From Wikipedia, the free encyclopedia
(Redirected from Senotherapeutics)

Senotherapy is an early-stage basic research field for development of possible therapeutic agents and strategies to specifically target cellular senescence, [1] an altered cell state associated with ageing and age-related diseases. The name derives from intent of the proposed anti-aging drug to halt "senescence". [1] As of 2019, much of the research remains preliminary and there are no drugs approved for this purpose.

Types

Senotherapeutics include:

  • Senolytics – small molecules that specifically induce cell death in senescent cells, [15] [16] targeting survival pathways and anti-apoptotic mechanisms, [17] antibodies and antibody-mediated drug delivery medications. Unlike SASP inhibitors, senolytics can be effective by intermittent rather than continuous application. [18]
  • Senomorphics – small molecules that suppress senescent phenotypes without cell killing [19]
  • Gene therapy strategies – edit the genes of the cells of an organism in order to increase their resistance to aging, senile diseases and to prolong the life of the organism [3] [20]

See also

References

  1. ^ a b Childs BG, Durik M, Baker DJ, van Deursen JM (December 2015). "Cellular senescence in aging and age-related disease: from mechanisms to therapy". Nature Medicine. 21 (12): 1424–1435. doi: 10.1038/nm.4000. PMC  4748967. PMID  26646499.
  2. ^ Misra J, Mohanty ST, Madan S, Fernandes JA, Hal Ebetino F, Russell RG, Bellantuono I (March 2016). "Zoledronate Attenuates Accumulation of DNA Damage in Mesenchymal Stem Cells and Protects Their Function". Stem Cells. 34 (3): 756–767. doi: 10.1002/stem.2255. PMC  4832316. PMID  26679354.
  3. ^ a b Xiong S, Patrushev N, Forouzandeh F, Hilenski L, Alexander RW (September 2015). "PGC-1α Modulates Telomere Function and DNA Damage in Protecting against Aging-Related Chronic Diseases". Cell Reports. 12 (9): 1391–1399. doi: 10.1016/j.celrep.2015.07.047. PMC  4549794. PMID  26299964.
  4. ^ Wahlestedt, M., Pronk, C. J., & Bryder, D. (2015). Concise Review: Hematopoietic Stem Cell Aging and the Prospects for Rejuvenation. Stem cells translational medicine, 4(2), 186-194.
  5. ^ Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. (November 2009). "Induction of autophagy by spermidine promotes longevity". Nature Cell Biology. 11 (11): 1305–1314. doi: 10.1038/ncb1975. PMID  19801973. S2CID  3126330.
  6. ^ Pride H, Yu Z, Sunchu B, Mochnick J, Coles A, Zhang Y, et al. (February 2015). "Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species". Biochemical and Biophysical Research Communications. 457 (4): 669–675. doi: 10.1016/j.bbrc.2015.01.046. PMID  25615820.
  7. ^ Blackburn EH, Epel ES, Lin J (December 2015). "Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection". Science. 350 (6265): 1193–1198. Bibcode: 2015Sci...350.1193B. doi: 10.1126/science.aab3389. PMID  26785477.
  8. ^ Byun HO, Lee YK, Kim JM, Yoon G (October 2015). "From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes". BMB Reports. 48 (10): 549–558. doi: 10.5483/bmbrep.2015.48.10.122. PMC  4911181. PMID  26129674.
  9. ^ Young AR, Narita M (March 2009). "SASP reflects senescence". EMBO Reports. 10 (3): 228–230. doi: 10.1038/embor.2009.22. PMC  2658552. PMID  19218920.
  10. ^ Laberge RM, Zhou L, Sarantos MR, Rodier F, Freund A, de Keizer PL, et al. (August 2012). "Glucocorticoids suppress selected components of the senescence-associated secretory phenotype". Aging Cell. 11 (4): 569–578. doi: 10.1111/j.1474-9726.2012.00818.x. PMC  3387333. PMID  22404905.
  11. ^ Liu S, Uppal H, Demaria M, Desprez PY, Campisi J, Kapahi P (December 2015). "Simvastatin suppresses breast cancer cell proliferation induced by senescent cells". Scientific Reports. 5: 17895. Bibcode: 2015NatSR...517895L. doi: 10.1038/srep17895. PMC  4677323. PMID  26658759.
  12. ^ Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, et al. (November 2015). "JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age". Proceedings of the National Academy of Sciences of the United States of America. 112 (46): E6301–E6310. Bibcode: 2015PNAS..112E6301X. doi: 10.1073/pnas.1515386112. PMC  4655580. PMID  26578790.
  13. ^ Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, et al. (December 2015). "Targeting senescent cells enhances adipogenesis and metabolic function in old age". eLife. 4: e12997. doi: 10.7554/eLife.12997. PMC  4758946. PMID  26687007.
  14. ^ Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R, Cole J, et al. (April 2016). "Mitochondria are required for pro-ageing features of the senescent phenotype". The EMBO Journal. 35 (7): 724–742. doi: 10.15252/embj.201592862. PMC  4818766. PMID  26848154. 60% of the SASP genes which are significantly different between proliferating and senescent were reversed upon mitochondrial depletion, whereas only 5% were exacerbated
  15. ^ Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. (June 2016). "Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors". Aging Cell. 15 (3): 428–435. doi: 10.1111/acel.12445. PMC  4854923. PMID  26711051.
  16. ^ Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. (August 2015). "The Achilles' heel of senescent cells: from transcriptome to senolytic drugs". Aging Cell. 14 (4): 644–658. doi: 10.1111/acel.12344. PMC  4531078. PMID  25754370.
  17. ^ Soto-Gamez A, Quax WJ, Demaria M (July 2019). "Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions". Journal of Molecular Biology. 431 (15): 2629–2643. doi: 10.1016/j.jmb.2019.05.036. PMID  31153901. S2CID  173993854.
  18. ^ Khosla S, Farr JN, Tchkonia T, Kirkland JL (May 2020). "The role of cellular senescence in ageing and endocrine disease". Nature Reviews. Endocrinology. 16 (5): 263–275. doi: 10.1038/s41574-020-0335-y. PMC  7227781. PMID  32161396.
  19. ^ Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, et al. (September 2017). "Identification of HSP90 inhibitors as a novel class of senolytics". Nature Communications. 8 (1): 422. Bibcode: 2017NatCo...8..422F. doi: 10.1038/s41467-017-00314-z. PMC  5583353. PMID  28871086.
  20. ^ Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, et al. (January 2015). "Reduced expression of MYC increases longevity and enhances healthspan". Cell. 160 (3): 477–488. doi: 10.1016/j.cell.2014.12.016. PMC  4624921. PMID  25619689.

Further reading

From Wikipedia, the free encyclopedia
(Redirected from Senotherapeutics)

Senotherapy is an early-stage basic research field for development of possible therapeutic agents and strategies to specifically target cellular senescence, [1] an altered cell state associated with ageing and age-related diseases. The name derives from intent of the proposed anti-aging drug to halt "senescence". [1] As of 2019, much of the research remains preliminary and there are no drugs approved for this purpose.

Types

Senotherapeutics include:

  • Senolytics – small molecules that specifically induce cell death in senescent cells, [15] [16] targeting survival pathways and anti-apoptotic mechanisms, [17] antibodies and antibody-mediated drug delivery medications. Unlike SASP inhibitors, senolytics can be effective by intermittent rather than continuous application. [18]
  • Senomorphics – small molecules that suppress senescent phenotypes without cell killing [19]
  • Gene therapy strategies – edit the genes of the cells of an organism in order to increase their resistance to aging, senile diseases and to prolong the life of the organism [3] [20]

See also

References

  1. ^ a b Childs BG, Durik M, Baker DJ, van Deursen JM (December 2015). "Cellular senescence in aging and age-related disease: from mechanisms to therapy". Nature Medicine. 21 (12): 1424–1435. doi: 10.1038/nm.4000. PMC  4748967. PMID  26646499.
  2. ^ Misra J, Mohanty ST, Madan S, Fernandes JA, Hal Ebetino F, Russell RG, Bellantuono I (March 2016). "Zoledronate Attenuates Accumulation of DNA Damage in Mesenchymal Stem Cells and Protects Their Function". Stem Cells. 34 (3): 756–767. doi: 10.1002/stem.2255. PMC  4832316. PMID  26679354.
  3. ^ a b Xiong S, Patrushev N, Forouzandeh F, Hilenski L, Alexander RW (September 2015). "PGC-1α Modulates Telomere Function and DNA Damage in Protecting against Aging-Related Chronic Diseases". Cell Reports. 12 (9): 1391–1399. doi: 10.1016/j.celrep.2015.07.047. PMC  4549794. PMID  26299964.
  4. ^ Wahlestedt, M., Pronk, C. J., & Bryder, D. (2015). Concise Review: Hematopoietic Stem Cell Aging and the Prospects for Rejuvenation. Stem cells translational medicine, 4(2), 186-194.
  5. ^ Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. (November 2009). "Induction of autophagy by spermidine promotes longevity". Nature Cell Biology. 11 (11): 1305–1314. doi: 10.1038/ncb1975. PMID  19801973. S2CID  3126330.
  6. ^ Pride H, Yu Z, Sunchu B, Mochnick J, Coles A, Zhang Y, et al. (February 2015). "Long-lived species have improved proteostasis compared to phylogenetically-related shorter-lived species". Biochemical and Biophysical Research Communications. 457 (4): 669–675. doi: 10.1016/j.bbrc.2015.01.046. PMID  25615820.
  7. ^ Blackburn EH, Epel ES, Lin J (December 2015). "Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection". Science. 350 (6265): 1193–1198. Bibcode: 2015Sci...350.1193B. doi: 10.1126/science.aab3389. PMID  26785477.
  8. ^ Byun HO, Lee YK, Kim JM, Yoon G (October 2015). "From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes". BMB Reports. 48 (10): 549–558. doi: 10.5483/bmbrep.2015.48.10.122. PMC  4911181. PMID  26129674.
  9. ^ Young AR, Narita M (March 2009). "SASP reflects senescence". EMBO Reports. 10 (3): 228–230. doi: 10.1038/embor.2009.22. PMC  2658552. PMID  19218920.
  10. ^ Laberge RM, Zhou L, Sarantos MR, Rodier F, Freund A, de Keizer PL, et al. (August 2012). "Glucocorticoids suppress selected components of the senescence-associated secretory phenotype". Aging Cell. 11 (4): 569–578. doi: 10.1111/j.1474-9726.2012.00818.x. PMC  3387333. PMID  22404905.
  11. ^ Liu S, Uppal H, Demaria M, Desprez PY, Campisi J, Kapahi P (December 2015). "Simvastatin suppresses breast cancer cell proliferation induced by senescent cells". Scientific Reports. 5: 17895. Bibcode: 2015NatSR...517895L. doi: 10.1038/srep17895. PMC  4677323. PMID  26658759.
  12. ^ Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, et al. (November 2015). "JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age". Proceedings of the National Academy of Sciences of the United States of America. 112 (46): E6301–E6310. Bibcode: 2015PNAS..112E6301X. doi: 10.1073/pnas.1515386112. PMC  4655580. PMID  26578790.
  13. ^ Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, et al. (December 2015). "Targeting senescent cells enhances adipogenesis and metabolic function in old age". eLife. 4: e12997. doi: 10.7554/eLife.12997. PMC  4758946. PMID  26687007.
  14. ^ Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R, Cole J, et al. (April 2016). "Mitochondria are required for pro-ageing features of the senescent phenotype". The EMBO Journal. 35 (7): 724–742. doi: 10.15252/embj.201592862. PMC  4818766. PMID  26848154. 60% of the SASP genes which are significantly different between proliferating and senescent were reversed upon mitochondrial depletion, whereas only 5% were exacerbated
  15. ^ Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, Dai HM, Ling YY, Stout MB, et al. (June 2016). "Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors". Aging Cell. 15 (3): 428–435. doi: 10.1111/acel.12445. PMC  4854923. PMID  26711051.
  16. ^ Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. (August 2015). "The Achilles' heel of senescent cells: from transcriptome to senolytic drugs". Aging Cell. 14 (4): 644–658. doi: 10.1111/acel.12344. PMC  4531078. PMID  25754370.
  17. ^ Soto-Gamez A, Quax WJ, Demaria M (July 2019). "Regulation of Survival Networks in Senescent Cells: From Mechanisms to Interventions". Journal of Molecular Biology. 431 (15): 2629–2643. doi: 10.1016/j.jmb.2019.05.036. PMID  31153901. S2CID  173993854.
  18. ^ Khosla S, Farr JN, Tchkonia T, Kirkland JL (May 2020). "The role of cellular senescence in ageing and endocrine disease". Nature Reviews. Endocrinology. 16 (5): 263–275. doi: 10.1038/s41574-020-0335-y. PMC  7227781. PMID  32161396.
  19. ^ Fuhrmann-Stroissnigg H, Ling YY, Zhao J, McGowan SJ, Zhu Y, Brooks RW, et al. (September 2017). "Identification of HSP90 inhibitors as a novel class of senolytics". Nature Communications. 8 (1): 422. Bibcode: 2017NatCo...8..422F. doi: 10.1038/s41467-017-00314-z. PMC  5583353. PMID  28871086.
  20. ^ Hofmann JW, Zhao X, De Cecco M, Peterson AL, Pagliaroli L, Manivannan J, et al. (January 2015). "Reduced expression of MYC increases longevity and enhances healthspan". Cell. 160 (3): 477–488. doi: 10.1016/j.cell.2014.12.016. PMC  4624921. PMID  25619689.

Further reading


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook