From Wikipedia, the free encyclopedia
(Redirected from Solid-state dye lasers)

Organic solid-state narrow-linewidth tunable dye laser oscillator [1]

A solid-state dye laser (SSDL) is a solid-state lasers in which the gain medium is a laser dye-doped organic matrix such as poly(methyl methacrylate) (PMMA), rather than a liquid solution of the dye. These lasers are also referred to as solid-state organic lasers and solid-state dye-doped polymer lasers.

SSDLs were introduced in 1967 by Soffer and McFarland. [2]

Organic gain media

In the 1990s, new forms of improved PMMA, such as modified PMMA, with high optical quality characteristics were introduced. [3] Gain media research for SSDL has been rather active in the 21st century, and various new dye-doped solid-state organic matrices have been discovered. [4] Notable among these new gain media are organic-inorganic dye-doped polymer-nanoparticle composites. [5] [6] [7] An additional form of organic-inorganic dye-doped solid-state laser gain media are the ORMOSILs. [7] [8]

High performance solid-state dye laser oscillators

This improved gain medium was central to the demonstration of the first tunable narrow-linewidth solid-state dye laser oscillators, by Duarte, [8] which were later optimized to deliver pulse emission in the kW regime in nearly diffraction limited beams with single-longitudinal-mode laser linewidths of ≈ 350 MHz (or ≈ 0.0004 nm, at a laser wavelength of 590 nm). [9] These tunable laser oscillators use multiple-prism grating architectures [9] yielding very high intracavity dispersions that can be nicely quantified using the multiple-prism grating equations. [10]

Distributed feedback and waveguide solid-state dye lasers

Additional developments in solid-state dye lasers were demonstrated with the introduction of distributed feedback laser designs in 1999 [11] [12] and distributed feedback waveguides in 2002. [13]

See also

References

  1. ^ Duarte, F. J.; Taylor, T. S.; Costela, A.; Garcia-Moreno, I.; Sastre, R. (1998). "Long-pulse narrow-linewidth dispersive solid-state dye laser oscillator". Applied Optics. 37 (18): 3987–3989. Bibcode: 1998ApOpt..37.3987D. doi: 10.1364/AO.37.003987. PMID  18273368.
  2. ^ Soffer, B. H.; McFarland, B. B. (1967). "Continuously Tunable, Narrow-Band Organic Dye Lasers". Applied Physics Letters. 10 (10): 266. Bibcode: 1967ApPhL..10..266S. doi: 10.1063/1.1754804.
  3. ^ Maslyukov, A.; Sokolov, S.; Kaivola, M.; Nyholm, K.; Popov, S. (1995). "Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements". Applied Optics. 34 (9): 1516–1518. Bibcode: 1995ApOpt..34.1516M. doi: 10.1364/AO.34.001516. PMID  21037689.
  4. ^ A. J. C. Kuehne and M. C. Gather, Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques, Chem. Rev. 116, 12823-12864 (2016).
  5. ^ Duarte, F. J.; James, R. O. (2003). "Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media". Optics Letters. 28 (21): 2088–90. Bibcode: 2003OptL...28.2088D. doi: 10.1364/OL.28.002088. PMID  14587824.
  6. ^ Costela, A.; Garcia-Moreno, I.; Sastre, R. (2009). "Solid state dye lasers". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). Boca Raton: CRC Press. pp.  97–120. ISBN  978-1-4200-6009-6.
  7. ^ a b Duarte, F. J.; James, R. O. (2009). "Tunable lasers based on dye-doped polymer gain media incorporating homogeneous distributions of functional nanoparticles". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). Boca Raton: CRC Press. pp.  121–142. ISBN  978-1-4200-6009-6.
  8. ^ a b Duarte, F. J., F. J. (1994). "Solid-state multiple-prism grating dye-laser oscillators". Applied Optics. 33 (18): 3857–3860. Bibcode: 1994ApOpt..33.3857D. doi: 10.1364/AO.33.003857. PMID  20935726.
  9. ^ a b Duarte, F. J. (1999). "Multiple-prism grating solid-state dye laser oscillator: optimized architecture". Applied Optics. 38 (30): 6347–6349. Bibcode: 1999ApOpt..38.6347D. doi: 10.1364/AO.38.006347. PMID  18324163.
  10. ^ Duarte, F. J. (2015). "The physics of multiple-prism optics". Tunable Laser Optics (2nd ed.). New York: CRC Press. pp.  77–100. ISBN  978-1-4822-4529-5.
  11. ^ Wadsworth, W. J.; McKinnie, I. T.; Woolhouse, A. D.; Haskell, T. G. (1999). "Efficient distributed feedback solid state dye laser with a dynamic grating". Applied Physics B. 69 (2): 163–169. Bibcode: 1999ApPhB..69..163W. doi: 10.1007/s003400050791. S2CID  122330477.
  12. ^ Zhu, X-L; Lam, S-K; Lo, D. (2000). "Distributed-feedback dye-doped solgel silica lasers". Applied Optics. 39 (18): 3104–3107. Bibcode: 2000ApOpt..39.3104Z. doi: 10.1364/AO.39.003104. PMID  18345240.
  13. ^ Oki, Y.; Miyamoto, S.; Tanaka, M.; Zuo, D.; Maeda, M. (2002). "Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers". Optics Communications. 214 (1–6): 277–283. Bibcode: 2002OptCo.214..277O. doi: 10.1016/S0030-4018(02)02125-9.
From Wikipedia, the free encyclopedia
(Redirected from Solid-state dye lasers)

Organic solid-state narrow-linewidth tunable dye laser oscillator [1]

A solid-state dye laser (SSDL) is a solid-state lasers in which the gain medium is a laser dye-doped organic matrix such as poly(methyl methacrylate) (PMMA), rather than a liquid solution of the dye. These lasers are also referred to as solid-state organic lasers and solid-state dye-doped polymer lasers.

SSDLs were introduced in 1967 by Soffer and McFarland. [2]

Organic gain media

In the 1990s, new forms of improved PMMA, such as modified PMMA, with high optical quality characteristics were introduced. [3] Gain media research for SSDL has been rather active in the 21st century, and various new dye-doped solid-state organic matrices have been discovered. [4] Notable among these new gain media are organic-inorganic dye-doped polymer-nanoparticle composites. [5] [6] [7] An additional form of organic-inorganic dye-doped solid-state laser gain media are the ORMOSILs. [7] [8]

High performance solid-state dye laser oscillators

This improved gain medium was central to the demonstration of the first tunable narrow-linewidth solid-state dye laser oscillators, by Duarte, [8] which were later optimized to deliver pulse emission in the kW regime in nearly diffraction limited beams with single-longitudinal-mode laser linewidths of ≈ 350 MHz (or ≈ 0.0004 nm, at a laser wavelength of 590 nm). [9] These tunable laser oscillators use multiple-prism grating architectures [9] yielding very high intracavity dispersions that can be nicely quantified using the multiple-prism grating equations. [10]

Distributed feedback and waveguide solid-state dye lasers

Additional developments in solid-state dye lasers were demonstrated with the introduction of distributed feedback laser designs in 1999 [11] [12] and distributed feedback waveguides in 2002. [13]

See also

References

  1. ^ Duarte, F. J.; Taylor, T. S.; Costela, A.; Garcia-Moreno, I.; Sastre, R. (1998). "Long-pulse narrow-linewidth dispersive solid-state dye laser oscillator". Applied Optics. 37 (18): 3987–3989. Bibcode: 1998ApOpt..37.3987D. doi: 10.1364/AO.37.003987. PMID  18273368.
  2. ^ Soffer, B. H.; McFarland, B. B. (1967). "Continuously Tunable, Narrow-Band Organic Dye Lasers". Applied Physics Letters. 10 (10): 266. Bibcode: 1967ApPhL..10..266S. doi: 10.1063/1.1754804.
  3. ^ Maslyukov, A.; Sokolov, S.; Kaivola, M.; Nyholm, K.; Popov, S. (1995). "Solid-state dye laser with modified poly(methyl methacrylate)-doped active elements". Applied Optics. 34 (9): 1516–1518. Bibcode: 1995ApOpt..34.1516M. doi: 10.1364/AO.34.001516. PMID  21037689.
  4. ^ A. J. C. Kuehne and M. C. Gather, Organic Lasers: Recent Developments on Materials, Device Geometries, and Fabrication Techniques, Chem. Rev. 116, 12823-12864 (2016).
  5. ^ Duarte, F. J.; James, R. O. (2003). "Tunable solid-state lasers incorporating dye-doped polymer-nanoparticle gain media". Optics Letters. 28 (21): 2088–90. Bibcode: 2003OptL...28.2088D. doi: 10.1364/OL.28.002088. PMID  14587824.
  6. ^ Costela, A.; Garcia-Moreno, I.; Sastre, R. (2009). "Solid state dye lasers". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). Boca Raton: CRC Press. pp.  97–120. ISBN  978-1-4200-6009-6.
  7. ^ a b Duarte, F. J.; James, R. O. (2009). "Tunable lasers based on dye-doped polymer gain media incorporating homogeneous distributions of functional nanoparticles". In Duarte, F. J. (ed.). Tunable Laser Applications (2nd ed.). Boca Raton: CRC Press. pp.  121–142. ISBN  978-1-4200-6009-6.
  8. ^ a b Duarte, F. J., F. J. (1994). "Solid-state multiple-prism grating dye-laser oscillators". Applied Optics. 33 (18): 3857–3860. Bibcode: 1994ApOpt..33.3857D. doi: 10.1364/AO.33.003857. PMID  20935726.
  9. ^ a b Duarte, F. J. (1999). "Multiple-prism grating solid-state dye laser oscillator: optimized architecture". Applied Optics. 38 (30): 6347–6349. Bibcode: 1999ApOpt..38.6347D. doi: 10.1364/AO.38.006347. PMID  18324163.
  10. ^ Duarte, F. J. (2015). "The physics of multiple-prism optics". Tunable Laser Optics (2nd ed.). New York: CRC Press. pp.  77–100. ISBN  978-1-4822-4529-5.
  11. ^ Wadsworth, W. J.; McKinnie, I. T.; Woolhouse, A. D.; Haskell, T. G. (1999). "Efficient distributed feedback solid state dye laser with a dynamic grating". Applied Physics B. 69 (2): 163–169. Bibcode: 1999ApPhB..69..163W. doi: 10.1007/s003400050791. S2CID  122330477.
  12. ^ Zhu, X-L; Lam, S-K; Lo, D. (2000). "Distributed-feedback dye-doped solgel silica lasers". Applied Optics. 39 (18): 3104–3107. Bibcode: 2000ApOpt..39.3104Z. doi: 10.1364/AO.39.003104. PMID  18345240.
  13. ^ Oki, Y.; Miyamoto, S.; Tanaka, M.; Zuo, D.; Maeda, M. (2002). "Long lifetime and high repetition rate operation from distributed feedback plastic waveguided dye lasers". Optics Communications. 214 (1–6): 277–283. Bibcode: 2002OptCo.214..277O. doi: 10.1016/S0030-4018(02)02125-9.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook