallel sides}}', 1 => '{{About|the quadrilateral shape|the album by Linda Perhacs|Parallelograms (album)}}', 2 => '{{Infobox polygon', 3 => '| name = Parallelogram ', 4 => '| image = Parallelogram.svg', 5 => '| caption = This parallelogram is a [[rhomboid]] as it has no right angles and unequal sides.', 6 => '| type = [[quadrilateral]], [[trapezoid|trapezium]]', 7 => '| edges = 4', 8 => '| symmetry = [[Point reflection|C<sub>2</sub>]], [2]<sup>+</sup>, ', 9 => '| area = ''b'' × ''h'' (base × height);<br>''ab'' sin ''θ'' (product of adjacent sides and sine of the vertex angle determined by them)', 10 => '| properties = [[convex polygon|convex]]}}', 11 => 'In [[Euclidean geometry]], a '''parallelogram''' is a [[simple polygon|simple]] (non-[[list of self-intersecting polygons|self-intersecting]]) [[quadrilateral]] with two pairs of [[Parallel (geometry)|parallel]] sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The [[congruence (geometry)|congruence]] of opposite sides and opposite angles is a direct consequence of the Euclidean [[parallel postulate]] and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.', 12 => 'By comparison, a quadrilateral with at least one pair of parallel sides is a [[trapezoid]] in American English or a trapezium in British English.', 13 => '', 14 => 'The three-dimensional counterpart of a parallelogram is a [[parallelepiped]].', 15 => '', 16 => 'The word comes from the Greek παραλληλό-γραμμον, ''parallēló-grammon'', which means a shape "of parallel lines".' ]
Parsed HTML source of the new revision (new_html)
'<div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Special_cases"><span class="tocnumber">1</span> <span class="toctext">Special cases</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Characterizations"><span class="tocnumber">2</span> <span class="toctext">Characterizations</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Other_properties"><span class="tocnumber">3</span> <span class="toctext">Other properties</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Area_formula"><span class="tocnumber">4</span> <span class="toctext">Area formula</span></a> <ul> <li class="toclevel-2 tocsection-5"><a href="#From_vertex_coordinates"><span class="tocnumber">4.1</span> <span class="toctext">From vertex coordinates</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-6"><a href="#Proof_that_diagonals_bisect_each_other"><span class="tocnumber">5</span> <span class="toctext">Proof that diagonals bisect each other</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#Lattice_of_parallelograms"><span class="tocnumber">6</span> <span class="toctext">Lattice of parallelograms</span></a></li> <li class="toclevel-1 tocsection-8"><a href="#Parallelograms_arising_from_other_figures"><span class="tocnumber">7</span> <span class="toctext">Parallelograms arising from other figures</span></a> <ul> <li class="toclevel-2 tocsection-9"><a href="#Automedian_triangle"><span class="tocnumber">7.1</span> <span class="toctext">Automedian triangle</span></a></li> <li class="toclevel-2 tocsection-10"><a href="#Varignon_parallelogram"><span class="tocnumber">7.2</span> <span class="toctext">Varignon parallelogram</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#Tangent_parallelogram_of_an_ellipse"><span class="tocnumber">7.3</span> <span class="toctext">Tangent parallelogram of an ellipse</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#Faces_of_a_parallelepiped"><span class="tocnumber">7.4</span> <span class="toctext">Faces of a parallelepiped</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-13"><a href="#See_also"><span class="tocnumber">8</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-14"><a href="#References"><span class="tocnumber">9</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-15"><a href="#External_links"><span class="tocnumber">10</span> <span class="toctext">External links</span></a></li> </ul> </div> <h2><span class="mw-headline" id="Special_cases">Special cases</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=1"title="Edit section: Special cases" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <ul><li><a href="/info/en/?search=Rectangle" title="Rectangle">Rectangle</a> – A parallelogram with four angles of equal size (right angles).</li> <li><a href="/info/en/?search=Rhombus" title="Rhombus">Rhombus</a> – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a <a href="/info/en/?search=Rhomboid" title="Rhomboid">rhomboid</a> but this term is not used in modern mathematics.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1">&#91;1&#93;</a></sup></li> <li><a href="/info/en/?search=Square_(geometry)" class="mw-redirect" title="Square (geometry)">Square</a> – A parallelogram with four sides of equal length and angles of equal size (right angles).</li></ul> <h2><span class="mw-headline" id="Characterizations">Characterizations</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=2"title="Edit section: Characterizations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <p>A <a href="/info/en/?search=Simple_polygon" title="Simple polygon">simple</a> (non-self-intersecting) <a href="/info/en/?search=Quadrilateral" title="Quadrilateral">quadrilateral</a> is a parallelogram <a href="/info/en/?search=If_and_only_if" title="If and only if">if and only if</a> any one of the following statements is true:<sup id="cite_ref-2" class="reference"><a href="#cite_note-2">&#91;2&#93;</a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3">&#91;3&#93;</a></sup> </p> <ul><li>Two pairs of opposite sides are parallel (by definition).</li> <li>Two pairs of opposite sides are equal in length.</li> <li>Two pairs of opposite angles are equal in measure.</li> <li>The <a href="/info/en/?search=Diagonal" title="Diagonal">diagonals</a> bisect each other.</li> <li>One pair of opposite sides is <a href="/info/en/?search=Parallel_(geometry)" title="Parallel (geometry)">parallel</a> and equal in length.</li> <li><a href="/info/en/?search=Adjacent_angles" class="mw-redirect" title="Adjacent angles">Adjacent angles</a> are <a href="/info/en/?search=Supplementary_angles" class="mw-redirect" title="Supplementary angles">supplementary</a>.</li> <li>Each diagonal divides the quadrilateral into two <a href="/info/en/?search=Congruence_(geometry)" title="Congruence (geometry)">congruent</a> <a href="/info/en/?search=Triangle" title="Triangle">triangles</a>.</li> <li>The sum of the <a href="/info/en/?search=Square_number" title="Square number">squares</a> of the sides equals the sum of the squares of the diagonals. (This is the <a href="/info/en/?search=Parallelogram_law" title="Parallelogram law">parallelogram law</a>.)</li> <li>It has <a href="/info/en/?search=Rotational_symmetry" title="Rotational symmetry">rotational symmetry</a> of order 2.</li> <li>The sum of the distances from any interior point to the sides is independent of the location of the point.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4">&#91;4&#93;</a></sup> (This is an extension of <a href="/info/en/?search=Viviani%27s_theorem" title="Viviani&#39;s theorem">Viviani's theorem</a>.)</li> <li>There is a point <i>X</i> in the plane of the quadrilateral with the property that every straight line through <i>X</i> divides the quadrilateral into two regions of equal area.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5">&#91;5&#93;</a></sup></li></ul> <p>Thus all parallelograms have all the properties listed above, and <a href="/info/en/?search=Converse_(logic)" title="Converse (logic)">conversely</a>, if just one of these statements is true in a simple quadrilateral, then it is a parallelogram. </p> <h2><span class="mw-headline" id="Other_properties">Other properties</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=3"title="Edit section: Other properties" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <ul><li>Opposite sides of a parallelogram are parallel (by definition) and so will never intersect.</li> <li>The area of a parallelogram is twice the area of a triangle created by one of its diagonals.</li> <li>The area of a parallelogram is also equal to the magnitude of the <a href="/info/en/?search=Vector_cross_product" class="mw-redirect" title="Vector cross product">vector cross product</a> of two <a href="/info/en/?search=Adjacent_side_(polygon)" class="mw-redirect" title="Adjacent side (polygon)">adjacent</a> sides.</li> <li>Any line through the midpoint of a parallelogram bisects the area.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6">&#91;6&#93;</a></sup></li> <li>Any non-degenerate <a href="/info/en/?search=Affine_transformation" title="Affine transformation">affine transformation</a> takes a parallelogram to another parallelogram.</li> <li>A parallelogram has <a href="/info/en/?search=Rotational_symmetry" title="Rotational symmetry">rotational symmetry</a> of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of <a href="/info/en/?search=Reflectional_symmetry" class="mw-redirect" title="Reflectional symmetry">reflectional symmetry</a> then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a <a href="/info/en/?search=Square" title="Square">square</a>.</li> <li>The perimeter of a parallelogram is 2(<i>a</i> + <i>b</i>) where <i>a</i> and <i>b</i> are the lengths of adjacent sides.</li> <li>Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7">&#91;7&#93;</a></sup></li> <li>The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square.<sup id="cite_ref-Weisstein_8-0" class="reference"><a href="#cite_note-Weisstein-8">&#91;8&#93;</a></sup></li> <li>If two lines parallel to sides of a parallelogram are constructed <a href="/info/en/?search=Concurrent_lines" title="Concurrent lines">concurrent</a> to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area.<sup id="cite_ref-Weisstein_8-1" class="reference"><a href="#cite_note-Weisstein-8">&#91;8&#93;</a></sup></li> <li>The diagonals of a parallelogram divide it into four triangles of equal area.</li></ul> <h2><span class="mw-headline" id="Area_formula">Area formula<span class="anchor" id="Area"></span></span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=4"title="Edit section: Area formula" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <figure typeof="mw:File/Thumb"><a href="/info/en/?search=File:ParallelogramArea.svg" class="mw-file-description"><img alt="A diagram showing how a parallelogram can be re-arranged into the shape of a rectangle" src="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/ParallelogramArea.svg/180px-ParallelogramArea.svg.png" decoding="async" width="180" height="245" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/ParallelogramArea.svg/270px-ParallelogramArea.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/ParallelogramArea.svg/360px-ParallelogramArea.svg.png 2x" data-file-width="220" data-file-height="300" /></a><figcaption>A parallelogram can be rearranged into a rectangle with the same area.</figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/info/en/?search=File:Parallelogram_area_animated.gif" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/Parallelogram_area_animated.gif/180px-Parallelogram_area_animated.gif" decoding="async" width="180" height="120" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/Parallelogram_area_animated.gif/270px-Parallelogram_area_animated.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/2/27/Parallelogram_area_animated.gif 2x" data-file-width="300" data-file-height="200" /></a><figcaption>Animation for the area formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=bh}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>b</mi> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=bh}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6a8b110c6ce0b30cf7d53619c3ebaf0a8865227" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.501ex; height:2.176ex;" alt="{\displaystyle K=bh}"></span>.</figcaption></figure> <p>All of the <a href="/info/en/?search=Quadrilateral#Area_of_a_convex_quadrilateral" title="Quadrilateral">area formulas for general convex quadrilaterals</a> apply to parallelograms. Further formulas are specific to parallelograms: </p><p>A parallelogram with base <i>b</i> and height <i>h</i> can be divided into a <a href="/info/en/?search=Trapezoid" title="Trapezoid">trapezoid</a> and a <a href="/info/en/?search=Right_triangle" title="Right triangle">right triangle</a>, and rearranged into a <a href="/info/en/?search=Rectangle" title="Rectangle">rectangle</a>, as shown in the figure to the left. This means that the <a href="/info/en/?search=Area" title="Area">area</a> of a parallelogram is the same as that of a rectangle with the same base and height: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=bh.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>b</mi> <mi>h</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=bh.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0aafb35db413cd4e1e428c61e0564f097692f1a9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.148ex; height:2.176ex;" alt="{\displaystyle K=bh.}"></span></dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/info/en/?search=File:Parallelogram_area.svg" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/8/84/Parallelogram_area.svg/220px-Parallelogram_area.svg.png" decoding="async" width="220" height="135" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/8/84/Parallelogram_area.svg/330px-Parallelogram_area.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/84/Parallelogram_area.svg/440px-Parallelogram_area.svg.png 2x" data-file-width="520" data-file-height="320" /></a><figcaption>The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram</figcaption></figure> <p>The base × height area formula can also be derived using the figure to the right. The area <i>K</i> of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the rectangle is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{rect}}=(B+A)\times H\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rect</mtext> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{rect}}=(B+A)\times H\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/624d8b3c282546b2da21eebbf5230221831ae316" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.496ex; height:2.843ex;" alt="{\displaystyle K_{\text{rect}}=(B+A)\times H\,}"></span></dd></dl> <p>and the area of a single triangle is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{tri}}={\frac {A}{2}}\times H.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>tri</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{tri}}={\frac {A}{2}}\times H.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a207b19540ff507ebf5aea92b2216b934baa939d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.563ex; height:5.343ex;" alt="{\displaystyle K_{\text{tri}}={\frac {A}{2}}\times H.\,}"></span></dd></dl> <p>Therefore, the area of the parallelogram is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=K_{\text{rect}}-2\times K_{\text{tri}}=((B+A)\times H)-(A\times H)=B\times H.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rect</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>tri</mtext> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>B</mi> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=K_{\text{rect}}-2\times K_{\text{tri}}=((B+A)\times H)-(A\times H)=B\times H.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74aba8c98bfea059c67c19e4c6bedd1f50b135d3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.583ex; height:2.843ex;" alt="{\displaystyle K=K_{\text{rect}}-2\times K_{\text{tri}}=((B+A)\times H)-(A\times H)=B\times H.}"></span></dd></dl> <p>Another area formula, for two sides <i>B</i> and <i>C</i> and angle θ, is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=B\cdot C\cdot \sin \theta .\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>B</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=B\cdot C\cdot \sin \theta .\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f761ff8f6540b6a058436e66ee822609c8f7d9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.42ex; height:2.176ex;" alt="{\displaystyle K=B\cdot C\cdot \sin \theta .\,}"></span></dd></dl> <p>The area of a parallelogram with sides <i>B</i> and <i>C</i> (<i>B</i> ≠ <i>C</i>) and angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> at the intersection of the diagonals is given by<sup id="cite_ref-9" class="reference"><a href="#cite_note-9">&#91;9&#93;</a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\frac {|\tan \gamma |}{2}}\cdot \left|B^{2}-C^{2}\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>|</mo> <mrow> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\frac {|\tan \gamma |}{2}}\cdot \left|B^{2}-C^{2}\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67c66072c35ad604d43cd4becc4b1287f18c9476" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.208ex; height:5.676ex;" alt="{\displaystyle K={\frac {|\tan \gamma |}{2}}\cdot \left|B^{2}-C^{2}\right|.}"></span></dd></dl> <p>When the parallelogram is specified from the lengths <i>B</i> and <i>C</i> of two adjacent sides together with the length <i>D</i><sub>1</sub> of either diagonal, then the area can be found from <a href="/info/en/?search=Heron%27s_formula" title="Heron&#39;s formula">Heron's formula</a>. Specifically it is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=2{\sqrt {S(S-B)(S-C)(S-D_{1})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>S</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2212;<!-- − --></mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=2{\sqrt {S(S-B)(S-C)(S-D_{1})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1b1e8a1a08c425f34c4c52e7c17c5a5d851e61b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.105ex; height:4.843ex;" alt="{\displaystyle K=2{\sqrt {S(S-B)(S-C)(S-D_{1})}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=(B+C+D_{1})/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>C</mi> <mo>+</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=(B+C+D_{1})/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13090983ab2505b560086c26b020ddd1feab6932" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.922ex; height:2.843ex;" alt="{\displaystyle S=(B+C+D_{1})/2}"></span> and the leading factor 2 comes from the fact that the chosen diagonal divides the parallelogram into <i>two</i> congruent triangles. </p> <h3><span class="mw-headline" id="From_vertex_coordinates">From vertex coordinates</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=5"title="Edit section: From vertex coordinates" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <p>Let vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d98efc77fcc0696625eb4dc597fa365b611269ae" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.392ex; height:3.009ex;" alt="{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{2}}"></span> and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}\\b_{1}&amp;b_{2}\end{bmatrix}}\in \mathbb {R} ^{2\times 2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}\\b_{1}&amp;b_{2}\end{bmatrix}}\in \mathbb {R} ^{2\times 2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a933b8f3dc284db8e64464c93f09365e525b4b21" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.656ex; height:6.176ex;" alt="{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}\\b_{1}&amp;b_{2}\end{bmatrix}}\in \mathbb {R} ^{2\times 2}}"></span> denote the matrix with elements of <b>a</b> and <b>b</b>. Then the area of the parallelogram generated by <b>a</b> and <b>b</b> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\det(V)|=|a_{1}b_{2}-a_{2}b_{1}|\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\det(V)|=|a_{1}b_{2}-a_{2}b_{1}|\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34d4d45a7960c88424fa90befaaf70a70e41a5ec" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.798ex; height:2.843ex;" alt="{\displaystyle |\det(V)|=|a_{1}b_{2}-a_{2}b_{1}|\,}"></span>. </p><p>Let vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f47b03efec8aaa368a671bd60936c05d5385445" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.556ex; height:2.676ex;" alt="{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{n}}"></span> and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}&amp;\dots &amp;a_{n}\\b_{1}&amp;b_{2}&amp;\dots &amp;b_{n}\end{bmatrix}}\in \mathbb {R} ^{2\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2026;<!-- … --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2026;<!-- … --></mo> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}&amp;\dots &amp;a_{n}\\b_{1}&amp;b_{2}&amp;\dots &amp;b_{n}\end{bmatrix}}\in \mathbb {R} ^{2\times n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0eba21fc083a518af12de294b662182251daf121" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.637ex; height:6.176ex;" alt="{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}&amp;\dots &amp;a_{n}\\b_{1}&amp;b_{2}&amp;\dots &amp;b_{n}\end{bmatrix}}\in \mathbb {R} ^{2\times n}}"></span>. Then the area of the parallelogram generated by <b>a</b> and <b>b</b> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\det(VV^{\mathrm {T} })}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>V</mi> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\det(VV^{\mathrm {T} })}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20242172ff954885af682ddc428033f4f7e512c9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:12.486ex; height:4.843ex;" alt="{\displaystyle {\sqrt {\det(VV^{\mathrm {T} })}}}"></span>. </p><p>Let points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c\in \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c\in \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0964054bb701d9a51030dd1d4c21ff5d9371a881" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.875ex; height:3.009ex;" alt="{\displaystyle a,b,c\in \mathbb {R} ^{2}}"></span>. Then the <a href="/info/en/?search=Signed_area" title="Signed area">signed area</a> of the parallelogram with vertices at <i>a</i>, <i>b</i> and <i>c</i> is equivalent to the determinant of a matrix built using <i>a</i>, <i>b</i> and <i>c</i> as rows with the last column padded using ones as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\left|{\begin{matrix}a_{1}&amp;a_{2}&amp;1\\b_{1}&amp;b_{2}&amp;1\\c_{1}&amp;c_{2}&amp;1\end{matrix}}\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\left|{\begin{matrix}a_{1}&amp;a_{2}&amp;1\\b_{1}&amp;b_{2}&amp;1\\c_{1}&amp;c_{2}&amp;1\end{matrix}}\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81f4f90e3c2fe95f38f069988909511f7c5158cb" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.619ex; height:9.176ex;" alt="{\displaystyle K=\left|{\begin{matrix}a_{1}&amp;a_{2}&amp;1\\b_{1}&amp;b_{2}&amp;1\\c_{1}&amp;c_{2}&amp;1\end{matrix}}\right|.}"></span></dd></dl> <h2><span class="mw-headline" id="Proof_that_diagonals_bisect_each_other">Proof that diagonals bisect each other</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=6"title="Edit section: Proof that diagonals bisect each other" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <figure class="mw-default-size mw-halign-right" typeof="mw:File"><a href="/info/en/?search=File:Parallelogram1.svg" class="mw-file-description" title="Parallelogram ABCD"><img alt="Parallelogram ABCD" src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Parallelogram1.svg/200px-Parallelogram1.svg.png" decoding="async" width="200" height="150" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Parallelogram1.svg/300px-Parallelogram1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Parallelogram1.svg/400px-Parallelogram1.svg.png 2x" data-file-width="200" data-file-height="150" /></a><figcaption>Parallelogram ABCD</figcaption></figure> <p>To prove that the diagonals of a parallelogram bisect each other, we will use <a href="/info/en/?search=Congruence_(geometry)" title="Congruence (geometry)">congruent</a> <a href="/info/en/?search=Triangle#Basic_facts" title="Triangle">triangles</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle ABE\cong \angle CDE}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>A</mi> <mi>B</mi> <mi>E</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>C</mi> <mi>D</mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle ABE\cong \angle CDE}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fab9e09a52dea0bf091179212defbbf6035ff086" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.204ex; height:2.176ex;" alt="{\displaystyle \angle ABE\cong \angle CDE}"></span> <i>(alternate interior angles are equal in measure)</i></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle BAE\cong \angle DCE}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>B</mi> <mi>A</mi> <mi>E</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>D</mi> <mi>C</mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle BAE\cong \angle DCE}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6807434bee15ed8506eb916def45f584f398fb0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.204ex; height:2.176ex;" alt="{\displaystyle \angle BAE\cong \angle DCE}"></span> <i>(alternate interior angles are equal in measure)</i>.</dd></dl> <p>(since these are angles that a transversal makes with <a href="/info/en/?search=Parallel_(geometry)" title="Parallel (geometry)">parallel lines</a> <i>AB</i> and <i>DC</i>). </p><p>Also, side <i>AB</i> is equal in length to side <i>DC</i>, since opposite sides of a parallelogram are equal in length. </p><p>Therefore, triangles <i>ABE</i> and <i>CDE</i> are congruent (ASA postulate, <i>two corresponding angles and the included side</i>). </p><p>Therefore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AE=CE}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>E</mi> <mo>=</mo> <mi>C</mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AE=CE}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6d80254dff1b2250ab27448227c0257efc43fe1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.159ex; height:2.176ex;" alt="{\displaystyle AE=CE}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BE=DE.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>E</mi> <mo>=</mo> <mi>D</mi> <mi>E</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BE=DE.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fff2cf29d8b7a94f92079ccca0cfbf611369228c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.985ex; height:2.176ex;" alt="{\displaystyle BE=DE.}"></span></dd></dl> <p>Since the diagonals <i>AC</i> and <i>BD</i> divide each other into segments of equal length, the diagonals bisect each other. </p><p>Separately, since the diagonals <i>AC</i> and <i>BD</i> bisect each other at point <i>E</i>, point <i>E</i> is the midpoint of each diagonal. </p> <h2><span class="mw-headline" id="Lattice_of_parallelograms">Lattice of parallelograms</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=7"title="Edit section: Lattice of parallelograms" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <p>Parallelograms can tile the plane by translation. If edges are equal, or angles are right, the symmetry of the lattice is higher. These represent the four <a href="/info/en/?search=Bravais_lattice#In_2_dimensions" title="Bravais lattice">Bravais lattices in 2 dimensions</a>. </p> <table class="wikitable"> <caption>Lattices </caption> <tbody><tr> <th>Form</th> <th>Square</th> <th>Rectangle</th> <th>Rhombus</th> <th>Rhomboid </th></tr> <tr> <th>System </th> <th>Square<br />(tetragonal) </th> <th>Rectangular<br />(orthorhombic) </th> <th>Centered rectangular<br />(orthorhombic) </th> <th>Oblique<br />(monoclinic) </th></tr> <tr align="center"> <th>Constraints </th> <td>&#945;=90°, a=b </td> <td>&#945;=90° </td> <td>a=b </td> <td>None </td></tr> <tr align="center"> <th><a href="/info/en/?search=List_of_planar_symmetry_groups#Wallpaper_groups" title="List of planar symmetry groups">Symmetry</a> </th> <td>p4m, [4,4], order 8<i>n</i></td> <td colspan="2">pmm, [&#8734;,2,&#8734;], order 4<i>n</i></td> <td>p1, [&#8734;<sup>+</sup>,2,&#8734;<sup>+</sup>], order 2<i>n</i> </td></tr> <tr align="center"> <th>Form </th> <td><span typeof="mw:File"><a href="/info/en/?search=File:Isohedral_tiling_p4-56.png" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Isohedral_tiling_p4-56.png/160px-Isohedral_tiling_p4-56.png" decoding="async" width="160" height="103" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Isohedral_tiling_p4-56.png/240px-Isohedral_tiling_p4-56.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Isohedral_tiling_p4-56.png/320px-Isohedral_tiling_p4-56.png 2x" data-file-width="679" data-file-height="438" /></a></span> </td> <td><span typeof="mw:File"><a href="/info/en/?search=File:Isohedral_tiling_p4-54.png" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/26/Isohedral_tiling_p4-54.png/160px-Isohedral_tiling_p4-54.png" decoding="async" width="160" height="104" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/2/26/Isohedral_tiling_p4-54.png/240px-Isohedral_tiling_p4-54.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Isohedral_tiling_p4-54.png/320px-Isohedral_tiling_p4-54.png 2x" data-file-width="679" data-file-height="441" /></a></span> </td> <td><span typeof="mw:File"><a href="/info/en/?search=File:Isohedral_tiling_p4-55.png" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Isohedral_tiling_p4-55.png/160px-Isohedral_tiling_p4-55.png" decoding="async" width="160" height="108" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Isohedral_tiling_p4-55.png/240px-Isohedral_tiling_p4-55.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Isohedral_tiling_p4-55.png/320px-Isohedral_tiling_p4-55.png 2x" data-file-width="686" data-file-height="464" /></a></span> </td> <td><span typeof="mw:File"><a href="/info/en/?search=File:Isohedral_tiling_p4-50.png" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/02/Isohedral_tiling_p4-50.png/160px-Isohedral_tiling_p4-50.png" decoding="async" width="160" height="102" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/0/02/Isohedral_tiling_p4-50.png/240px-Isohedral_tiling_p4-50.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/Isohedral_tiling_p4-50.png/320px-Isohedral_tiling_p4-50.png 2x" data-file-width="677" data-file-height="433" /></a></span> </td></tr></tbody></table> <h2><span class="mw-headline" id="Parallelograms_arising_from_other_figures">Parallelograms arising from other figures</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=8"title="Edit section: Parallelograms arising from other figures" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <h3><span class="mw-headline" id="Automedian_triangle">Automedian triangle</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=9"title="Edit section: Automedian triangle" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <p>An <a href="/info/en/?search=Automedian_triangle" title="Automedian triangle">automedian triangle</a> is one whose <a href="/info/en/?search=Median_(geometry)" title="Median (geometry)">medians</a> are in the same proportions as its sides (though in a different order). If <i>ABC</i> is an automedian triangle in which vertex <i>A</i> stands opposite the side <i>a</i>, <i>G</i> is the <a href="/info/en/?search=Centroid" title="Centroid">centroid</a> (where the three medians of <i>ABC</i> intersect), and <i>AL</i> is one of the extended medians of <i>ABC</i> with <i>L</i> lying on the circumcircle of <i>ABC</i>, then <i>BGCL</i> is a parallelogram. </p> <h3><span class="mw-headline" id="Varignon_parallelogram">Varignon parallelogram</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=10"title="Edit section: Varignon parallelogram" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <style data-mw-deduplicate="TemplateStyles:r1033289096">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/info/en/?search=Varignon%27s_theorem" title="Varignon&#39;s theorem">Varignon's theorem</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/info/en/?search=File:Varignon_parallelogram.svg" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Varignon_parallelogram.svg/220px-Varignon_parallelogram.svg.png" decoding="async" width="220" height="293" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Varignon_parallelogram.svg/330px-Varignon_parallelogram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Varignon_parallelogram.svg/440px-Varignon_parallelogram.svg.png 2x" data-file-width="512" data-file-height="683" /></a><figcaption>Proof without words of Varignon's theorem</figcaption></figure> <p><a href="/info/en/?search=Varignon%27s_theorem" title="Varignon&#39;s theorem">Varignon's theorem</a> holds that the <a href="/info/en/?search=Midpoint" title="Midpoint">midpoints</a> of the sides of an arbitrary quadrilateral are the vertices of a parallelogram, called its <i>Varignon parallelogram</i>. If the quadrilateral is <a href="/info/en/?search=Convex_polygon" title="Convex polygon">convex</a> or <a href="/info/en/?search=Concave_polygon" title="Concave polygon">concave</a> (that is, not self-intersecting), then the area of the Varignon parallelogram is half the area of the quadrilateral. </p><p><a href="/info/en/?search=Proof_without_words" title="Proof without words">Proof without words</a> (see figure): </p> <ol><li>An arbitrary quadrilateral and its diagonals.</li> <li>Bases of similar triangles are parallel to the blue diagonal.</li> <li>Ditto for the red diagonal.</li> <li>The base pairs form a parallelogram with half the area of the quadrilateral, <i>A<sub>q</sub></i>, as the sum of the areas of the four large triangles, <i>A<sub>l</sub></i> is 2 <i>A<sub>q</sub></i> (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, <i>A<sub>s</sub></i> is a quarter of <i>A<sub>l</sub></i> (half linear dimensions yields quarter area), and the area of the parallelogram is <i>A<sub>q</sub></i> minus <i>A<sub>s</sub></i>.</li></ol> <h3><span class="mw-headline" id="Tangent_parallelogram_of_an_ellipse">Tangent parallelogram of an ellipse</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=11"title="Edit section: Tangent parallelogram of an ellipse" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <p>For an <a href="/info/en/?search=Ellipse" title="Ellipse">ellipse</a>, two diameters are said to be <a href="/info/en/?search=Conjugate_diameters" title="Conjugate diameters">conjugate</a> if and only if the <a href="/info/en/?search=Tangent_line" class="mw-redirect" title="Tangent line">tangent line</a> to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding <a href="/info/en/?search=Tangent_parallelogram" class="mw-redirect" title="Tangent parallelogram">tangent parallelogram</a>, sometimes called a bounding parallelogram, formed by the tangent lines to the ellipse at the four endpoints of the conjugate diameters. All tangent parallelograms for a given ellipse have the same area. </p><p>It is possible to <a href="/info/en/?search=Compass_and_straightedge_constructions" class="mw-redirect" title="Compass and straightedge constructions">reconstruct</a> an ellipse from any pair of conjugate diameters, or from any tangent parallelogram. </p> <h3><span class="mw-headline" id="Faces_of_a_parallelepiped">Faces of a parallelepiped</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=12"title="Edit section: Faces of a parallelepiped" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <p>A <a href="/info/en/?search=Parallelepiped" title="Parallelepiped">parallelepiped</a> is a three-dimensional figure whose six <a href="/info/en/?search=Face_(geometry)" title="Face (geometry)">faces</a> are parallelograms. </p> <h2><span class="mw-headline" id="See_also">See also</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=13"title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <ul><li><a href="/info/en/?search=Fundamental_parallelogram_(disambiguation)" class="mw-redirect mw-disambig" title="Fundamental parallelogram (disambiguation)">Fundamental parallelogram (disambiguation)</a></li> <li><a href="/info/en/?search=Antiparallelogram" title="Antiparallelogram">Antiparallelogram</a></li> <li><a href="/info/en/?search=Levi-Civita_parallelogramoid" title="Levi-Civita parallelogramoid">Levi-Civita parallelogramoid</a></li></ul> <h2><span class="mw-headline" id="References">References</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=14"title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <style data-mw-deduplicate="TemplateStyles:r1217336898">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1215172403">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("https://upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a{background-size:contain}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("https://upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a{background-size:contain}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("https://upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a{background-size:contain}.mw-parser-output .cs1-ws-icon a{background:url("https://upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#2C882D;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911F}html.skin-theme-clientpref-night .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-night .mw-parser-output .cs1-hidden-error{color:#f8a397}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-os .mw-parser-output .cs1-hidden-error{color:#f8a397}html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911F}}</style><cite class="citation web cs1"><a class="external text" href="https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf">"CIMT - Page no longer available at Plymouth University servers"</a> <span class="cs1-format">(PDF)</span>. <i>www.cimt.plymouth.ac.uk</i>. Archived from <a class="external text" href="https://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-05-14.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.cimt.plymouth.ac.uk&amp;rft.atitle=CIMT+-+Page+no+longer+available+at+Plymouth+University+servers&amp;rft_id=http%3A%2F%2Fwww.cimt.plymouth.ac.uk%2Fresources%2Ftopics%2Fart002.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParallelogram" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Owen Byer, Felix Lazebnik and <a href="/info/en/?search=Deirdre_Smeltzer" title="Deirdre Smeltzer">Deirdre Smeltzer</a>, <i>Methods for Euclidean Geometry</i>, Mathematical Association of America, 2010, pp. 51-52.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, p. 22.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", <i><a href="/info/en/?search=The_College_Mathematics_Journal" title="The College Mathematics Journal">The College Mathematics Journal</a></i> 37(5), 2006, pp. 390–391.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Problem 5, <i>2006 British Mathematical Olympiad</i>, <a class="external autonumber" href="http://artofproblemsolving.com/downloads/printable_post_collections/5063">[1]</a>.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Dunn, J.A., and J.E. Pretty, "Halving a triangle", <i>Mathematical Gazette</i> 56, May 1972, p. 105.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a class="external text" href="https://mathworld.wolfram.com/TriangleCircumscribing.html">"Triangle Circumscribing"</a>. <i>Wolfram Math World</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Wolfram+Math+World&amp;rft.atitle=Triangle+Circumscribing&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W&amp;rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FTriangleCircumscribing.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParallelogram" class="Z3988"></span></span> </li> <li id="cite_note-Weisstein-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Weisstein_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Weisstein_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Weisstein, Eric W. "Parallelogram." From MathWorld--A Wolfram Web Resource. <a class="external free" href="http://mathworld.wolfram.com/Parallelogram.html">http://mathworld.wolfram.com/Parallelogram.html</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Mitchell, Douglas W., "The area of a quadrilateral", <i>Mathematical Gazette</i>, July 2009.</span> </li> </ol></div></div> <h2><span class="mw-headline" id="External_links">External links</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=15"title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <style data-mw-deduplicate="TemplateStyles:r1217611005">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="https://upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Parallelograms" class="extiw" title="commons:Category:Parallelograms">Parallelograms</a></span>.</div></div> </div> <ul><li><a class="external text" href="https://www.elsy.at/kurse/index.php?kurs=Parallelogram+and+Rhombus&amp;status=public">Parallelogram and Rhombus - Animated course (Construction, Circumference, Area)</a></li> <li><span class="citation mathworld" id="Reference-Mathworld-Parallelogram"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/info/en/?search=Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a class="external text" href="https://mathworld.wolfram.com/Parallelogram.html">"Parallelogram"</a>. <i><a href="/info/en/?search=MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Parallelogram&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FParallelogram.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParallelogram" class="Z3988"></span></span></li> <li><a class="external text" href="https://www.mathwarehouse.com/geometry/quadrilaterals/parallelograms/index.php">Interactive Parallelogram --sides, angles and slope</a></li> <li><a class="external text" href="https://www.cut-the-knot.org/Curriculum/Geometry/AreaOfParallelogram.shtml">Area of Parallelogram</a> at <a href="/info/en/?search=Cut-the-knot" class="mw-redirect" title="Cut-the-knot">cut-the-knot</a></li> <li><a class="external text" href="https://www.cut-the-knot.org/Curriculum/Geometry/EquiTriOnPara.shtml">Equilateral Triangles On Sides of a Parallelogram</a> at <a href="/info/en/?search=Cut-the-knot" class="mw-redirect" title="Cut-the-knot">cut-the-knot</a></li> <li><a class="external text" href="https://www.mathopenref.com/parallelogram.html">Definition and properties of a parallelogram</a> with animated applet</li> <li><a class="external text" href="https://www.mathopenref.com/parallelogramarea.html">Interactive applet showing parallelogram area calculation</a> interactive applet</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1061467846">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Polygons_(List)" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1063604349">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/info/en/?search=Template:Polygons" title="Template:Polygons"><abbr title="View this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/info/en/?search=Template_talk:Polygons" title="Template talk:Polygons"><abbr title="Discuss this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a href="/info/en/?search=Special:EditPage/Template:Polygons" title="Special:EditPage/Template:Polygons"><abbr title="Edit this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Polygons_(List)" style="font-size:114%;margin:0 4em"><a href="/info/en/?search=Polygon" title="Polygon">Polygons</a> (<a href="/info/en/?search=List_of_polygons" title="List of polygons">List</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/info/en/?search=Triangle" title="Triangle">Triangles</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Acute_and_obtuse_triangles" title="Acute and obtuse triangles">Acute</a></li> <li><a href="/info/en/?search=Equilateral_triangle" title="Equilateral triangle">Equilateral</a></li> <li><a href="/info/en/?search=Ideal_triangle" title="Ideal triangle">Ideal</a></li> <li><a href="/info/en/?search=Isosceles_triangle" title="Isosceles triangle">Isosceles</a></li> <li><a href="/info/en/?search=Kepler_triangle" title="Kepler triangle">Kepler</a></li> <li><a href="/info/en/?search=Acute_and_obtuse_triangles" title="Acute and obtuse triangles">Obtuse</a></li> <li><a href="/info/en/?search=Right_triangle" title="Right triangle">Right</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/info/en/?search=Quadrilateral" title="Quadrilateral">Quadrilaterals</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Antiparallelogram" title="Antiparallelogram">Antiparallelogram</a></li> <li><a href="/info/en/?search=Bicentric_quadrilateral" title="Bicentric quadrilateral">Bicentric</a></li> <li><a href="/info/en/?search=Crossed_quadrilateral" class="mw-redirect" title="Crossed quadrilateral">Crossed</a></li> <li><a href="/info/en/?search=Cyclic_quadrilateral" title="Cyclic quadrilateral">Cyclic</a></li> <li><a href="/info/en/?search=Equidiagonal_quadrilateral" title="Equidiagonal quadrilateral">Equidiagonal</a></li> <li><a href="/info/en/?search=Ex-tangential_quadrilateral" title="Ex-tangential quadrilateral">Ex-tangential</a></li> <li><a href="/info/en/?search=Harmonic_quadrilateral" title="Harmonic quadrilateral">Harmonic</a></li> <li><a href="/info/en/?search=Isosceles_trapezoid" title="Isosceles trapezoid">Isosceles trapezoid</a></li> <li><a href="/info/en/?search=Kite_(geometry)" title="Kite (geometry)">Kite</a></li> <li><a href="/info/en/?search=Orthodiagonal_quadrilateral" title="Orthodiagonal quadrilateral">Orthodiagonal</a></li> <li><a class="mw-selflink selflink">Parallelogram</a></li> <li><a href="/info/en/?search=Rectangle" title="Rectangle">Rectangle</a></li> <li><a href="/info/en/?search=Right_kite" title="Right kite">Right kite</a></li> <li><a href="/info/en/?search=Right_trapezoid" class="mw-redirect" title="Right trapezoid">Right trapezoid</a></li> <li><a href="/info/en/?search=Rhombus" title="Rhombus">Rhombus</a></li> <li><a href="/info/en/?search=Square" title="Square">Square</a></li> <li><a href="/info/en/?search=Tangential_quadrilateral" title="Tangential quadrilateral">Tangential</a></li> <li><a href="/info/en/?search=Tangential_trapezoid" title="Tangential trapezoid">Tangential trapezoid</a></li> <li><a href="/info/en/?search=Trapezoid" title="Trapezoid">Trapezoid</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By number <br />of sides</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">1–10 sides</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Monogon" title="Monogon">Monogon (1)</a></li> <li><a href="/info/en/?search=Digon" title="Digon">Digon (2)</a></li> <li><a href="/info/en/?search=Triangle" title="Triangle">Triangle (3)</a></li> <li><a href="/info/en/?search=Quadrilateral" title="Quadrilateral">Quadrilateral (4)</a></li> <li><a href="/info/en/?search=Pentagon" title="Pentagon">Pentagon (5)</a></li> <li><a href="/info/en/?search=Hexagon" title="Hexagon">Hexagon (6)</a></li> <li><a href="/info/en/?search=Heptagon" title="Heptagon">Heptagon (7)</a></li> <li><a href="/info/en/?search=Octagon" title="Octagon">Octagon (8)</a></li> <li><a href="/info/en/?search=Nonagon" title="Nonagon">Nonagon (Enneagon, 9)</a></li> <li><a href="/info/en/?search=Decagon" title="Decagon">Decagon (10)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">11–20 sides</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Hendecagon" title="Hendecagon">Hendecagon (11)</a></li> <li><a href="/info/en/?search=Dodecagon" title="Dodecagon">Dodecagon (12)</a></li> <li><a href="/info/en/?search=Tridecagon" title="Tridecagon">Tridecagon (13)</a></li> <li><a href="/info/en/?search=Tetradecagon" title="Tetradecagon">Tetradecagon (14)</a></li> <li><a href="/info/en/?search=Pentadecagon" title="Pentadecagon">Pentadecagon (15)</a></li> <li><a href="/info/en/?search=Hexadecagon" title="Hexadecagon">Hexadecagon (16)</a></li> <li><a href="/info/en/?search=Heptadecagon" title="Heptadecagon">Heptadecagon (17)</a></li> <li><a href="/info/en/?search=Octadecagon" title="Octadecagon">Octadecagon (18)</a></li> <li><a href="/info/en/?search=Icosagon" title="Icosagon">Icosagon (20)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">&gt;20 sides</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Icositrigon" title="Icositrigon">Icositrigon (23)</a></li> <li><a href="/info/en/?search=Icositetragon" title="Icositetragon">Icositetragon (24)</a></li> <li><a href="/info/en/?search=Triacontagon" title="Triacontagon">Triacontagon (30)</a></li> <li><a href="/info/en/?search=257-gon" title="257-gon">257-gon</a></li> <li><a href="/info/en/?search=Chiliagon" title="Chiliagon">Chiliagon (1000)</a></li> <li><a href="/info/en/?search=Myriagon" title="Myriagon">Myriagon (10,000)</a></li> <li><a href="/info/en/?search=65537-gon" title="65537-gon">65537-gon</a></li> <li><a href="/info/en/?search=Megagon" title="Megagon">Megagon (1,000,000)</a></li> <li><a href="/info/en/?search=Apeirogon" title="Apeirogon">Apeirogon (∞)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/info/en/?search=Star_polygon" title="Star polygon">Star polygons</a><br /></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Pentagram" title="Pentagram">Pentagram</a></li> <li><a href="/info/en/?search=Hexagram" title="Hexagram">Hexagram</a></li> <li><a href="/info/en/?search=Heptagram" title="Heptagram">Heptagram</a></li> <li><a href="/info/en/?search=Octagram" title="Octagram">Octagram</a></li> <li><a href="/info/en/?search=Enneagram_(geometry)" title="Enneagram (geometry)">Enneagram</a></li> <li><a href="/info/en/?search=Decagram_(geometry)" title="Decagram (geometry)">Decagram</a></li> <li><a href="/info/en/?search=Hendecagram" title="Hendecagram">Hendecagram</a></li> <li><a href="/info/en/?search=Dodecagram" title="Dodecagram">Dodecagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classes</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Concave_polygon" title="Concave polygon">Concave</a></li> <li><a href="/info/en/?search=Convex_polygon" title="Convex polygon">Convex</a></li> <li><a href="/info/en/?search=Cyclic_polygon" class="mw-redirect" title="Cyclic polygon">Cyclic</a></li> <li><a href="/info/en/?search=Equiangular_polygon" title="Equiangular polygon">Equiangular</a></li> <li><a href="/info/en/?search=Equilateral_polygon" title="Equilateral polygon">Equilateral</a></li> <li><a href="/info/en/?search=Infinite_skew_polygon" title="Infinite skew polygon">Infinite skew</a></li> <li><a href="/info/en/?search=Isogonal_figure" title="Isogonal figure">Isogonal</a></li> <li><a href="/info/en/?search=Isotoxal_figure" title="Isotoxal figure">Isotoxal</a></li> <li><a href="/info/en/?search=Magic_polygon" title="Magic polygon">Magic</a></li> <li><a href="/info/en/?search=Pseudotriangle" title="Pseudotriangle">Pseudotriangle</a></li> <li><a href="/info/en/?search=Rectilinear_polygon" title="Rectilinear polygon">Rectilinear</a></li> <li><a href="/info/en/?search=Regular_polygon" title="Regular polygon">Regular</a></li> <li><a href="/info/en/?search=Reinhardt_polygon" title="Reinhardt polygon">Reinhardt</a></li> <li><a href="/info/en/?search=Simple_polygon" title="Simple polygon">Simple</a></li> <li><a href="/info/en/?search=Skew_polygon" title="Skew polygon">Skew</a></li> <li><a href="/info/en/?search=Star-shaped_polygon" title="Star-shaped polygon">Star-shaped</a></li> <li><a href="/info/en/?search=Tangential_polygon" title="Tangential polygon">Tangential</a></li> <li><a href="/info/en/?search=Weakly_simple_polygon" title="Weakly simple polygon">Weakly simple</a></li></ul> </div></td></tr></tbody></table></div></div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
'1714647940'
Details for log entry 37,627,486

11:05, 2 May 2024: 85.112.71.30 ( talk) triggered filter 1,233, performing the action "edit" on Parallelogram. Actions taken: Disallow; Filter description: Long string of characters with no punctuation or markup ( examine)

Changes made in edit

{{Short description|Quadrilateral with two pairs of parallel sides}}
{{About|the quadrilateral shape|the album by Linda Perhacs|Parallelograms (album)}}
{{Infobox polygon
| name = Parallelogram
| image = Parallelogram.svg
| caption = This parallelogram is a [[rhomboid]] as it has no right angles and unequal sides.
| type = [[quadrilateral]], [[trapezoid|trapezium]]
| edges = 4
| symmetry = [[Point reflection|C<sub>2</sub>]], [2]<sup>+</sup>,
| area = ''b'' × ''h'' (base × height);<br>''ab'' sin ''θ'' (product of adjacent sides and sine of the vertex angle determined by them)
| properties = [[convex polygon|convex]]}}
In [[Euclidean geometry]], a '''parallelogram''' is a [[simple polygon|simple]] (non-[[list of self-intersecting polygons|self-intersecting]]) [[quadrilateral]] with two pairs of [[Parallel (geometry)|parallel]] sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The [[congruence (geometry)|congruence]] of opposite sides and opposite angles is a direct consequence of the Euclidean [[parallel postulate]] and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.


Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make
By comparison, a quadrilateral with at least one pair of parallel sides is a [[trapezoid]] in American English or a trapezium in British English.

The three-dimensional counterpart of a parallelogram is a [[parallelepiped]].

The word comes from the Greek παραλληλό-γραμμον, ''parallēló-grammon'', which means a shape "of parallel lines".


==Special cases==
==Special cases==

Action parameters

VariableValue
Edit count of the user (user_editcount)
null
Name of the user account (user_name)
'85.112.71.30'
Age of the user account (user_age)
0
Groups (including implicit) the user is in (user_groups)
[ 0 => '*' ]
Rights that the user has (user_rights)
[ 0 => 'createaccount', 1 => 'read', 2 => 'edit', 3 => 'createtalk', 4 => 'writeapi', 5 => 'viewmyprivateinfo', 6 => 'editmyprivateinfo', 7 => 'editmyoptions', 8 => 'abusefilter-log-detail', 9 => 'urlshortener-create-url', 10 => 'centralauth-merge', 11 => 'abusefilter-view', 12 => 'abusefilter-log', 13 => 'vipsscaler-test' ]
Whether or not a user is editing through the mobile interface (user_mobile)
true
Whether the user is editing from mobile app (user_app)
false
Page ID (page_id)
133496
Page namespace (page_namespace)
0
Page title without namespace (page_title)
'Parallelogram'
Full page title (page_prefixedtitle)
'Parallelogram'
Edit protection level of the page (page_restrictions_edit)
[]
Last ten users to contribute to the page (page_recent_contributors)
[ 0 => 'Jacobolus', 1 => 'Tamfang', 2 => 'AnomieBOT', 3 => 'EV stuff', 4 => 'AKidFromBethany', 5 => '75.174.86.243', 6 => 'ClueBot NG', 7 => '103.181.69.232', 8 => 'Discospinster', 9 => '184.64.124.97' ]
Page age in seconds (page_age)
679137599
Action (action)
'edit'
Edit summary/reason (summary)
''
Time since last page edit in seconds (page_last_edit_age)
488294
Old content model (old_content_model)
'wikitext'
New content model (new_content_model)
'wikitext'
Old page wikitext, before the edit (old_wikitext)
'{{Short description|Quadrilateral with two pairs of parallel sides}} {{About|the quadrilateral shape|the album by Linda Perhacs|Parallelograms (album)}} {{Infobox polygon | name = Parallelogram | image = Parallelogram.svg | caption = This parallelogram is a [[rhomboid]] as it has no right angles and unequal sides. | type = [[quadrilateral]], [[trapezoid|trapezium]] | edges = 4 | symmetry = [[Point reflection|C<sub>2</sub>]], [2]<sup>+</sup>, | area = ''b'' × ''h'' (base × height);<br>''ab'' sin ''θ'' (product of adjacent sides and sine of the vertex angle determined by them) | properties = [[convex polygon|convex]]}} In [[Euclidean geometry]], a '''parallelogram''' is a [[simple polygon|simple]] (non-[[list of self-intersecting polygons|self-intersecting]]) [[quadrilateral]] with two pairs of [[Parallel (geometry)|parallel]] sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The [[congruence (geometry)|congruence]] of opposite sides and opposite angles is a direct consequence of the Euclidean [[parallel postulate]] and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations. By comparison, a quadrilateral with at least one pair of parallel sides is a [[trapezoid]] in American English or a trapezium in British English. The three-dimensional counterpart of a parallelogram is a [[parallelepiped]]. The word comes from the Greek παραλληλό-γραμμον, ''parallēló-grammon'', which means a shape "of parallel lines". ==Special cases== *[[Rectangle]] – A parallelogram with four angles of equal size (right angles). *[[Rhombus]] – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a [[rhomboid]] but this term is not used in modern mathematics.<ref>{{cite web|url=http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|title=CIMT - Page no longer available at Plymouth University servers|website=www.cimt.plymouth.ac.uk|url-status=dead|archive-url=https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|archive-date=2014-05-14}}</ref> *[[Square (geometry)|Square]] – A parallelogram with four sides of equal length and angles of equal size (right angles). ==Characterizations== A [[simple polygon|simple]] (non-self-intersecting) [[quadrilateral]] is a parallelogram [[if and only if]] any one of the following statements is true:<ref>Owen Byer, Felix Lazebnik and [[Deirdre Smeltzer]], ''Methods for Euclidean Geometry'', Mathematical Association of America, 2010, pp. 51-52.</ref><ref>Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, p. 22.</ref> *Two pairs of opposite sides are parallel (by definition). *Two pairs of opposite sides are equal in length. *Two pairs of opposite angles are equal in measure. *The [[diagonal]]s bisect each other. *One pair of opposite sides is [[Parallel (geometry)|parallel]] and equal in length. *[[Adjacent angles]] are [[supplementary angles|supplementary]]. *Each diagonal divides the quadrilateral into two [[congruence (geometry)|congruent]] [[triangle]]s. *The sum of the [[Square number|square]]s of the sides equals the sum of the squares of the diagonals. (This is the [[parallelogram law]].) *It has [[rotational symmetry]] of order 2. *The sum of the distances from any interior point to the sides is independent of the location of the point.<ref>Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", ''[[The College Mathematics Journal]]'' 37(5), 2006, pp. 390–391.</ref> (This is an extension of [[Viviani's theorem]].) *There is a point ''X'' in the plane of the quadrilateral with the property that every straight line through ''X'' divides the quadrilateral into two regions of equal area.<ref>Problem 5, ''2006 British Mathematical Olympiad'', [http://artofproblemsolving.com/downloads/printable_post_collections/5063].</ref> Thus all parallelograms have all the properties listed above, and [[Converse (logic)|conversely]], if just one of these statements is true in a simple quadrilateral, then it is a parallelogram. ==Other properties== *Opposite sides of a parallelogram are parallel (by definition) and so will never intersect. *The area of a parallelogram is twice the area of a triangle created by one of its diagonals. *The area of a parallelogram is also equal to the magnitude of the [[vector cross product]] of two [[adjacent side (polygon)|adjacent]] sides. *Any line through the midpoint of a parallelogram bisects the area.<ref>Dunn, J.A., and J.E. Pretty, "Halving a triangle", ''Mathematical Gazette'' 56, May 1972, p. 105.</ref> *Any non-degenerate [[affine transformation]] takes a parallelogram to another parallelogram. *A parallelogram has [[rotational symmetry]] of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of [[reflectional symmetry]] then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a [[square]]. *The perimeter of a parallelogram is 2(''a'' + ''b'') where ''a'' and ''b'' are the lengths of adjacent sides. *Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area.<ref>{{cite web|last=Weisstein|first=Eric W|title=Triangle Circumscribing|url=http://mathworld.wolfram.com/TriangleCircumscribing.html|work=Wolfram Math World}}</ref> *The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square.<ref name=Weisstein>Weisstein, Eric W. "Parallelogram." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Parallelogram.html</ref> *If two lines parallel to sides of a parallelogram are constructed [[concurrent lines|concurrent]] to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area.<ref name=Weisstein/> *The diagonals of a parallelogram divide it into four triangles of equal area. ==Area formula{{anchor|Area}}== [[File:ParallelogramArea.svg|thumb|180px|alt=A diagram showing how a parallelogram can be re-arranged into the shape of a rectangle|A parallelogram can be rearranged into a rectangle with the same area.]] [[File:Parallelogram area animated.gif|thumb|180px|Animation for the area formula <math>K = bh</math>.]] All of the [[Quadrilateral#Area of a convex quadrilateral|area formulas for general convex quadrilaterals]] apply to parallelograms. Further formulas are specific to parallelograms: A parallelogram with base ''b'' and height ''h'' can be divided into a [[trapezoid]] and a [[right triangle]], and rearranged into a [[rectangle]], as shown in the figure to the left. This means that the [[area]] of a parallelogram is the same as that of a rectangle with the same base and height: :<math>K = bh.</math> [[File:Parallelogram area.svg|thumb|The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram]] The base × height area formula can also be derived using the figure to the right. The area ''K'' of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the rectangle is :<math>K_\text{rect} = (B+A) \times H\,</math> and the area of a single triangle is :<math>K_\text{tri} = \frac{A}{2} \times H. \,</math> Therefore, the area of the parallelogram is :<math>K = K_\text{rect} - 2 \times K_\text{tri} = ( (B+A) \times H) - ( A \times H) = B \times H.</math> Another area formula, for two sides ''B'' and ''C'' and angle θ, is :<math>K = B \cdot C \cdot \sin \theta.\,</math> The area of a parallelogram with sides ''B'' and ''C'' (''B'' ≠ ''C'') and angle <math>\gamma</math> at the intersection of the diagonals is given by<ref>Mitchell, Douglas W., "The area of a quadrilateral", ''Mathematical Gazette'', July 2009.</ref> :<math>K = \frac{|\tan \gamma|}{2} \cdot \left| B^2 - C^2 \right|.</math> When the parallelogram is specified from the lengths ''B'' and ''C'' of two adjacent sides together with the length ''D''<sub>1</sub> of either diagonal, then the area can be found from [[Heron's formula]]. Specifically it is :<math>K=2\sqrt{S(S-B)(S-C)(S-D_1)}</math> where <math>S=(B+C+D_1)/2</math> and the leading factor 2 comes from the fact that the chosen diagonal divides the parallelogram into ''two'' congruent triangles. === From vertex coordinates === Let vectors <math>\mathbf{a},\mathbf{b}\in\R^2</math> and let <math>V = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \in\R^{2 \times 2}</math> denote the matrix with elements of '''a''' and '''b'''. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>|\det(V)| = |a_1b_2 - a_2b_1|\,</math>. Let vectors <math>\mathbf{a},\mathbf{b}\in\R^n</math> and let <math>V = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{bmatrix} \in\R^{2 \times n}</math>. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>\sqrt{\det(V V^\mathrm{T})}</math>. Let points <math>a,b,c\in\R^2</math>. Then the [[signed area]] of the parallelogram with vertices at ''a'', ''b'' and ''c'' is equivalent to the determinant of a matrix built using ''a'', ''b'' and ''c'' as rows with the last column padded using ones as follows: :<math>K = \left| \begin{matrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{matrix} \right|. </math> ==Proof that diagonals bisect each other== [[File:Parallelogram1.svg|right|Parallelogram ABCD]] To prove that the diagonals of a parallelogram bisect each other, we will use [[congruence (geometry)|congruent]] [[Triangle#Basic facts|triangle]]s: :<math>\angle ABE \cong \angle CDE</math> ''(alternate interior angles are equal in measure)'' :<math>\angle BAE \cong \angle DCE</math> ''(alternate interior angles are equal in measure)''. (since these are angles that a transversal makes with [[Parallel (geometry)|parallel lines]] ''AB'' and ''DC''). Also, side ''AB'' is equal in length to side ''DC'', since opposite sides of a parallelogram are equal in length. Therefore, triangles ''ABE'' and ''CDE'' are congruent (ASA postulate, ''two corresponding angles and the included side''). Therefore, :<math>AE = CE</math> :<math>BE = DE.</math> Since the diagonals ''AC'' and ''BD'' divide each other into segments of equal length, the diagonals bisect each other. Separately, since the diagonals ''AC'' and ''BD'' bisect each other at point ''E'', point ''E'' is the midpoint of each diagonal. == Lattice of parallelograms== Parallelograms can tile the plane by translation. If edges are equal, or angles are right, the symmetry of the lattice is higher. These represent the four [[Bravais_lattice#In_2_dimensions|Bravais lattices in 2 dimensions]]. {| class=wikitable |+ Lattices |- !Form||Square||Rectangle||Rhombus||Rhomboid |- !System !Square<BR>(tetragonal) !Rectangular<BR>(orthorhombic) !Centered rectangular<BR>(orthorhombic) !Oblique<BR>(monoclinic) |- align=center !Constraints |&alpha;=90°, a=b |&alpha;=90° |a=b |None |- align=center ![[List_of_planar_symmetry_groups#Wallpaper_groups|Symmetry]] |p4m, [4,4], order 8''n''||colspan=2|pmm, [&infin;,2,&infin;], order 4''n''||p1, [&infin;<sup>+</sup>,2,&infin;<sup>+</sup>], order 2''n'' |- align=center !Form |[[File:Isohedral tiling p4-56.png|160px]] |[[File:Isohedral tiling p4-54.png|160px]] |[[File:Isohedral tiling p4-55.png|160px]] |[[File:Isohedral tiling p4-50.png|160px]] |} ==Parallelograms arising from other figures== ===Automedian triangle=== An [[automedian triangle]] is one whose [[median (geometry)|medians]] are in the same proportions as its sides (though in a different order). If ''ABC'' is an automedian triangle in which vertex ''A'' stands opposite the side ''a'', ''G'' is the [[centroid]] (where the three medians of ''ABC'' intersect), and ''AL'' is one of the extended medians of ''ABC'' with ''L'' lying on the circumcircle of ''ABC'', then ''BGCL'' is a parallelogram. ===Varignon parallelogram=== {{main|Varignon's theorem}} [[File:varignon_parallelogram.svg|thumb|Proof without words of Varignon's theorem ]] [[Varignon's theorem]] holds that the [[midpoint]]s of the sides of an arbitrary quadrilateral are the vertices of a parallelogram, called its ''Varignon parallelogram''. If the quadrilateral is [[Convex polygon|convex]] or [[Concave polygon|concave]] (that is, not self-intersecting), then the area of the Varignon parallelogram is half the area of the quadrilateral. [[Proof without words]] (see figure): # An arbitrary quadrilateral and its diagonals. # Bases of similar triangles are parallel to the blue diagonal. # Ditto for the red diagonal. # The base pairs form a parallelogram with half the area of the quadrilateral, ''A<sub>q</sub>'', as the sum of the areas of the four large triangles, ''A<sub>l</sub>'' is 2 ''A<sub>q</sub>'' (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, ''A<sub>s</sub>'' is a quarter of ''A<sub>l</sub>'' (half linear dimensions yields quarter area), and the area of the parallelogram is ''A<sub>q</sub>'' minus ''A<sub>s</sub>''. ===Tangent parallelogram of an ellipse=== For an [[ellipse]], two diameters are said to be [[Conjugate diameters|conjugate]] if and only if the [[tangent line]] to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding [[tangent parallelogram]], sometimes called a bounding parallelogram, formed by the tangent lines to the ellipse at the four endpoints of the conjugate diameters. All tangent parallelograms for a given ellipse have the same area. It is possible to [[Compass and straightedge constructions|reconstruct]] an ellipse from any pair of conjugate diameters, or from any tangent parallelogram. ===Faces of a parallelepiped=== A [[parallelepiped]] is a three-dimensional figure whose six [[face (geometry)|faces]] are parallelograms. ==See also== *[[Fundamental parallelogram (disambiguation)]] *[[Antiparallelogram]] * [[Levi-Civita parallelogramoid]] ==References== {{reflist}} ==External links== {{Commons category|Parallelograms}} *[http://www.elsy.at/kurse/index.php?kurs=Parallelogram+and+Rhombus&status=public Parallelogram and Rhombus - Animated course (Construction, Circumference, Area)] *{{MathWorld |urlname=Parallelogram |title=Parallelogram}} *[http://www.mathwarehouse.com/geometry/quadrilaterals/parallelograms/index.php Interactive Parallelogram --sides, angles and slope] *[http://www.cut-the-knot.org/Curriculum/Geometry/AreaOfParallelogram.shtml Area of Parallelogram] at [[cut-the-knot]] *[http://www.cut-the-knot.org/Curriculum/Geometry/EquiTriOnPara.shtml Equilateral Triangles On Sides of a Parallelogram] at [[cut-the-knot]] *[http://www.mathopenref.com/parallelogram.html Definition and properties of a parallelogram] with animated applet *[http://www.mathopenref.com/parallelogramarea.html Interactive applet showing parallelogram area calculation] interactive applet {{Polygons}} [[Category:Types of quadrilaterals]] [[Category:Elementary shapes]]'
New page wikitext, after the edit (new_wikitext)
' Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make ==Special cases== *[[Rectangle]] – A parallelogram with four angles of equal size (right angles). *[[Rhombus]] – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a [[rhomboid]] but this term is not used in modern mathematics.<ref>{{cite web|url=http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|title=CIMT - Page no longer available at Plymouth University servers|website=www.cimt.plymouth.ac.uk|url-status=dead|archive-url=https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf|archive-date=2014-05-14}}</ref> *[[Square (geometry)|Square]] – A parallelogram with four sides of equal length and angles of equal size (right angles). ==Characterizations== A [[simple polygon|simple]] (non-self-intersecting) [[quadrilateral]] is a parallelogram [[if and only if]] any one of the following statements is true:<ref>Owen Byer, Felix Lazebnik and [[Deirdre Smeltzer]], ''Methods for Euclidean Geometry'', Mathematical Association of America, 2010, pp. 51-52.</ref><ref>Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, p. 22.</ref> *Two pairs of opposite sides are parallel (by definition). *Two pairs of opposite sides are equal in length. *Two pairs of opposite angles are equal in measure. *The [[diagonal]]s bisect each other. *One pair of opposite sides is [[Parallel (geometry)|parallel]] and equal in length. *[[Adjacent angles]] are [[supplementary angles|supplementary]]. *Each diagonal divides the quadrilateral into two [[congruence (geometry)|congruent]] [[triangle]]s. *The sum of the [[Square number|square]]s of the sides equals the sum of the squares of the diagonals. (This is the [[parallelogram law]].) *It has [[rotational symmetry]] of order 2. *The sum of the distances from any interior point to the sides is independent of the location of the point.<ref>Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", ''[[The College Mathematics Journal]]'' 37(5), 2006, pp. 390–391.</ref> (This is an extension of [[Viviani's theorem]].) *There is a point ''X'' in the plane of the quadrilateral with the property that every straight line through ''X'' divides the quadrilateral into two regions of equal area.<ref>Problem 5, ''2006 British Mathematical Olympiad'', [http://artofproblemsolving.com/downloads/printable_post_collections/5063].</ref> Thus all parallelograms have all the properties listed above, and [[Converse (logic)|conversely]], if just one of these statements is true in a simple quadrilateral, then it is a parallelogram. ==Other properties== *Opposite sides of a parallelogram are parallel (by definition) and so will never intersect. *The area of a parallelogram is twice the area of a triangle created by one of its diagonals. *The area of a parallelogram is also equal to the magnitude of the [[vector cross product]] of two [[adjacent side (polygon)|adjacent]] sides. *Any line through the midpoint of a parallelogram bisects the area.<ref>Dunn, J.A., and J.E. Pretty, "Halving a triangle", ''Mathematical Gazette'' 56, May 1972, p. 105.</ref> *Any non-degenerate [[affine transformation]] takes a parallelogram to another parallelogram. *A parallelogram has [[rotational symmetry]] of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of [[reflectional symmetry]] then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a [[square]]. *The perimeter of a parallelogram is 2(''a'' + ''b'') where ''a'' and ''b'' are the lengths of adjacent sides. *Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area.<ref>{{cite web|last=Weisstein|first=Eric W|title=Triangle Circumscribing|url=http://mathworld.wolfram.com/TriangleCircumscribing.html|work=Wolfram Math World}}</ref> *The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square.<ref name=Weisstein>Weisstein, Eric W. "Parallelogram." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Parallelogram.html</ref> *If two lines parallel to sides of a parallelogram are constructed [[concurrent lines|concurrent]] to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area.<ref name=Weisstein/> *The diagonals of a parallelogram divide it into four triangles of equal area. ==Area formula{{anchor|Area}}== [[File:ParallelogramArea.svg|thumb|180px|alt=A diagram showing how a parallelogram can be re-arranged into the shape of a rectangle|A parallelogram can be rearranged into a rectangle with the same area.]] [[File:Parallelogram area animated.gif|thumb|180px|Animation for the area formula <math>K = bh</math>.]] All of the [[Quadrilateral#Area of a convex quadrilateral|area formulas for general convex quadrilaterals]] apply to parallelograms. Further formulas are specific to parallelograms: A parallelogram with base ''b'' and height ''h'' can be divided into a [[trapezoid]] and a [[right triangle]], and rearranged into a [[rectangle]], as shown in the figure to the left. This means that the [[area]] of a parallelogram is the same as that of a rectangle with the same base and height: :<math>K = bh.</math> [[File:Parallelogram area.svg|thumb|The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram]] The base × height area formula can also be derived using the figure to the right. The area ''K'' of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the rectangle is :<math>K_\text{rect} = (B+A) \times H\,</math> and the area of a single triangle is :<math>K_\text{tri} = \frac{A}{2} \times H. \,</math> Therefore, the area of the parallelogram is :<math>K = K_\text{rect} - 2 \times K_\text{tri} = ( (B+A) \times H) - ( A \times H) = B \times H.</math> Another area formula, for two sides ''B'' and ''C'' and angle θ, is :<math>K = B \cdot C \cdot \sin \theta.\,</math> The area of a parallelogram with sides ''B'' and ''C'' (''B'' ≠ ''C'') and angle <math>\gamma</math> at the intersection of the diagonals is given by<ref>Mitchell, Douglas W., "The area of a quadrilateral", ''Mathematical Gazette'', July 2009.</ref> :<math>K = \frac{|\tan \gamma|}{2} \cdot \left| B^2 - C^2 \right|.</math> When the parallelogram is specified from the lengths ''B'' and ''C'' of two adjacent sides together with the length ''D''<sub>1</sub> of either diagonal, then the area can be found from [[Heron's formula]]. Specifically it is :<math>K=2\sqrt{S(S-B)(S-C)(S-D_1)}</math> where <math>S=(B+C+D_1)/2</math> and the leading factor 2 comes from the fact that the chosen diagonal divides the parallelogram into ''two'' congruent triangles. === From vertex coordinates === Let vectors <math>\mathbf{a},\mathbf{b}\in\R^2</math> and let <math>V = \begin{bmatrix} a_1 & a_2 \\ b_1 & b_2 \end{bmatrix} \in\R^{2 \times 2}</math> denote the matrix with elements of '''a''' and '''b'''. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>|\det(V)| = |a_1b_2 - a_2b_1|\,</math>. Let vectors <math>\mathbf{a},\mathbf{b}\in\R^n</math> and let <math>V = \begin{bmatrix} a_1 & a_2 & \dots & a_n \\ b_1 & b_2 & \dots & b_n \end{bmatrix} \in\R^{2 \times n}</math>. Then the area of the parallelogram generated by '''a''' and '''b''' is equal to <math>\sqrt{\det(V V^\mathrm{T})}</math>. Let points <math>a,b,c\in\R^2</math>. Then the [[signed area]] of the parallelogram with vertices at ''a'', ''b'' and ''c'' is equivalent to the determinant of a matrix built using ''a'', ''b'' and ''c'' as rows with the last column padded using ones as follows: :<math>K = \left| \begin{matrix} a_1 & a_2 & 1 \\ b_1 & b_2 & 1 \\ c_1 & c_2 & 1 \end{matrix} \right|. </math> ==Proof that diagonals bisect each other== [[File:Parallelogram1.svg|right|Parallelogram ABCD]] To prove that the diagonals of a parallelogram bisect each other, we will use [[congruence (geometry)|congruent]] [[Triangle#Basic facts|triangle]]s: :<math>\angle ABE \cong \angle CDE</math> ''(alternate interior angles are equal in measure)'' :<math>\angle BAE \cong \angle DCE</math> ''(alternate interior angles are equal in measure)''. (since these are angles that a transversal makes with [[Parallel (geometry)|parallel lines]] ''AB'' and ''DC''). Also, side ''AB'' is equal in length to side ''DC'', since opposite sides of a parallelogram are equal in length. Therefore, triangles ''ABE'' and ''CDE'' are congruent (ASA postulate, ''two corresponding angles and the included side''). Therefore, :<math>AE = CE</math> :<math>BE = DE.</math> Since the diagonals ''AC'' and ''BD'' divide each other into segments of equal length, the diagonals bisect each other. Separately, since the diagonals ''AC'' and ''BD'' bisect each other at point ''E'', point ''E'' is the midpoint of each diagonal. == Lattice of parallelograms== Parallelograms can tile the plane by translation. If edges are equal, or angles are right, the symmetry of the lattice is higher. These represent the four [[Bravais_lattice#In_2_dimensions|Bravais lattices in 2 dimensions]]. {| class=wikitable |+ Lattices |- !Form||Square||Rectangle||Rhombus||Rhomboid |- !System !Square<BR>(tetragonal) !Rectangular<BR>(orthorhombic) !Centered rectangular<BR>(orthorhombic) !Oblique<BR>(monoclinic) |- align=center !Constraints |&alpha;=90°, a=b |&alpha;=90° |a=b |None |- align=center ![[List_of_planar_symmetry_groups#Wallpaper_groups|Symmetry]] |p4m, [4,4], order 8''n''||colspan=2|pmm, [&infin;,2,&infin;], order 4''n''||p1, [&infin;<sup>+</sup>,2,&infin;<sup>+</sup>], order 2''n'' |- align=center !Form |[[File:Isohedral tiling p4-56.png|160px]] |[[File:Isohedral tiling p4-54.png|160px]] |[[File:Isohedral tiling p4-55.png|160px]] |[[File:Isohedral tiling p4-50.png|160px]] |} ==Parallelograms arising from other figures== ===Automedian triangle=== An [[automedian triangle]] is one whose [[median (geometry)|medians]] are in the same proportions as its sides (though in a different order). If ''ABC'' is an automedian triangle in which vertex ''A'' stands opposite the side ''a'', ''G'' is the [[centroid]] (where the three medians of ''ABC'' intersect), and ''AL'' is one of the extended medians of ''ABC'' with ''L'' lying on the circumcircle of ''ABC'', then ''BGCL'' is a parallelogram. ===Varignon parallelogram=== {{main|Varignon's theorem}} [[File:varignon_parallelogram.svg|thumb|Proof without words of Varignon's theorem ]] [[Varignon's theorem]] holds that the [[midpoint]]s of the sides of an arbitrary quadrilateral are the vertices of a parallelogram, called its ''Varignon parallelogram''. If the quadrilateral is [[Convex polygon|convex]] or [[Concave polygon|concave]] (that is, not self-intersecting), then the area of the Varignon parallelogram is half the area of the quadrilateral. [[Proof without words]] (see figure): # An arbitrary quadrilateral and its diagonals. # Bases of similar triangles are parallel to the blue diagonal. # Ditto for the red diagonal. # The base pairs form a parallelogram with half the area of the quadrilateral, ''A<sub>q</sub>'', as the sum of the areas of the four large triangles, ''A<sub>l</sub>'' is 2 ''A<sub>q</sub>'' (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, ''A<sub>s</sub>'' is a quarter of ''A<sub>l</sub>'' (half linear dimensions yields quarter area), and the area of the parallelogram is ''A<sub>q</sub>'' minus ''A<sub>s</sub>''. ===Tangent parallelogram of an ellipse=== For an [[ellipse]], two diameters are said to be [[Conjugate diameters|conjugate]] if and only if the [[tangent line]] to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding [[tangent parallelogram]], sometimes called a bounding parallelogram, formed by the tangent lines to the ellipse at the four endpoints of the conjugate diameters. All tangent parallelograms for a given ellipse have the same area. It is possible to [[Compass and straightedge constructions|reconstruct]] an ellipse from any pair of conjugate diameters, or from any tangent parallelogram. ===Faces of a parallelepiped=== A [[parallelepiped]] is a three-dimensional figure whose six [[face (geometry)|faces]] are parallelograms. ==See also== *[[Fundamental parallelogram (disambiguation)]] *[[Antiparallelogram]] * [[Levi-Civita parallelogramoid]] ==References== {{reflist}} ==External links== {{Commons category|Parallelograms}} *[http://www.elsy.at/kurse/index.php?kurs=Parallelogram+and+Rhombus&status=public Parallelogram and Rhombus - Animated course (Construction, Circumference, Area)] *{{MathWorld |urlname=Parallelogram |title=Parallelogram}} *[http://www.mathwarehouse.com/geometry/quadrilaterals/parallelograms/index.php Interactive Parallelogram --sides, angles and slope] *[http://www.cut-the-knot.org/Curriculum/Geometry/AreaOfParallelogram.shtml Area of Parallelogram] at [[cut-the-knot]] *[http://www.cut-the-knot.org/Curriculum/Geometry/EquiTriOnPara.shtml Equilateral Triangles On Sides of a Parallelogram] at [[cut-the-knot]] *[http://www.mathopenref.com/parallelogram.html Definition and properties of a parallelogram] with animated applet *[http://www.mathopenref.com/parallelogramarea.html Interactive applet showing parallelogram area calculation] interactive applet {{Polygons}} [[Category:Types of quadrilaterals]] [[Category:Elementary shapes]]'
Unified diff of changes made by edit (edit_diff)
'@@ -1,20 +1,4 @@ -{{Short description|Quadrilateral with two pairs of parallel sides}} -{{About|the quadrilateral shape|the album by Linda Perhacs|Parallelograms (album)}} -{{Infobox polygon -| name = Parallelogram -| image = Parallelogram.svg -| caption = This parallelogram is a [[rhomboid]] as it has no right angles and unequal sides. -| type = [[quadrilateral]], [[trapezoid|trapezium]] -| edges = 4 -| symmetry = [[Point reflection|C<sub>2</sub>]], [2]<sup>+</sup>, -| area = ''b'' × ''h'' (base × height);<br>''ab'' sin ''θ'' (product of adjacent sides and sine of the vertex angle determined by them) -| properties = [[convex polygon|convex]]}} -In [[Euclidean geometry]], a '''parallelogram''' is a [[simple polygon|simple]] (non-[[list of self-intersecting polygons|self-intersecting]]) [[quadrilateral]] with two pairs of [[Parallel (geometry)|parallel]] sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The [[congruence (geometry)|congruence]] of opposite sides and opposite angles is a direct consequence of the Euclidean [[parallel postulate]] and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations. -By comparison, a quadrilateral with at least one pair of parallel sides is a [[trapezoid]] in American English or a trapezium in British English. - -The three-dimensional counterpart of a parallelogram is a [[parallelepiped]]. - -The word comes from the Greek παραλληλό-γραμμον, ''parallēló-grammon'', which means a shape "of parallel lines". +Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make ==Special cases== '
New page size (new_size)
14787
Old page size (old_size)
15454
Size change in edit (edit_delta)
-667
Lines added in edit (added_lines)
[ 0 => 'Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make' ]
Lines removed in edit (removed_lines)
[ 0 => '{{Short description|Quadrilateral with two pairs of parallel sides}}', 1 => '{{About|the quadrilateral shape|the album by Linda Perhacs|Parallelograms (album)}}', 2 => '{{Infobox polygon', 3 => '| name = Parallelogram ', 4 => '| image = Parallelogram.svg', 5 => '| caption = This parallelogram is a [[rhomboid]] as it has no right angles and unequal sides.', 6 => '| type = [[quadrilateral]], [[trapezoid|trapezium]]', 7 => '| edges = 4', 8 => '| symmetry = [[Point reflection|C<sub>2</sub>]], [2]<sup>+</sup>, ', 9 => '| area = ''b'' × ''h'' (base × height);<br>''ab'' sin ''θ'' (product of adjacent sides and sine of the vertex angle determined by them)', 10 => '| properties = [[convex polygon|convex]]}}', 11 => 'In [[Euclidean geometry]], a '''parallelogram''' is a [[simple polygon|simple]] (non-[[list of self-intersecting polygons|self-intersecting]]) [[quadrilateral]] with two pairs of [[Parallel (geometry)|parallel]] sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The [[congruence (geometry)|congruence]] of opposite sides and opposite angles is a direct consequence of the Euclidean [[parallel postulate]] and neither condition can be proven without appealing to the Euclidean parallel postulate or one of its equivalent formulations.', 12 => 'By comparison, a quadrilateral with at least one pair of parallel sides is a [[trapezoid]] in American English or a trapezium in British English.', 13 => '', 14 => 'The three-dimensional counterpart of a parallelogram is a [[parallelepiped]].', 15 => '', 16 => 'The word comes from the Greek παραλληλό-γραμμον, ''parallēló-grammon'', which means a shape "of parallel lines".' ]
Parsed HTML source of the new revision (new_html)
'<div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><p>Ok ya i and the only reason that i the server was very nice and i you have no no problem i the best part of the day was the only time i the other two of the other people that have the other ones i you have no way i you have a great day today love you too much and i the best of luck to the best friend in my order i you have no way to get a hold or just call them to see how much you want it is bro and then i you can go in your office if your in your room you are in the area where we used your code in case we have the right person and then we can get a new one for your own business card you have a lot more to choose and your name and address will pay to your business license plate for the next year and then we can go back in a row for your own service fee to get you paid to do not that we have the right choice for the server you have a good job at the end and your family has a new account number you need for the next time we are available for a new card or something to make </p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"><input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none" /><div class="toctitle" lang="en" dir="ltr"><h2 id="mw-toc-heading">Contents</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span></div> <ul> <li class="toclevel-1 tocsection-1"><a href="#Special_cases"><span class="tocnumber">1</span> <span class="toctext">Special cases</span></a></li> <li class="toclevel-1 tocsection-2"><a href="#Characterizations"><span class="tocnumber">2</span> <span class="toctext">Characterizations</span></a></li> <li class="toclevel-1 tocsection-3"><a href="#Other_properties"><span class="tocnumber">3</span> <span class="toctext">Other properties</span></a></li> <li class="toclevel-1 tocsection-4"><a href="#Area_formula"><span class="tocnumber">4</span> <span class="toctext">Area formula</span></a> <ul> <li class="toclevel-2 tocsection-5"><a href="#From_vertex_coordinates"><span class="tocnumber">4.1</span> <span class="toctext">From vertex coordinates</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-6"><a href="#Proof_that_diagonals_bisect_each_other"><span class="tocnumber">5</span> <span class="toctext">Proof that diagonals bisect each other</span></a></li> <li class="toclevel-1 tocsection-7"><a href="#Lattice_of_parallelograms"><span class="tocnumber">6</span> <span class="toctext">Lattice of parallelograms</span></a></li> <li class="toclevel-1 tocsection-8"><a href="#Parallelograms_arising_from_other_figures"><span class="tocnumber">7</span> <span class="toctext">Parallelograms arising from other figures</span></a> <ul> <li class="toclevel-2 tocsection-9"><a href="#Automedian_triangle"><span class="tocnumber">7.1</span> <span class="toctext">Automedian triangle</span></a></li> <li class="toclevel-2 tocsection-10"><a href="#Varignon_parallelogram"><span class="tocnumber">7.2</span> <span class="toctext">Varignon parallelogram</span></a></li> <li class="toclevel-2 tocsection-11"><a href="#Tangent_parallelogram_of_an_ellipse"><span class="tocnumber">7.3</span> <span class="toctext">Tangent parallelogram of an ellipse</span></a></li> <li class="toclevel-2 tocsection-12"><a href="#Faces_of_a_parallelepiped"><span class="tocnumber">7.4</span> <span class="toctext">Faces of a parallelepiped</span></a></li> </ul> </li> <li class="toclevel-1 tocsection-13"><a href="#See_also"><span class="tocnumber">8</span> <span class="toctext">See also</span></a></li> <li class="toclevel-1 tocsection-14"><a href="#References"><span class="tocnumber">9</span> <span class="toctext">References</span></a></li> <li class="toclevel-1 tocsection-15"><a href="#External_links"><span class="tocnumber">10</span> <span class="toctext">External links</span></a></li> </ul> </div> <h2><span class="mw-headline" id="Special_cases">Special cases</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=1"title="Edit section: Special cases" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <ul><li><a href="/info/en/?search=Rectangle" title="Rectangle">Rectangle</a> – A parallelogram with four angles of equal size (right angles).</li> <li><a href="/info/en/?search=Rhombus" title="Rhombus">Rhombus</a> – A parallelogram with four sides of equal length. Any parallelogram that is neither a rectangle nor a rhombus was traditionally called a <a href="/info/en/?search=Rhomboid" title="Rhomboid">rhomboid</a> but this term is not used in modern mathematics.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1">&#91;1&#93;</a></sup></li> <li><a href="/info/en/?search=Square_(geometry)" class="mw-redirect" title="Square (geometry)">Square</a> – A parallelogram with four sides of equal length and angles of equal size (right angles).</li></ul> <h2><span class="mw-headline" id="Characterizations">Characterizations</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=2"title="Edit section: Characterizations" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <p>A <a href="/info/en/?search=Simple_polygon" title="Simple polygon">simple</a> (non-self-intersecting) <a href="/info/en/?search=Quadrilateral" title="Quadrilateral">quadrilateral</a> is a parallelogram <a href="/info/en/?search=If_and_only_if" title="If and only if">if and only if</a> any one of the following statements is true:<sup id="cite_ref-2" class="reference"><a href="#cite_note-2">&#91;2&#93;</a></sup><sup id="cite_ref-3" class="reference"><a href="#cite_note-3">&#91;3&#93;</a></sup> </p> <ul><li>Two pairs of opposite sides are parallel (by definition).</li> <li>Two pairs of opposite sides are equal in length.</li> <li>Two pairs of opposite angles are equal in measure.</li> <li>The <a href="/info/en/?search=Diagonal" title="Diagonal">diagonals</a> bisect each other.</li> <li>One pair of opposite sides is <a href="/info/en/?search=Parallel_(geometry)" title="Parallel (geometry)">parallel</a> and equal in length.</li> <li><a href="/info/en/?search=Adjacent_angles" class="mw-redirect" title="Adjacent angles">Adjacent angles</a> are <a href="/info/en/?search=Supplementary_angles" class="mw-redirect" title="Supplementary angles">supplementary</a>.</li> <li>Each diagonal divides the quadrilateral into two <a href="/info/en/?search=Congruence_(geometry)" title="Congruence (geometry)">congruent</a> <a href="/info/en/?search=Triangle" title="Triangle">triangles</a>.</li> <li>The sum of the <a href="/info/en/?search=Square_number" title="Square number">squares</a> of the sides equals the sum of the squares of the diagonals. (This is the <a href="/info/en/?search=Parallelogram_law" title="Parallelogram law">parallelogram law</a>.)</li> <li>It has <a href="/info/en/?search=Rotational_symmetry" title="Rotational symmetry">rotational symmetry</a> of order 2.</li> <li>The sum of the distances from any interior point to the sides is independent of the location of the point.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4">&#91;4&#93;</a></sup> (This is an extension of <a href="/info/en/?search=Viviani%27s_theorem" title="Viviani&#39;s theorem">Viviani's theorem</a>.)</li> <li>There is a point <i>X</i> in the plane of the quadrilateral with the property that every straight line through <i>X</i> divides the quadrilateral into two regions of equal area.<sup id="cite_ref-5" class="reference"><a href="#cite_note-5">&#91;5&#93;</a></sup></li></ul> <p>Thus all parallelograms have all the properties listed above, and <a href="/info/en/?search=Converse_(logic)" title="Converse (logic)">conversely</a>, if just one of these statements is true in a simple quadrilateral, then it is a parallelogram. </p> <h2><span class="mw-headline" id="Other_properties">Other properties</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=3"title="Edit section: Other properties" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <ul><li>Opposite sides of a parallelogram are parallel (by definition) and so will never intersect.</li> <li>The area of a parallelogram is twice the area of a triangle created by one of its diagonals.</li> <li>The area of a parallelogram is also equal to the magnitude of the <a href="/info/en/?search=Vector_cross_product" class="mw-redirect" title="Vector cross product">vector cross product</a> of two <a href="/info/en/?search=Adjacent_side_(polygon)" class="mw-redirect" title="Adjacent side (polygon)">adjacent</a> sides.</li> <li>Any line through the midpoint of a parallelogram bisects the area.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6">&#91;6&#93;</a></sup></li> <li>Any non-degenerate <a href="/info/en/?search=Affine_transformation" title="Affine transformation">affine transformation</a> takes a parallelogram to another parallelogram.</li> <li>A parallelogram has <a href="/info/en/?search=Rotational_symmetry" title="Rotational symmetry">rotational symmetry</a> of order 2 (through 180°) (or order 4 if a square). If it also has exactly two lines of <a href="/info/en/?search=Reflectional_symmetry" class="mw-redirect" title="Reflectional symmetry">reflectional symmetry</a> then it must be a rhombus or an oblong (a non-square rectangle). If it has four lines of reflectional symmetry, it is a <a href="/info/en/?search=Square" title="Square">square</a>.</li> <li>The perimeter of a parallelogram is 2(<i>a</i> + <i>b</i>) where <i>a</i> and <i>b</i> are the lengths of adjacent sides.</li> <li>Unlike any other convex polygon, a parallelogram cannot be inscribed in any triangle with less than twice its area.<sup id="cite_ref-7" class="reference"><a href="#cite_note-7">&#91;7&#93;</a></sup></li> <li>The centers of four squares all constructed either internally or externally on the sides of a parallelogram are the vertices of a square.<sup id="cite_ref-Weisstein_8-0" class="reference"><a href="#cite_note-Weisstein-8">&#91;8&#93;</a></sup></li> <li>If two lines parallel to sides of a parallelogram are constructed <a href="/info/en/?search=Concurrent_lines" title="Concurrent lines">concurrent</a> to a diagonal, then the parallelograms formed on opposite sides of that diagonal are equal in area.<sup id="cite_ref-Weisstein_8-1" class="reference"><a href="#cite_note-Weisstein-8">&#91;8&#93;</a></sup></li> <li>The diagonals of a parallelogram divide it into four triangles of equal area.</li></ul> <h2><span class="mw-headline" id="Area_formula">Area formula<span class="anchor" id="Area"></span></span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=4"title="Edit section: Area formula" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <figure typeof="mw:File/Thumb"><a href="/info/en/?search=File:ParallelogramArea.svg" class="mw-file-description"><img alt="A diagram showing how a parallelogram can be re-arranged into the shape of a rectangle" src="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/ParallelogramArea.svg/180px-ParallelogramArea.svg.png" decoding="async" width="180" height="245" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1c/ParallelogramArea.svg/270px-ParallelogramArea.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1c/ParallelogramArea.svg/360px-ParallelogramArea.svg.png 2x" data-file-width="220" data-file-height="300" /></a><figcaption>A parallelogram can be rearranged into a rectangle with the same area.</figcaption></figure> <figure typeof="mw:File/Thumb"><a href="/info/en/?search=File:Parallelogram_area_animated.gif" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/Parallelogram_area_animated.gif/180px-Parallelogram_area_animated.gif" decoding="async" width="180" height="120" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/2/27/Parallelogram_area_animated.gif/270px-Parallelogram_area_animated.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/2/27/Parallelogram_area_animated.gif 2x" data-file-width="300" data-file-height="200" /></a><figcaption>Animation for the area formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=bh}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>b</mi> <mi>h</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=bh}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6a8b110c6ce0b30cf7d53619c3ebaf0a8865227" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.501ex; height:2.176ex;" alt="{\displaystyle K=bh}"></span>.</figcaption></figure> <p>All of the <a href="/info/en/?search=Quadrilateral#Area_of_a_convex_quadrilateral" title="Quadrilateral">area formulas for general convex quadrilaterals</a> apply to parallelograms. Further formulas are specific to parallelograms: </p><p>A parallelogram with base <i>b</i> and height <i>h</i> can be divided into a <a href="/info/en/?search=Trapezoid" title="Trapezoid">trapezoid</a> and a <a href="/info/en/?search=Right_triangle" title="Right triangle">right triangle</a>, and rearranged into a <a href="/info/en/?search=Rectangle" title="Rectangle">rectangle</a>, as shown in the figure to the left. This means that the <a href="/info/en/?search=Area" title="Area">area</a> of a parallelogram is the same as that of a rectangle with the same base and height: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=bh.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>b</mi> <mi>h</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=bh.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0aafb35db413cd4e1e428c61e0564f097692f1a9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:8.148ex; height:2.176ex;" alt="{\displaystyle K=bh.}"></span></dd></dl> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/info/en/?search=File:Parallelogram_area.svg" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/8/84/Parallelogram_area.svg/220px-Parallelogram_area.svg.png" decoding="async" width="220" height="135" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/8/84/Parallelogram_area.svg/330px-Parallelogram_area.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/84/Parallelogram_area.svg/440px-Parallelogram_area.svg.png 2x" data-file-width="520" data-file-height="320" /></a><figcaption>The area of the parallelogram is the area of the blue region, which is the interior of the parallelogram</figcaption></figure> <p>The base × height area formula can also be derived using the figure to the right. The area <i>K</i> of the parallelogram to the right (the blue area) is the total area of the rectangle less the area of the two orange triangles. The area of the rectangle is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{rect}}=(B+A)\times H\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rect</mtext> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{rect}}=(B+A)\times H\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/624d8b3c282546b2da21eebbf5230221831ae316" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.496ex; height:2.843ex;" alt="{\displaystyle K_{\text{rect}}=(B+A)\times H\,}"></span></dd></dl> <p>and the area of a single triangle is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\text{tri}}={\frac {A}{2}}\times H.\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>tri</mtext> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>A</mi> <mn>2</mn> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\text{tri}}={\frac {A}{2}}\times H.\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a207b19540ff507ebf5aea92b2216b934baa939d" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:15.563ex; height:5.343ex;" alt="{\displaystyle K_{\text{tri}}={\frac {A}{2}}\times H.\,}"></span></dd></dl> <p>Therefore, the area of the parallelogram is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=K_{\text{rect}}-2\times K_{\text{tri}}=((B+A)\times H)-(A\times H)=B\times H.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>rect</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>tri</mtext> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>B</mi> <mo>&#x00D7;<!-- × --></mo> <mi>H</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=K_{\text{rect}}-2\times K_{\text{tri}}=((B+A)\times H)-(A\times H)=B\times H.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74aba8c98bfea059c67c19e4c6bedd1f50b135d3" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:60.583ex; height:2.843ex;" alt="{\displaystyle K=K_{\text{rect}}-2\times K_{\text{tri}}=((B+A)\times H)-(A\times H)=B\times H.}"></span></dd></dl> <p>Another area formula, for two sides <i>B</i> and <i>C</i> and angle θ, is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=B\cdot C\cdot \sin \theta .\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mi>B</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>C</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>sin</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B8;<!-- θ --></mi> <mo>.</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=B\cdot C\cdot \sin \theta .\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/87f761ff8f6540b6a058436e66ee822609c8f7d9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.42ex; height:2.176ex;" alt="{\displaystyle K=B\cdot C\cdot \sin \theta .\,}"></span></dd></dl> <p>The area of a parallelogram with sides <i>B</i> and <i>C</i> (<i>B</i> ≠ <i>C</i>) and angle <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \gamma }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03B3;<!-- γ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \gamma }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a223c880b0ce3da8f64ee33c4f0010beee400b1a" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.262ex; height:2.176ex;" alt="{\displaystyle \gamma }"></span> at the intersection of the diagonals is given by<sup id="cite_ref-9" class="reference"><a href="#cite_note-9">&#91;9&#93;</a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K={\frac {|\tan \gamma |}{2}}\cdot \left|B^{2}-C^{2}\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>tan</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mi>&#x03B3;<!-- γ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>&#x22C5;<!-- ⋅ --></mo> <mrow> <mo>|</mo> <mrow> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <msup> <mi>C</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K={\frac {|\tan \gamma |}{2}}\cdot \left|B^{2}-C^{2}\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67c66072c35ad604d43cd4becc4b1287f18c9476" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:25.208ex; height:5.676ex;" alt="{\displaystyle K={\frac {|\tan \gamma |}{2}}\cdot \left|B^{2}-C^{2}\right|.}"></span></dd></dl> <p>When the parallelogram is specified from the lengths <i>B</i> and <i>C</i> of two adjacent sides together with the length <i>D</i><sub>1</sub> of either diagonal, then the area can be found from <a href="/info/en/?search=Heron%27s_formula" title="Heron&#39;s formula">Heron's formula</a>. Specifically it is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=2{\sqrt {S(S-B)(S-C)(S-D_{1})}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>S</mi> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2212;<!-- − --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2212;<!-- − --></mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>S</mi> <mo>&#x2212;<!-- − --></mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=2{\sqrt {S(S-B)(S-C)(S-D_{1})}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1b1e8a1a08c425f34c4c52e7c17c5a5d851e61b" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:35.105ex; height:4.843ex;" alt="{\displaystyle K=2{\sqrt {S(S-B)(S-C)(S-D_{1})}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=(B+C+D_{1})/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mi>C</mi> <mo>+</mo> <msub> <mi>D</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=(B+C+D_{1})/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13090983ab2505b560086c26b020ddd1feab6932" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.922ex; height:2.843ex;" alt="{\displaystyle S=(B+C+D_{1})/2}"></span> and the leading factor 2 comes from the fact that the chosen diagonal divides the parallelogram into <i>two</i> congruent triangles. </p> <h3><span class="mw-headline" id="From_vertex_coordinates">From vertex coordinates</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=5"title="Edit section: From vertex coordinates" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <p>Let vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d98efc77fcc0696625eb4dc597fa365b611269ae" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.392ex; height:3.009ex;" alt="{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{2}}"></span> and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}\\b_{1}&amp;b_{2}\end{bmatrix}}\in \mathbb {R} ^{2\times 2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}\\b_{1}&amp;b_{2}\end{bmatrix}}\in \mathbb {R} ^{2\times 2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a933b8f3dc284db8e64464c93f09365e525b4b21" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:22.656ex; height:6.176ex;" alt="{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}\\b_{1}&amp;b_{2}\end{bmatrix}}\in \mathbb {R} ^{2\times 2}}"></span> denote the matrix with elements of <b>a</b> and <b>b</b>. Then the area of the parallelogram generated by <b>a</b> and <b>b</b> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |\det(V)|=|a_{1}b_{2}-a_{2}b_{1}|\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>V</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |\det(V)|=|a_{1}b_{2}-a_{2}b_{1}|\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/34d4d45a7960c88424fa90befaaf70a70e41a5ec" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.798ex; height:2.843ex;" alt="{\displaystyle |\det(V)|=|a_{1}b_{2}-a_{2}b_{1}|\,}"></span>. </p><p>Let vectors <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">a</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">b</mi> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f47b03efec8aaa368a671bd60936c05d5385445" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:9.556ex; height:2.676ex;" alt="{\displaystyle \mathbf {a} ,\mathbf {b} \in \mathbb {R} ^{n}}"></span> and let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}&amp;\dots &amp;a_{n}\\b_{1}&amp;b_{2}&amp;\dots &amp;b_{n}\end{bmatrix}}\in \mathbb {R} ^{2\times n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2026;<!-- … --></mo> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mo>&#x2026;<!-- … --></mo> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mo>&#x00D7;<!-- × --></mo> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}&amp;\dots &amp;a_{n}\\b_{1}&amp;b_{2}&amp;\dots &amp;b_{n}\end{bmatrix}}\in \mathbb {R} ^{2\times n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0eba21fc083a518af12de294b662182251daf121" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:32.637ex; height:6.176ex;" alt="{\displaystyle V={\begin{bmatrix}a_{1}&amp;a_{2}&amp;\dots &amp;a_{n}\\b_{1}&amp;b_{2}&amp;\dots &amp;b_{n}\end{bmatrix}}\in \mathbb {R} ^{2\times n}}"></span>. Then the area of the parallelogram generated by <b>a</b> and <b>b</b> is equal to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\sqrt {\det(VV^{\mathrm {T} })}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mo movablelimits="true" form="prefix">det</mo> <mo stretchy="false">(</mo> <mi>V</mi> <msup> <mi>V</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">T</mi> </mrow> </mrow> </msup> <mo stretchy="false">)</mo> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\sqrt {\det(VV^{\mathrm {T} })}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20242172ff954885af682ddc428033f4f7e512c9" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:12.486ex; height:4.843ex;" alt="{\displaystyle {\sqrt {\det(VV^{\mathrm {T} })}}}"></span>. </p><p>Let points <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a,b,c\in \mathbb {R} ^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>c</mi> <mo>&#x2208;<!-- ∈ --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a,b,c\in \mathbb {R} ^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0964054bb701d9a51030dd1d4c21ff5d9371a881" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.875ex; height:3.009ex;" alt="{\displaystyle a,b,c\in \mathbb {R} ^{2}}"></span>. Then the <a href="/info/en/?search=Signed_area" title="Signed area">signed area</a> of the parallelogram with vertices at <i>a</i>, <i>b</i> and <i>c</i> is equivalent to the determinant of a matrix built using <i>a</i>, <i>b</i> and <i>c</i> as rows with the last column padded using ones as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\left|{\begin{matrix}a_{1}&amp;a_{2}&amp;1\\b_{1}&amp;b_{2}&amp;1\\c_{1}&amp;c_{2}&amp;1\end{matrix}}\right|.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mrow> <mo>|</mo> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> <mo>|</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\left|{\begin{matrix}a_{1}&amp;a_{2}&amp;1\\b_{1}&amp;b_{2}&amp;1\\c_{1}&amp;c_{2}&amp;1\end{matrix}}\right|.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/81f4f90e3c2fe95f38f069988909511f7c5158cb" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -4.005ex; width:18.619ex; height:9.176ex;" alt="{\displaystyle K=\left|{\begin{matrix}a_{1}&amp;a_{2}&amp;1\\b_{1}&amp;b_{2}&amp;1\\c_{1}&amp;c_{2}&amp;1\end{matrix}}\right|.}"></span></dd></dl> <h2><span class="mw-headline" id="Proof_that_diagonals_bisect_each_other">Proof that diagonals bisect each other</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=6"title="Edit section: Proof that diagonals bisect each other" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <figure class="mw-default-size mw-halign-right" typeof="mw:File"><a href="/info/en/?search=File:Parallelogram1.svg" class="mw-file-description" title="Parallelogram ABCD"><img alt="Parallelogram ABCD" src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Parallelogram1.svg/200px-Parallelogram1.svg.png" decoding="async" width="200" height="150" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Parallelogram1.svg/300px-Parallelogram1.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9e/Parallelogram1.svg/400px-Parallelogram1.svg.png 2x" data-file-width="200" data-file-height="150" /></a><figcaption>Parallelogram ABCD</figcaption></figure> <p>To prove that the diagonals of a parallelogram bisect each other, we will use <a href="/info/en/?search=Congruence_(geometry)" title="Congruence (geometry)">congruent</a> <a href="/info/en/?search=Triangle#Basic_facts" title="Triangle">triangles</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle ABE\cong \angle CDE}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>A</mi> <mi>B</mi> <mi>E</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>C</mi> <mi>D</mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle ABE\cong \angle CDE}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fab9e09a52dea0bf091179212defbbf6035ff086" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.204ex; height:2.176ex;" alt="{\displaystyle \angle ABE\cong \angle CDE}"></span> <i>(alternate interior angles are equal in measure)</i></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \angle BAE\cong \angle DCE}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>B</mi> <mi>A</mi> <mi>E</mi> <mo>&#x2245;<!-- ≅ --></mo> <mi mathvariant="normal">&#x2220;<!-- ∠ --></mi> <mi>D</mi> <mi>C</mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \angle BAE\cong \angle DCE}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6807434bee15ed8506eb916def45f584f398fb0" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:17.204ex; height:2.176ex;" alt="{\displaystyle \angle BAE\cong \angle DCE}"></span> <i>(alternate interior angles are equal in measure)</i>.</dd></dl> <p>(since these are angles that a transversal makes with <a href="/info/en/?search=Parallel_(geometry)" title="Parallel (geometry)">parallel lines</a> <i>AB</i> and <i>DC</i>). </p><p>Also, side <i>AB</i> is equal in length to side <i>DC</i>, since opposite sides of a parallelogram are equal in length. </p><p>Therefore, triangles <i>ABE</i> and <i>CDE</i> are congruent (ASA postulate, <i>two corresponding angles and the included side</i>). </p><p>Therefore, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AE=CE}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>E</mi> <mo>=</mo> <mi>C</mi> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AE=CE}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6d80254dff1b2250ab27448227c0257efc43fe1" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.159ex; height:2.176ex;" alt="{\displaystyle AE=CE}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle BE=DE.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mi>E</mi> <mo>=</mo> <mi>D</mi> <mi>E</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle BE=DE.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fff2cf29d8b7a94f92079ccca0cfbf611369228c" class="mwe-math-fallback-image-inline mw-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:10.985ex; height:2.176ex;" alt="{\displaystyle BE=DE.}"></span></dd></dl> <p>Since the diagonals <i>AC</i> and <i>BD</i> divide each other into segments of equal length, the diagonals bisect each other. </p><p>Separately, since the diagonals <i>AC</i> and <i>BD</i> bisect each other at point <i>E</i>, point <i>E</i> is the midpoint of each diagonal. </p> <h2><span class="mw-headline" id="Lattice_of_parallelograms">Lattice of parallelograms</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=7"title="Edit section: Lattice of parallelograms" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <p>Parallelograms can tile the plane by translation. If edges are equal, or angles are right, the symmetry of the lattice is higher. These represent the four <a href="/info/en/?search=Bravais_lattice#In_2_dimensions" title="Bravais lattice">Bravais lattices in 2 dimensions</a>. </p> <table class="wikitable"> <caption>Lattices </caption> <tbody><tr> <th>Form</th> <th>Square</th> <th>Rectangle</th> <th>Rhombus</th> <th>Rhomboid </th></tr> <tr> <th>System </th> <th>Square<br />(tetragonal) </th> <th>Rectangular<br />(orthorhombic) </th> <th>Centered rectangular<br />(orthorhombic) </th> <th>Oblique<br />(monoclinic) </th></tr> <tr align="center"> <th>Constraints </th> <td>&#945;=90°, a=b </td> <td>&#945;=90° </td> <td>a=b </td> <td>None </td></tr> <tr align="center"> <th><a href="/info/en/?search=List_of_planar_symmetry_groups#Wallpaper_groups" title="List of planar symmetry groups">Symmetry</a> </th> <td>p4m, [4,4], order 8<i>n</i></td> <td colspan="2">pmm, [&#8734;,2,&#8734;], order 4<i>n</i></td> <td>p1, [&#8734;<sup>+</sup>,2,&#8734;<sup>+</sup>], order 2<i>n</i> </td></tr> <tr align="center"> <th>Form </th> <td><span typeof="mw:File"><a href="/info/en/?search=File:Isohedral_tiling_p4-56.png" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Isohedral_tiling_p4-56.png/160px-Isohedral_tiling_p4-56.png" decoding="async" width="160" height="103" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Isohedral_tiling_p4-56.png/240px-Isohedral_tiling_p4-56.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9a/Isohedral_tiling_p4-56.png/320px-Isohedral_tiling_p4-56.png 2x" data-file-width="679" data-file-height="438" /></a></span> </td> <td><span typeof="mw:File"><a href="/info/en/?search=File:Isohedral_tiling_p4-54.png" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/2/26/Isohedral_tiling_p4-54.png/160px-Isohedral_tiling_p4-54.png" decoding="async" width="160" height="104" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/2/26/Isohedral_tiling_p4-54.png/240px-Isohedral_tiling_p4-54.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/2/26/Isohedral_tiling_p4-54.png/320px-Isohedral_tiling_p4-54.png 2x" data-file-width="679" data-file-height="441" /></a></span> </td> <td><span typeof="mw:File"><a href="/info/en/?search=File:Isohedral_tiling_p4-55.png" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Isohedral_tiling_p4-55.png/160px-Isohedral_tiling_p4-55.png" decoding="async" width="160" height="108" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Isohedral_tiling_p4-55.png/240px-Isohedral_tiling_p4-55.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/ba/Isohedral_tiling_p4-55.png/320px-Isohedral_tiling_p4-55.png 2x" data-file-width="686" data-file-height="464" /></a></span> </td> <td><span typeof="mw:File"><a href="/info/en/?search=File:Isohedral_tiling_p4-50.png" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/0/02/Isohedral_tiling_p4-50.png/160px-Isohedral_tiling_p4-50.png" decoding="async" width="160" height="102" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/0/02/Isohedral_tiling_p4-50.png/240px-Isohedral_tiling_p4-50.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/0/02/Isohedral_tiling_p4-50.png/320px-Isohedral_tiling_p4-50.png 2x" data-file-width="677" data-file-height="433" /></a></span> </td></tr></tbody></table> <h2><span class="mw-headline" id="Parallelograms_arising_from_other_figures">Parallelograms arising from other figures</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=8"title="Edit section: Parallelograms arising from other figures" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <h3><span class="mw-headline" id="Automedian_triangle">Automedian triangle</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=9"title="Edit section: Automedian triangle" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <p>An <a href="/info/en/?search=Automedian_triangle" title="Automedian triangle">automedian triangle</a> is one whose <a href="/info/en/?search=Median_(geometry)" title="Median (geometry)">medians</a> are in the same proportions as its sides (though in a different order). If <i>ABC</i> is an automedian triangle in which vertex <i>A</i> stands opposite the side <i>a</i>, <i>G</i> is the <a href="/info/en/?search=Centroid" title="Centroid">centroid</a> (where the three medians of <i>ABC</i> intersect), and <i>AL</i> is one of the extended medians of <i>ABC</i> with <i>L</i> lying on the circumcircle of <i>ABC</i>, then <i>BGCL</i> is a parallelogram. </p> <h3><span class="mw-headline" id="Varignon_parallelogram">Varignon parallelogram</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=10"title="Edit section: Varignon parallelogram" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <style data-mw-deduplicate="TemplateStyles:r1033289096">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/info/en/?search=Varignon%27s_theorem" title="Varignon&#39;s theorem">Varignon's theorem</a></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/info/en/?search=File:Varignon_parallelogram.svg" class="mw-file-description"><img src="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Varignon_parallelogram.svg/220px-Varignon_parallelogram.svg.png" decoding="async" width="220" height="293" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Varignon_parallelogram.svg/330px-Varignon_parallelogram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/b8/Varignon_parallelogram.svg/440px-Varignon_parallelogram.svg.png 2x" data-file-width="512" data-file-height="683" /></a><figcaption>Proof without words of Varignon's theorem</figcaption></figure> <p><a href="/info/en/?search=Varignon%27s_theorem" title="Varignon&#39;s theorem">Varignon's theorem</a> holds that the <a href="/info/en/?search=Midpoint" title="Midpoint">midpoints</a> of the sides of an arbitrary quadrilateral are the vertices of a parallelogram, called its <i>Varignon parallelogram</i>. If the quadrilateral is <a href="/info/en/?search=Convex_polygon" title="Convex polygon">convex</a> or <a href="/info/en/?search=Concave_polygon" title="Concave polygon">concave</a> (that is, not self-intersecting), then the area of the Varignon parallelogram is half the area of the quadrilateral. </p><p><a href="/info/en/?search=Proof_without_words" title="Proof without words">Proof without words</a> (see figure): </p> <ol><li>An arbitrary quadrilateral and its diagonals.</li> <li>Bases of similar triangles are parallel to the blue diagonal.</li> <li>Ditto for the red diagonal.</li> <li>The base pairs form a parallelogram with half the area of the quadrilateral, <i>A<sub>q</sub></i>, as the sum of the areas of the four large triangles, <i>A<sub>l</sub></i> is 2 <i>A<sub>q</sub></i> (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, <i>A<sub>s</sub></i> is a quarter of <i>A<sub>l</sub></i> (half linear dimensions yields quarter area), and the area of the parallelogram is <i>A<sub>q</sub></i> minus <i>A<sub>s</sub></i>.</li></ol> <h3><span class="mw-headline" id="Tangent_parallelogram_of_an_ellipse">Tangent parallelogram of an ellipse</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=11"title="Edit section: Tangent parallelogram of an ellipse" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <p>For an <a href="/info/en/?search=Ellipse" title="Ellipse">ellipse</a>, two diameters are said to be <a href="/info/en/?search=Conjugate_diameters" title="Conjugate diameters">conjugate</a> if and only if the <a href="/info/en/?search=Tangent_line" class="mw-redirect" title="Tangent line">tangent line</a> to the ellipse at an endpoint of one diameter is parallel to the other diameter. Each pair of conjugate diameters of an ellipse has a corresponding <a href="/info/en/?search=Tangent_parallelogram" class="mw-redirect" title="Tangent parallelogram">tangent parallelogram</a>, sometimes called a bounding parallelogram, formed by the tangent lines to the ellipse at the four endpoints of the conjugate diameters. All tangent parallelograms for a given ellipse have the same area. </p><p>It is possible to <a href="/info/en/?search=Compass_and_straightedge_constructions" class="mw-redirect" title="Compass and straightedge constructions">reconstruct</a> an ellipse from any pair of conjugate diameters, or from any tangent parallelogram. </p> <h3><span class="mw-headline" id="Faces_of_a_parallelepiped">Faces of a parallelepiped</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=12"title="Edit section: Faces of a parallelepiped" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h3> <p>A <a href="/info/en/?search=Parallelepiped" title="Parallelepiped">parallelepiped</a> is a three-dimensional figure whose six <a href="/info/en/?search=Face_(geometry)" title="Face (geometry)">faces</a> are parallelograms. </p> <h2><span class="mw-headline" id="See_also">See also</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=13"title="Edit section: See also" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <ul><li><a href="/info/en/?search=Fundamental_parallelogram_(disambiguation)" class="mw-redirect mw-disambig" title="Fundamental parallelogram (disambiguation)">Fundamental parallelogram (disambiguation)</a></li> <li><a href="/info/en/?search=Antiparallelogram" title="Antiparallelogram">Antiparallelogram</a></li> <li><a href="/info/en/?search=Levi-Civita_parallelogramoid" title="Levi-Civita parallelogramoid">Levi-Civita parallelogramoid</a></li></ul> <h2><span class="mw-headline" id="References">References</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=14"title="Edit section: References" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <style data-mw-deduplicate="TemplateStyles:r1217336898">.mw-parser-output .reflist{font-size:90%;margin-bottom:0.5em;list-style-type:decimal}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1215172403">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("https://upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a{background-size:contain}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("https://upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a{background-size:contain}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("https://upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a{background-size:contain}.mw-parser-output .cs1-ws-icon a{background:url("https://upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:#d33}.mw-parser-output .cs1-visible-error{color:#d33}.mw-parser-output .cs1-maint{display:none;color:#2C882D;margin-left:0.3em}.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911F}html.skin-theme-clientpref-night .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-night .mw-parser-output .cs1-hidden-error{color:#f8a397}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-visible-error,html.skin-theme-clientpref-os .mw-parser-output .cs1-hidden-error{color:#f8a397}html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911F}}</style><cite class="citation web cs1"><a class="external text" href="https://web.archive.org/web/20140514200449/http://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf">"CIMT - Page no longer available at Plymouth University servers"</a> <span class="cs1-format">(PDF)</span>. <i>www.cimt.plymouth.ac.uk</i>. Archived from <a class="external text" href="https://www.cimt.plymouth.ac.uk/resources/topics/art002.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2014-05-14.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.cimt.plymouth.ac.uk&amp;rft.atitle=CIMT+-+Page+no+longer+available+at+Plymouth+University+servers&amp;rft_id=http%3A%2F%2Fwww.cimt.plymouth.ac.uk%2Fresources%2Ftopics%2Fart002.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParallelogram" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text">Owen Byer, Felix Lazebnik and <a href="/info/en/?search=Deirdre_Smeltzer" title="Deirdre Smeltzer">Deirdre Smeltzer</a>, <i>Methods for Euclidean Geometry</i>, Mathematical Association of America, 2010, pp. 51-52.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text">Zalman Usiskin and Jennifer Griffin, "The Classification of Quadrilaterals. A Study of Definition", Information Age Publishing, 2008, p. 22.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text">Chen, Zhibo, and Liang, Tian. "The converse of Viviani's theorem", <i><a href="/info/en/?search=The_College_Mathematics_Journal" title="The College Mathematics Journal">The College Mathematics Journal</a></i> 37(5), 2006, pp. 390–391.</span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text">Problem 5, <i>2006 British Mathematical Olympiad</i>, <a class="external autonumber" href="http://artofproblemsolving.com/downloads/printable_post_collections/5063">[1]</a>.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text">Dunn, J.A., and J.E. Pretty, "Halving a triangle", <i>Mathematical Gazette</i> 56, May 1972, p. 105.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a class="external text" href="https://mathworld.wolfram.com/TriangleCircumscribing.html">"Triangle Circumscribing"</a>. <i>Wolfram Math World</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=Wolfram+Math+World&amp;rft.atitle=Triangle+Circumscribing&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W&amp;rft_id=http%3A%2F%2Fmathworld.wolfram.com%2FTriangleCircumscribing.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParallelogram" class="Z3988"></span></span> </li> <li id="cite_note-Weisstein-8"><span class="mw-cite-backlink">^ <a href="#cite_ref-Weisstein_8-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Weisstein_8-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text">Weisstein, Eric W. "Parallelogram." From MathWorld--A Wolfram Web Resource. <a class="external free" href="http://mathworld.wolfram.com/Parallelogram.html">http://mathworld.wolfram.com/Parallelogram.html</a></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">Mitchell, Douglas W., "The area of a quadrilateral", <i>Mathematical Gazette</i>, July 2009.</span> </li> </ol></div></div> <h2><span class="mw-headline" id="External_links">External links</span><span class="mw-editsection"> <a role="button" href="https://en.wikipedia.org/?title=Parallelogram&amp;action=edit&amp;section=15"title="Edit section: External links" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>edit</span> </a> </span> </h2> <style data-mw-deduplicate="TemplateStyles:r1217611005">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:#f9f9f9;display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="https://upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="https://upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Parallelograms" class="extiw" title="commons:Category:Parallelograms">Parallelograms</a></span>.</div></div> </div> <ul><li><a class="external text" href="https://www.elsy.at/kurse/index.php?kurs=Parallelogram+and+Rhombus&amp;status=public">Parallelogram and Rhombus - Animated course (Construction, Circumference, Area)</a></li> <li><span class="citation mathworld" id="Reference-Mathworld-Parallelogram"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1215172403"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/info/en/?search=Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a class="external text" href="https://mathworld.wolfram.com/Parallelogram.html">"Parallelogram"</a>. <i><a href="/info/en/?search=MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Parallelogram&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FParallelogram.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AParallelogram" class="Z3988"></span></span></li> <li><a class="external text" href="https://www.mathwarehouse.com/geometry/quadrilaterals/parallelograms/index.php">Interactive Parallelogram --sides, angles and slope</a></li> <li><a class="external text" href="https://www.cut-the-knot.org/Curriculum/Geometry/AreaOfParallelogram.shtml">Area of Parallelogram</a> at <a href="/info/en/?search=Cut-the-knot" class="mw-redirect" title="Cut-the-knot">cut-the-knot</a></li> <li><a class="external text" href="https://www.cut-the-knot.org/Curriculum/Geometry/EquiTriOnPara.shtml">Equilateral Triangles On Sides of a Parallelogram</a> at <a href="/info/en/?search=Cut-the-knot" class="mw-redirect" title="Cut-the-knot">cut-the-knot</a></li> <li><a class="external text" href="https://www.mathopenref.com/parallelogram.html">Definition and properties of a parallelogram</a> with animated applet</li> <li><a class="external text" href="https://www.mathopenref.com/parallelogramarea.html">Interactive applet showing parallelogram area calculation</a> interactive applet</li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1061467846">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}</style></div><div role="navigation" class="navbox" aria-labelledby="Polygons_(List)" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1063604349">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/info/en/?search=Template:Polygons" title="Template:Polygons"><abbr title="View this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">v</abbr></a></li><li class="nv-talk"><a href="/info/en/?search=Template_talk:Polygons" title="Template talk:Polygons"><abbr title="Discuss this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">t</abbr></a></li><li class="nv-edit"><a href="/info/en/?search=Special:EditPage/Template:Polygons" title="Special:EditPage/Template:Polygons"><abbr title="Edit this template" style=";;background:none transparent;border:none;box-shadow:none;padding:0;">e</abbr></a></li></ul></div><div id="Polygons_(List)" style="font-size:114%;margin:0 4em"><a href="/info/en/?search=Polygon" title="Polygon">Polygons</a> (<a href="/info/en/?search=List_of_polygons" title="List of polygons">List</a>)</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/info/en/?search=Triangle" title="Triangle">Triangles</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Acute_and_obtuse_triangles" title="Acute and obtuse triangles">Acute</a></li> <li><a href="/info/en/?search=Equilateral_triangle" title="Equilateral triangle">Equilateral</a></li> <li><a href="/info/en/?search=Ideal_triangle" title="Ideal triangle">Ideal</a></li> <li><a href="/info/en/?search=Isosceles_triangle" title="Isosceles triangle">Isosceles</a></li> <li><a href="/info/en/?search=Kepler_triangle" title="Kepler triangle">Kepler</a></li> <li><a href="/info/en/?search=Acute_and_obtuse_triangles" title="Acute and obtuse triangles">Obtuse</a></li> <li><a href="/info/en/?search=Right_triangle" title="Right triangle">Right</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/info/en/?search=Quadrilateral" title="Quadrilateral">Quadrilaterals</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Antiparallelogram" title="Antiparallelogram">Antiparallelogram</a></li> <li><a href="/info/en/?search=Bicentric_quadrilateral" title="Bicentric quadrilateral">Bicentric</a></li> <li><a href="/info/en/?search=Crossed_quadrilateral" class="mw-redirect" title="Crossed quadrilateral">Crossed</a></li> <li><a href="/info/en/?search=Cyclic_quadrilateral" title="Cyclic quadrilateral">Cyclic</a></li> <li><a href="/info/en/?search=Equidiagonal_quadrilateral" title="Equidiagonal quadrilateral">Equidiagonal</a></li> <li><a href="/info/en/?search=Ex-tangential_quadrilateral" title="Ex-tangential quadrilateral">Ex-tangential</a></li> <li><a href="/info/en/?search=Harmonic_quadrilateral" title="Harmonic quadrilateral">Harmonic</a></li> <li><a href="/info/en/?search=Isosceles_trapezoid" title="Isosceles trapezoid">Isosceles trapezoid</a></li> <li><a href="/info/en/?search=Kite_(geometry)" title="Kite (geometry)">Kite</a></li> <li><a href="/info/en/?search=Orthodiagonal_quadrilateral" title="Orthodiagonal quadrilateral">Orthodiagonal</a></li> <li><a class="mw-selflink selflink">Parallelogram</a></li> <li><a href="/info/en/?search=Rectangle" title="Rectangle">Rectangle</a></li> <li><a href="/info/en/?search=Right_kite" title="Right kite">Right kite</a></li> <li><a href="/info/en/?search=Right_trapezoid" class="mw-redirect" title="Right trapezoid">Right trapezoid</a></li> <li><a href="/info/en/?search=Rhombus" title="Rhombus">Rhombus</a></li> <li><a href="/info/en/?search=Square" title="Square">Square</a></li> <li><a href="/info/en/?search=Tangential_quadrilateral" title="Tangential quadrilateral">Tangential</a></li> <li><a href="/info/en/?search=Tangential_trapezoid" title="Tangential trapezoid">Tangential trapezoid</a></li> <li><a href="/info/en/?search=Trapezoid" title="Trapezoid">Trapezoid</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">By number <br />of sides</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">1–10 sides</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Monogon" title="Monogon">Monogon (1)</a></li> <li><a href="/info/en/?search=Digon" title="Digon">Digon (2)</a></li> <li><a href="/info/en/?search=Triangle" title="Triangle">Triangle (3)</a></li> <li><a href="/info/en/?search=Quadrilateral" title="Quadrilateral">Quadrilateral (4)</a></li> <li><a href="/info/en/?search=Pentagon" title="Pentagon">Pentagon (5)</a></li> <li><a href="/info/en/?search=Hexagon" title="Hexagon">Hexagon (6)</a></li> <li><a href="/info/en/?search=Heptagon" title="Heptagon">Heptagon (7)</a></li> <li><a href="/info/en/?search=Octagon" title="Octagon">Octagon (8)</a></li> <li><a href="/info/en/?search=Nonagon" title="Nonagon">Nonagon (Enneagon, 9)</a></li> <li><a href="/info/en/?search=Decagon" title="Decagon">Decagon (10)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">11–20 sides</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Hendecagon" title="Hendecagon">Hendecagon (11)</a></li> <li><a href="/info/en/?search=Dodecagon" title="Dodecagon">Dodecagon (12)</a></li> <li><a href="/info/en/?search=Tridecagon" title="Tridecagon">Tridecagon (13)</a></li> <li><a href="/info/en/?search=Tetradecagon" title="Tetradecagon">Tetradecagon (14)</a></li> <li><a href="/info/en/?search=Pentadecagon" title="Pentadecagon">Pentadecagon (15)</a></li> <li><a href="/info/en/?search=Hexadecagon" title="Hexadecagon">Hexadecagon (16)</a></li> <li><a href="/info/en/?search=Heptadecagon" title="Heptadecagon">Heptadecagon (17)</a></li> <li><a href="/info/en/?search=Octadecagon" title="Octadecagon">Octadecagon (18)</a></li> <li><a href="/info/en/?search=Icosagon" title="Icosagon">Icosagon (20)</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">&gt;20 sides</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Icositrigon" title="Icositrigon">Icositrigon (23)</a></li> <li><a href="/info/en/?search=Icositetragon" title="Icositetragon">Icositetragon (24)</a></li> <li><a href="/info/en/?search=Triacontagon" title="Triacontagon">Triacontagon (30)</a></li> <li><a href="/info/en/?search=257-gon" title="257-gon">257-gon</a></li> <li><a href="/info/en/?search=Chiliagon" title="Chiliagon">Chiliagon (1000)</a></li> <li><a href="/info/en/?search=Myriagon" title="Myriagon">Myriagon (10,000)</a></li> <li><a href="/info/en/?search=65537-gon" title="65537-gon">65537-gon</a></li> <li><a href="/info/en/?search=Megagon" title="Megagon">Megagon (1,000,000)</a></li> <li><a href="/info/en/?search=Apeirogon" title="Apeirogon">Apeirogon (∞)</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/info/en/?search=Star_polygon" title="Star polygon">Star polygons</a><br /></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Pentagram" title="Pentagram">Pentagram</a></li> <li><a href="/info/en/?search=Hexagram" title="Hexagram">Hexagram</a></li> <li><a href="/info/en/?search=Heptagram" title="Heptagram">Heptagram</a></li> <li><a href="/info/en/?search=Octagram" title="Octagram">Octagram</a></li> <li><a href="/info/en/?search=Enneagram_(geometry)" title="Enneagram (geometry)">Enneagram</a></li> <li><a href="/info/en/?search=Decagram_(geometry)" title="Decagram (geometry)">Decagram</a></li> <li><a href="/info/en/?search=Hendecagram" title="Hendecagram">Hendecagram</a></li> <li><a href="/info/en/?search=Dodecagram" title="Dodecagram">Dodecagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Classes</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/info/en/?search=Concave_polygon" title="Concave polygon">Concave</a></li> <li><a href="/info/en/?search=Convex_polygon" title="Convex polygon">Convex</a></li> <li><a href="/info/en/?search=Cyclic_polygon" class="mw-redirect" title="Cyclic polygon">Cyclic</a></li> <li><a href="/info/en/?search=Equiangular_polygon" title="Equiangular polygon">Equiangular</a></li> <li><a href="/info/en/?search=Equilateral_polygon" title="Equilateral polygon">Equilateral</a></li> <li><a href="/info/en/?search=Infinite_skew_polygon" title="Infinite skew polygon">Infinite skew</a></li> <li><a href="/info/en/?search=Isogonal_figure" title="Isogonal figure">Isogonal</a></li> <li><a href="/info/en/?search=Isotoxal_figure" title="Isotoxal figure">Isotoxal</a></li> <li><a href="/info/en/?search=Magic_polygon" title="Magic polygon">Magic</a></li> <li><a href="/info/en/?search=Pseudotriangle" title="Pseudotriangle">Pseudotriangle</a></li> <li><a href="/info/en/?search=Rectilinear_polygon" title="Rectilinear polygon">Rectilinear</a></li> <li><a href="/info/en/?search=Regular_polygon" title="Regular polygon">Regular</a></li> <li><a href="/info/en/?search=Reinhardt_polygon" title="Reinhardt polygon">Reinhardt</a></li> <li><a href="/info/en/?search=Simple_polygon" title="Simple polygon">Simple</a></li> <li><a href="/info/en/?search=Skew_polygon" title="Skew polygon">Skew</a></li> <li><a href="/info/en/?search=Star-shaped_polygon" title="Star-shaped polygon">Star-shaped</a></li> <li><a href="/info/en/?search=Tangential_polygon" title="Tangential polygon">Tangential</a></li> <li><a href="/info/en/?search=Weakly_simple_polygon" title="Weakly simple polygon">Weakly simple</a></li></ul> </div></td></tr></tbody></table></div></div>'
Whether or not the change was made through a Tor exit node (tor_exit_node)
false
Unix timestamp of change (timestamp)
'1714647940'

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook