PhotosBiographyFacebookTwitter

From Wikipedia, the free encyclopedia

Sarah Joanna Tabrizi
Sarah Tabrizi in 2013
Born
London, UK
Alma mater Heriot-Watt University
University of Edinburgh
University College London
Known forResearch into neurodegeneration, particularly Huntington's disease
Spouse Michael Nath
AwardsFellowship of the Academy of Medical Sciences, 2014
MRC Millennium Medal, 2022
Scientific career
Fields Neuroscience
Institutions UCL Institute of Neurology;
National Hospital for Neurology and Neurosurgery
Thesis Mitochondrial dysfunction in the pathogenesis of neurodegeneration (2000)
Website https://www.ucl.ac.uk/ion/research/research-centres/hd-centre

Sarah Joanna Tabrizi FMedSci is a British neurologist and neuroscientist in the field of neurodegeneration, particularly Huntington's disease. She is a Professor and Joint Head of the Department of Neurodegenerative Diseases [1] at the UCL Institute of Neurology; the founder and Director of the UCL Huntington's Disease Centre; a Principal Investigator at the UK Dementia Research Institute at UCL; and an Honorary Consultant Neurologist at the National Hospital for Neurology and Neurosurgery, Queen Square, London, where she established the Multidisciplinary Huntington's Disease Clinic. [2] [3] [4] The UCL Huntington’s Disease Centre was officially opened on 1 March 2017 by UCL President and Provost Professor Michael Arthur. [5]

Education and career

Tabrizi graduated with a first-class degree in biochemistry from Heriot-Watt University in 1986 and an MB ChB from the University of Edinburgh in 1992, where she graduated with the Gold Medal (Ettles Scholar) for the most distinguished medical graduate. [2] She obtained a PhD at University College London in 2000. [6] During her time as a trainee neurologist at the National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, Sarah worked for Professors Anita Harding and David Marsden, both of whom would make a lasting impression on her. [7] She undertook an MRC Clinical Training Fellowship PhD studying mitochondrial dysfunction in neurodegeneration with Tony Schapira and Gillian Bates from 1996 to 1999 then obtained a Department of Health National Clinician Scientist Fellowship at the UCL Institute of Neurology in 2002 to work with John Collinge and Charles Weissmann on prion cell biology. She was promoted to UCL Clinical Senior Lecturer and Honorary Consultant Neurologist in 2003, to Reader in 2007 and Full Professor in 2009. [8]

Research

Tabrizi is distinguished for her work on mechanisms of cellular neurodegeneration [9] [10] [11] [12] [13] and in particular Huntington's disease mechanistic pathobiology, novel therapeutics, biomarkers, outcome measures and first in human clinical trials. [14] [15] Amongst her achievements, she has identified key pathogenic mechanisms in cellular degeneration in prion disease, [16] [17] [18] identified a key role for the innate immune system in the pathogenesis of Huntington’s disease, [19] published the first assay of the mutant HD protein, [20] and designed and led two major, international, influential research initiatives, TRACK-HD and Track-On HD. To date these studies have yielded fundamental new insights into the preclinical phase of neurodegeneration in Huntington’s disease including identifying predictors of disease onset, [21] [22] [23] [24] [25] [26] [27] progression, evidence of brain compensation and plasticity and neurobiological changes occurring twenty years before predicted disease onset, and her work established a battery of clinical trial outcome measures now being used in global clinical trials. [28] [21] [22] [23] [24] [29] In 2017, her work identified an important new genetic modifier of disease progression in Huntington’s disease (MSH3, a mismatch repair protein), which has opened up new avenues of research into targeting DNA repair pathways as possible therapeutics for Huntington’s disease. [30] [31] [32] A major focus of her research now is to build understanding of how different DNA repair mechanisms are involved in modifying the development of Huntington’s disease. This knowledge to develop novel therapeutic approaches that could stop, slow down or reverse the progression of the disease by targeting the somatic expansion of the CAG repeat tract. [33] [34] [35]

Tabrizi gave a keynote presentation at the 2016 Google Zeitgeist Minds conference about her research, and the prospect of gene silencing for neurodegenerative disease. [36] She was the global lead Clinical Investigator for the first clinical trial of a ' gene silencing' or huntingtin-lowering antisense oligonucleotide (ASO) drug in Huntington's disease patients. The announcement of the ‘top line’ results from the Phase 1b/2a safety trial in December 2017 received widespread national and international media coverage and was covered in features by BBC News, [37] Guardian [38] and Nature. [39] In May 2019 the full results were published in The New England Journal of Medicine. [40] [41]

The potential of antisense oligonucleotides to treat neurodegenerative diseases was reviewed by Tabrizi in Science in 2020. [42] Tabrizi is currently working on several different approaches to treat Huntington’s disease, including testing novel ASOs targeting MSH3 to slow CAG repeat expansion, allele-selective approaches to target mutant HTT only, and new gene therapy approaches targeting the mutant HD gene. [43]

In 2020, Tabrizi published the Huntington’s Disease Young Adult Study (HD-YAS) studying premanifest HD gene carriers approximately 24 years from predicted onset of clinical symptoms using advanced neuroimaging, detailed cognitive testing and biofluid collection. [44] The cohort did not show any clinically meaningful functional impairment, yet there was evidence of elevated levels of neurofilament light protein, suggestive of very early neuronal damage, in those closest to expected symptom onset. HD-YAS will provide critical information on the very earliest signs of neurodegeneration, identifying a time at which a therapy could potentially be introduced to delay or even ultimately prevent the onset of clinical symptoms in HD. [44] This approach has implications beyond HD, providing a model for disease prevention in neurodegeneration and this work continues to be of major interest in the Tabrizi lab. [45]

In 2022, alongside colleagues at the HD Regulatory Science Consortium and CHDI, Tabrizi developed a novel staging framework, the Huntington’s Disease Integrated Staging System (HD-ISS), that assesses the progression of disease from birth. [46] Similar to the cancer staging system, the HD-ISS defines HD in four stages, from 0-3, and also biologically defines the disease as the presence of the HTT CAG repeat mutation. This will allow clinical trials much earlier in course of the disease process, and well in advance of when people show signs and symptoms of the disease, allowing the possibility of disease prevention in the future.

Tabrizi was the subject of profile articles in The Lancet in 2012 and The Lancet Neurology in 2017. [47] [48]

As of May 2023, Tabrizi had authored over 370 publications, with over 34,000 citations for her research. [49]

Awards and honours

Personal life

Tabrizi lives in London with her husband, the author Michael Nath. [6]

References

  1. ^ "Department of Neurodegenerative Disease". UCL Institute of Neurology. 2 August 2018.
  2. ^ a b "Iris View Profile". IRIS - UCL. Retrieved 5 May 2016.
  3. ^ "UCL Huntington's Disease Research". hdresearch.ucl.ac.uk.
  4. ^ "Prof Sarah Tabrizi". www.uclh.nhs.uk. Archived from the original on 31 August 2022. Retrieved 5 May 2016.
  5. ^ "The UCL Huntington's Disease Centre opens". 2 March 2017.
  6. ^ a b c "Who's Who 2016 - Tabrizi, Prof. Sarah Joanna". Who's Who 2016. Retrieved 6 May 2016.
  7. ^ Shetty, Priya (2012). "Sarah Tabrizi: Tracking Huntington's disease". The Lancet. 379 (9831): 2043. doi: 10.1016/S0140-6736(12)60884-8. PMID  22656876. S2CID  40222846.
  8. ^ "Professor Sarah J Tabrizi". UCL Iris.
  9. ^ Deriziotis, Pelagia; André, Ralph; Smith, David M; Goold, Rob; Kinghorn, Kerri J; Kristiansen, Mark; Nathan, James A; Rosenzweig, Rina; Krutauz, Dasha; Glickman, Michael H; Collinge, John; Goldberg, Alfred L; Tabrizi, Sarah J (8 July 2011). "Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry". The EMBO Journal. 30 (15): 3065–3077. doi: 10.1038/emboj.2011.224. PMC  3160194. PMID  21743439.
  10. ^ Kristiansen, Mark; Messenger, Marcus J.; Klöhn, Peter-Christian; Brandner, Sebastian; Wadsworth, Jonathan D. F.; Collinge, John; Tabrizi, Sarah J. (18 November 2005). "Disease-related Prion Protein Forms Aggresomes in Neuronal Cells Leading to Caspase Activation and Apoptosis". Journal of Biological Chemistry. 280 (46): 38851–38861. doi: 10.1074/jbc.M506600200. PMID  16157591.
  11. ^ Kristiansen, Mark; Deriziotis, Pelagia; Dimcheff, Derek E.; Jackson, Graham S.; Ovaa, Huib; Naumann, Heike; Clarke, Anthony R.; van Leeuwen, Fijs W.B.; Menéndez-Benito, Victoria; Dantuma, Nico P.; Portis, John L.; Collinge, John; Tabrizi, Sarah J. (April 2007). "Disease-Associated Prion Protein Oligomers Inhibit the 26S Proteasome". Molecular Cell. 26 (2): 175–188. doi: 10.1016/j.molcel.2007.04.001. hdl: 11858/00-001M-0000-0012-2650-5. PMID  17466621.
  12. ^ Goold, R.; Rabbanian, S.; Sutton, L.; Andre, R.; Arora, P.; Moonga, J.; Clarke, A.R.; Schiavo, G.; Jat, P.; Collinge, J.; Tabrizi, S.J. (19 April 2011). "Rapid cell-surface prion protein conversion revealed using a novel cell system". Nature Communications. 2 (1): 281–. Bibcode: 2011NatCo...2..281G. doi: 10.1038/ncomms1282. PMC  3104518. PMID  21505437.
  13. ^ McKinnon, Chris; Goold, Rob; Andre, Ralph; Devoy, Anny; Ortega, Zaira; Moonga, Julie; Linehan, Jacqueline M.; Brandner, Sebastian; Lucas, José J.; Collinge, John; Tabrizi, Sarah J. (8 December 2015). "Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin–proteasome system". Acta Neuropathologica. 131 (3): 411–425. doi: 10.1007/s00401-015-1508-y. PMC  4752964. PMID  26646779.
  14. ^ Shetty, Priya (2012). "Sarah Tabrizi: Tracking Huntington's disease". The Lancet. 379 (9831): 2043. doi: 10.1016/S0140-6736(12)60884-8. PMID  22656876. S2CID  40222846.
  15. ^ Mohammadi, Dara (July 2015). "Fast-forwarding treatment for neurodegenerative disorders". The Lancet Neurology. 14 (7): 687–688. doi: 10.1016/S1474-4422(15)00110-6. PMID  26067120.
  16. ^ Deriziotis, Pelagia; André, Ralph; Smith, David M; Goold, Rob; Kinghorn, Kerri J; Kristiansen, Mark; Nathan, James A; Rosenzweig, Rina; Krutauz, Dasha; Glickman, Michael H; Collinge, John (8 July 2011). "Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry". The EMBO Journal. 30 (15): 3065–3077. doi: 10.1038/emboj.2011.224. ISSN  0261-4189. PMC  3160194. PMID  21743439.
  17. ^ Kristiansen, Mark; Deriziotis, Pelagia; Dimcheff, Derek E.; Jackson, Graham S.; Ovaa, Huib; Naumann, Heike; Clarke, Anthony R.; van Leeuwen, Fijs W.B.; Menéndez-Benito, Victoria; Dantuma, Nico P.; Portis, John L. (April 2007). "Disease-Associated Prion Protein Oligomers Inhibit the 26S Proteasome". Molecular Cell. 26 (2): 175–188. doi: 10.1016/j.molcel.2007.04.001. hdl: 11858/00-001M-0000-0012-2650-5. PMID  17466621.
  18. ^ Kristiansen, Mark; Messenger, Marcus J.; Klöhn, Peter-Christian; Brandner, Sebastian; Wadsworth, Jonathan D. F.; Collinge, John; Tabrizi, Sarah J. (18 November 2005). "Disease-related Prion Protein Forms Aggresomes in Neuronal Cells Leading to Caspase Activation and Apoptosis". Journal of Biological Chemistry. 280 (46): 38851–38861. doi: 10.1074/jbc.M506600200. ISSN  0021-9258. PMID  16157591.
  19. ^ Björkqvist, Maria; Wild, Edward J; Thiele, Jenny; Silvestroni, Aurelio; Andre, Ralph; Lahiri, Nayana; Raibon, Elsa; Lee, Richard V; Benn, Caroline L; Soulet, Denis; Magnusson, Anna; Woodman, Ben; Landles, Christian; Pouladi, Mahmoud A; Hayden, Michael R; Khalili-Shirazi, Azadeh; Lowdell, Mark W; Brundin, Patrik; Bates, Gillian P; Leavitt, Blair R; Möller, Thomas; Tabrizi, Sarah J (2008). "A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease". The Journal of Experimental Medicine. 205 (8): 1869–77. doi: 10.1084/jem.20080178. PMC  2525598. PMID  18625748.
  20. ^ Weiss, Andreas; Träger, Ulrike; Wild, Edward J; Grueninger, Stephan; Farmer, Ruth; Landles, Christian; Scahill, Rachael I; Lahiri, Nayana; Haider, Salman; MacDonald, Douglas; Frost, Chris; Bates, Gillian P; Bilbe, Graeme; Kuhn, Rainer; Andre, Ralph; Tabrizi, Sarah J (2012). "Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression". Journal of Clinical Investigation. 122 (10): 3731–6. doi: 10.1172/jci64565. PMC  3461928. PMID  22996692.
  21. ^ a b Tabrizi, Sarah J; Langbehn, Douglas R; Leavitt, Blair R; Roos, Raymund AC; Durr, Alexandra; Craufurd, David; Kennard, Christopher; Hicks, Stephen L; Fox, Nick C; Scahill, Rachael I; Borowsky, Beth; Tobin, Allan J; Rosas, H Diana; Johnson, Hans; Reilmann, Ralf; Landwehrmeyer, Bernhard; Stout, Julie C (2009). "Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: Cross-sectional analysis of baseline data". The Lancet Neurology. 8 (9): 791–801. doi: 10.1016/s1474-4422(09)70170-x. PMC  3725974. PMID  19646924.
  22. ^ a b Tabrizi, Sarah J; Scahill, Rachael I; Durr, Alexandra; Roos, Raymund AC; Leavitt, Blair R; Jones, Rebecca; Landwehrmeyer, G Bernhard; Fox, Nick C; Johnson, Hans; Hicks, Stephen L; Kennard, Christopher; Craufurd, David; Frost, Chris; Langbehn, Douglas R; Reilmann, Ralf; Stout, Julie C; TRACK-HD Investigators (2011). "Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: The 12-month longitudinal analysis". The Lancet Neurology. 10 (1): 31–42. doi: 10.1016/s1474-4422(10)70276-3. PMID  21130037. S2CID  2602096.
  23. ^ a b Tabrizi, Sarah J; Reilmann, Ralf; Roos, Raymund AC; Durr, Alexandra; Leavitt, Blair; Owen, Gail; Jones, Rebecca; Johnson, Hans; Craufurd, David; Hicks, Stephen L; Kennard, Christopher; Landwehrmeyer, Bernhard; Stout, Julie C; Borowsky, Beth; Scahill, Rachael I; Frost, Chris; Langbehn, Douglas R; TRACK-HD investigators (2012). "Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: Analysis of 24 month observational data". The Lancet Neurology. 11 (1): 42–53. doi: 10.1016/s1474-4422(11)70263-0. PMID  22137354. S2CID  34929053.
  24. ^ a b Tabrizi, Sarah J; Scahill, Rachael I; Owen, Gail; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund A; Borowsky, Beth; Landwehrmeyer, Bernhard; Frost, Chris; Johnson, Hans; Craufurd, David; Reilmann, Ralf; Stout, Julie C; Langbehn, Douglas R (2013). "Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: Analysis of 36-month observational data". The Lancet Neurology. 12 (7): 637–49. doi: 10.1016/s1474-4422(13)70088-7. PMID  23664844. S2CID  12204298.
  25. ^ Klöppel, Stefan; Gregory, Sarah; Scheller, Elisa; Minkova, Lora; Razi, Adeel; Durr, Alexandra; Roos, Raymund A.C; Leavitt, Blair R; Papoutsi, Marina; Landwehrmeyer, G. Bernhard; Reilmann, Ralf; Borowsky, Beth; Johnson, Hans; Mills, James A; Owen, Gail; Stout, Julie; Scahill, Rachael I; Long, Jeffrey D; Rees, Geraint; Tabrizi, Sarah J (2015). "Compensation in Preclinical Huntington's Disease: Evidence from the Track-On HD Study". eBioMedicine. 2 (10): 1420–9. doi: 10.1016/j.ebiom.2015.08.002. PMC  4634199. PMID  26629536.
  26. ^ Gregory, Sarah; Long, Jeffrey D; Klöppel, Stefan; Razi, Adeel; Scheller, Elisa; Minkova, Lora; Papoutsi, Marina; Mills, James A; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund A. C; Stout, Julie C; Scahill, Rachael I; Langbehn, Douglas R; Tabrizi, Sarah J; Rees, Geraint (2017). "Operationalizing compensation over time in neurodegenerative disease". Brain. 140 (4): 1158–1165. doi: 10.1093/brain/awx022. PMC  5382953. PMID  28334888.
  27. ^ Gregory, Sarah; Long, Jeffrey D; Klöppel, Stefan; Razi, Adeel; Scheller, Elisa; Minkova, Lora; Johnson, Eileanoir B; Durr, Alexandra; Roos, Raymund A C; Leavitt, Blair R; Mills, James A; Stout, Julie C; Scahill, Rachael I; Tabrizi, Sarah J; Rees, Geraint; Coleman, A; Decolongon, J; Fan, M; Koren, T; Leavitt, B; Durr, A; Jauffret, C; Justo, D; Lehericy, S; Nigaud, K; Valabrègue, R; Roos, R; Hart, E P 't; Schoonderbeek, A; et al. (2018). "Testing a longitudinal compensation model in premanifest Huntington's disease". Brain. 141 (7): 2156–2166. doi: 10.1093/brain/awy122. PMC  6022638. PMID  29788038.
  28. ^ Shetty, Priya (2012). "Sarah Tabrizi: Tracking Huntington's disease". The Lancet. 379 (9831): 2043. doi: 10.1016/s0140-6736(12)60884-8. PMID  22656876. S2CID  40222846.
  29. ^ Arney, Kat (2018). "Improved metrics for Huntington's disease trials". Nature. 557 (7707): S46–S47. Bibcode: 2018Natur.557S..46A. doi: 10.1038/d41586-018-05179-w. PMID  29844554. S2CID  256768548.
  30. ^ Moss, Davina J Hensman; Pardiñas, Antonio F; Langbehn, Douglas; Lo, Kitty; Leavitt, Blair R; Roos, Raymund; Durr, Alexandra; Mead, Simon; Holmans, Peter; Jones, Lesley; Tabrizi, Sarah J; Coleman, A; Santos, R Dar; Decolongon, J; Sturrock, A; Bardinet, E; Ret, C Jauff; Justo, D; Lehericy, S; Marelli, C; Nigaud, K; Valabrègue, R; Van Den Bogaard, SJA; Dumas, E M; Van Der Grond, J; t'Hart, EP; Jurgens, C; Witjes-Ane, M-N; Arran, N; et al. (2017). "Identification of genetic variants associated with Huntington's disease progression: A genome-wide association study" (PDF). The Lancet Neurology. 16 (9): 701–711. doi: 10.1016/s1474-4422(17)30161-8. PMID  28642124. S2CID  588163.
  31. ^ Flower, Michael; Lomeikaite, Vilija; Ciosi, Marc; Cumming, Sarah; Morales, Fernando; Lo, Kitty; Hensman Moss, Davina; Jones, Lesley; Holmans, Peter; Monckton, Darren G.; Tabrizi, Sarah J. (1 July 2019). "MSH3 modifies somatic instability and disease severity in Huntington's and myotonic dystrophy type 1". Brain. 142 (7): 1876–1886. doi: 10.1093/brain/awz115. ISSN  0006-8950. PMC  6598626. PMID  31216018.
  32. ^ Tabrizi, Sarah J.; Estevez-Fraga, Carlos; van Roon-Mom, Willeke M. C.; Flower, Michael D.; Scahill, Rachael I.; Wild, Edward J.; Muñoz-Sanjuan, Ignacio; Sampaio, Cristina; Rosser, Anne E.; Leavitt, Blair R. (July 2022). "Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities". The Lancet. Neurology. 21 (7): 645–658. doi: 10.1016/S1474-4422(22)00121-1. ISSN  1474-4465. PMC  7613206. PMID  35716694.
  33. ^ Goold, Robert; Flower, Michael; Moss, Davina Hensman; Medway, Chris; Wood-Kaczmar, Alison; Andre, Ralph; Farshim, Pamela; Bates, Gill P; Holmans, Peter; Jones, Lesley; Tabrizi, Sarah J (15 February 2019). "FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat". Human Molecular Genetics. 28 (4): 650–661. doi: 10.1093/hmg/ddy375. ISSN  0964-6906. PMC  6360275. PMID  30358836.
  34. ^ Goold, Robert; Hamilton, Joseph; Menneteau, Thomas; Flower, Michael; Bunting, Emma L.; Aldous, Sarah G.; Porro, Antonio; Vicente, José R.; Allen, Nicholas D.; Wilkinson, Hilary; Bates, Gillian P.; Sartori, Alessandro A.; Thalassinos, Konstantinos; Balmus, Gabriel; Tabrizi, Sarah J. (August 2021). "FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease". Cell Reports. 36 (9): 109649. doi: 10.1016/j.celrep.2021.109649. PMC  8424649. PMID  34469738.
  35. ^ Tabrizi, Sarah J.; Flower, Michael D.; Ross, Christopher A.; Wild, Edward J. (October 2020). "Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities". Nature Reviews Neurology. 16 (10): 529–546. doi: 10.1038/s41582-020-0389-4. ISSN  1759-4758. PMID  32796930. S2CID  221129777.
  36. ^ Tabrizi, Sarah (May 2016). "The Human Revolution". zeitgeistminds.com.
  37. ^ Gallagher, James (11 December 2017). "Huntington's breakthrough may stop disease". bbc.co.uk.
  38. ^ Devlin, Hannah (11 December 2017). "Excitement as trial shows Huntington's drug could slow progress of disease". guardian.com.
  39. ^ Drew, Liam (2018). "How the gene behind Huntington's disease could be neutralized". Nature. 557 (7707): S39–S41. Bibcode: 2018Natur.557S..39D. doi: 10.1038/d41586-018-05176-z. PMID  29844556. S2CID  256768090.
  40. ^ Tabrizi, Sarah J.; Leavitt, Blair R.; Landwehrmeyer, G. Bernhard; Wild, Edward J.; Saft, Carsten; Barker, Roger A.; Blair, Nick F.; Craufurd, David; Priller, Josef (6 May 2019). "Targeting Huntingtin Expression in Patients with Huntington's Disease" (PDF). New England Journal of Medicine. 380 (24): 2307–2316. doi: 10.1056/NEJMoa1900907. ISSN  0028-4793. PMID  31059641.
  41. ^ "Full Results from Huntingtin Lowering Antisense Oligonucleotides Trial now published". UCL Queen Square Institute of Neurology. 7 May 2019.
  42. ^ Leavitt, Blair R.; Tabrizi, Sarah J. (27 March 2020). "Antisense oligonucleotides for neurodegeneration". Science. 367 (6485): 1428–1429. Bibcode: 2020Sci...367.1428L. doi: 10.1126/science.aba4624. ISSN  0036-8075. PMID  32217715. S2CID  214671177.
  43. ^ Tabrizi, Sarah J; Estevez-Fraga, Carlos; van Roon-Mom, Willeke M C; Flower, Michael D; Scahill, Rachael I; Wild, Edward J; Muñoz-Sanjuan, Ignacio; Sampaio, Cristina; Rosser, Anne E; Leavitt, Blair R (July 2022). "Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities". The Lancet Neurology. 21 (7): 645–658. doi: 10.1016/S1474-4422(22)00121-1. PMC  7613206. PMID  35716694.
  44. ^ a b Scahill, Rachael I; Zeun, Paul; Osborne-Crowley, Katherine; Johnson, Eileanoir B; Gregory, Sarah; Parker, Christopher; Lowe, Jessica; Nair, Akshay; O'Callaghan, Claire; Langley, Christelle; Papoutsi, Marina (June 2020). "Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis". The Lancet Neurology. 19 (6): 502–512. doi: 10.1016/S1474-4422(20)30143-5. PMC  7254065. PMID  32470422.
  45. ^ "Study provides 'vital insights' into best time to treat Huntington's disease". ITV News. 26 May 2020. Retrieved 30 November 2020.
  46. ^ Tabrizi, Sarah J.; Schobel, Scott; Gantman, Emily C.; Mansbach, Alexandra; Borowsky, Beth; Konstantinova, Pavlina; Mestre, Tiago A.; Panagoulias, Jennifer; Ross, Christopher A.; Zauderer, Maurice; Mullin, Ariana P.; Romero, Klaus; Sivakumaran, Sudhir; Turner, Emily C.; Long, Jeffrey D. (July 2022). "A biological classification of Huntington's disease: the Integrated Staging System". The Lancet. Neurology. 21 (7): 632–644. doi: 10.1016/S1474-4422(22)00120-X. ISSN  1474-4465. PMID  35716693. S2CID  249682267.
  47. ^ Shetty, Priya (2 June 2012). "Sarah Tabrizi: tracking Huntington's disease". The Lancet. 379 (9831): 2043. doi: 10.1016/S0140-6736(12)60884-8. ISSN  0140-6736. PMID  22656876. S2CID  40222846.
  48. ^ Burton, Adrian (2018). "Sarah Tabrizi: Timed to perfection". The Lancet Neurology. 17 (2): 117. doi: 10.1016/s1474-4422(17)30303-4. PMID  28916420.
  49. ^ "Sarah J Tabrizi - Google Scholar Citations". scholar.google.co.uk.
  50. ^ UCL (5 June 2023). "Professor Sarah Tabrizi receives the 2023 Arvid Carlsson Award". UCL Queen Square Institute of Neurology. Retrieved 5 June 2023.
  51. ^ "MRC announces Millennium Medal winners and Impact Prize finalists". www.ukri.org. 8 December 2022. Retrieved 13 December 2022.
  52. ^ UCL (28 June 2022). "Professor Sarah Tabrizi receives 2022 Osler Medal and HDSA 2022 Research Award". UCL Queen Square Institute of Neurology. Retrieved 20 July 2022.
  53. ^ "Programme and Speakers - AoPGBI". Retrieved 24 June 2022.
  54. ^ UCL (5 November 2019). "Co-Heads of Department awarded Alexander Morison medal in successive years". UCL Queen Square Institute of Neurology. Retrieved 6 November 2019.
  55. ^ UCL (31 October 2019). "Professor Sarah Tabrizi receives Yahr award at World Congress of Neurology 2019". UCL Queen Square Institute of Neurology. Retrieved 6 November 2019.
  56. ^ "Professor Sarah Tabrizi, UCL Queen Square Institute of Neurology, receives the 2018 Cotzias Award". UCL News. 16 November 2018.
  57. ^ Tabrizi, Sarah (19 October 2018). "The NHS at 70 years". ucl.ac.uk.
  58. ^ "UCL News". ucl.ac.uk. 9 November 2017.
  59. ^ "Fellow - Academy of Medical Sciences". www.acmedsci.ac.uk.
  60. ^ "Governance - Wellcome". wellcome.ac.uk.
  61. ^ "Journal of Huntington's Disease". www.iospress.nl. Retrieved 13 June 2016.

External links

From Wikipedia, the free encyclopedia

Sarah Joanna Tabrizi
Sarah Tabrizi in 2013
Born
London, UK
Alma mater Heriot-Watt University
University of Edinburgh
University College London
Known forResearch into neurodegeneration, particularly Huntington's disease
Spouse Michael Nath
AwardsFellowship of the Academy of Medical Sciences, 2014
MRC Millennium Medal, 2022
Scientific career
Fields Neuroscience
Institutions UCL Institute of Neurology;
National Hospital for Neurology and Neurosurgery
Thesis Mitochondrial dysfunction in the pathogenesis of neurodegeneration (2000)
Website https://www.ucl.ac.uk/ion/research/research-centres/hd-centre

Sarah Joanna Tabrizi FMedSci is a British neurologist and neuroscientist in the field of neurodegeneration, particularly Huntington's disease. She is a Professor and Joint Head of the Department of Neurodegenerative Diseases [1] at the UCL Institute of Neurology; the founder and Director of the UCL Huntington's Disease Centre; a Principal Investigator at the UK Dementia Research Institute at UCL; and an Honorary Consultant Neurologist at the National Hospital for Neurology and Neurosurgery, Queen Square, London, where she established the Multidisciplinary Huntington's Disease Clinic. [2] [3] [4] The UCL Huntington’s Disease Centre was officially opened on 1 March 2017 by UCL President and Provost Professor Michael Arthur. [5]

Education and career

Tabrizi graduated with a first-class degree in biochemistry from Heriot-Watt University in 1986 and an MB ChB from the University of Edinburgh in 1992, where she graduated with the Gold Medal (Ettles Scholar) for the most distinguished medical graduate. [2] She obtained a PhD at University College London in 2000. [6] During her time as a trainee neurologist at the National Hospital for Neurology and Neurosurgery (NHNN), Queen Square, Sarah worked for Professors Anita Harding and David Marsden, both of whom would make a lasting impression on her. [7] She undertook an MRC Clinical Training Fellowship PhD studying mitochondrial dysfunction in neurodegeneration with Tony Schapira and Gillian Bates from 1996 to 1999 then obtained a Department of Health National Clinician Scientist Fellowship at the UCL Institute of Neurology in 2002 to work with John Collinge and Charles Weissmann on prion cell biology. She was promoted to UCL Clinical Senior Lecturer and Honorary Consultant Neurologist in 2003, to Reader in 2007 and Full Professor in 2009. [8]

Research

Tabrizi is distinguished for her work on mechanisms of cellular neurodegeneration [9] [10] [11] [12] [13] and in particular Huntington's disease mechanistic pathobiology, novel therapeutics, biomarkers, outcome measures and first in human clinical trials. [14] [15] Amongst her achievements, she has identified key pathogenic mechanisms in cellular degeneration in prion disease, [16] [17] [18] identified a key role for the innate immune system in the pathogenesis of Huntington’s disease, [19] published the first assay of the mutant HD protein, [20] and designed and led two major, international, influential research initiatives, TRACK-HD and Track-On HD. To date these studies have yielded fundamental new insights into the preclinical phase of neurodegeneration in Huntington’s disease including identifying predictors of disease onset, [21] [22] [23] [24] [25] [26] [27] progression, evidence of brain compensation and plasticity and neurobiological changes occurring twenty years before predicted disease onset, and her work established a battery of clinical trial outcome measures now being used in global clinical trials. [28] [21] [22] [23] [24] [29] In 2017, her work identified an important new genetic modifier of disease progression in Huntington’s disease (MSH3, a mismatch repair protein), which has opened up new avenues of research into targeting DNA repair pathways as possible therapeutics for Huntington’s disease. [30] [31] [32] A major focus of her research now is to build understanding of how different DNA repair mechanisms are involved in modifying the development of Huntington’s disease. This knowledge to develop novel therapeutic approaches that could stop, slow down or reverse the progression of the disease by targeting the somatic expansion of the CAG repeat tract. [33] [34] [35]

Tabrizi gave a keynote presentation at the 2016 Google Zeitgeist Minds conference about her research, and the prospect of gene silencing for neurodegenerative disease. [36] She was the global lead Clinical Investigator for the first clinical trial of a ' gene silencing' or huntingtin-lowering antisense oligonucleotide (ASO) drug in Huntington's disease patients. The announcement of the ‘top line’ results from the Phase 1b/2a safety trial in December 2017 received widespread national and international media coverage and was covered in features by BBC News, [37] Guardian [38] and Nature. [39] In May 2019 the full results were published in The New England Journal of Medicine. [40] [41]

The potential of antisense oligonucleotides to treat neurodegenerative diseases was reviewed by Tabrizi in Science in 2020. [42] Tabrizi is currently working on several different approaches to treat Huntington’s disease, including testing novel ASOs targeting MSH3 to slow CAG repeat expansion, allele-selective approaches to target mutant HTT only, and new gene therapy approaches targeting the mutant HD gene. [43]

In 2020, Tabrizi published the Huntington’s Disease Young Adult Study (HD-YAS) studying premanifest HD gene carriers approximately 24 years from predicted onset of clinical symptoms using advanced neuroimaging, detailed cognitive testing and biofluid collection. [44] The cohort did not show any clinically meaningful functional impairment, yet there was evidence of elevated levels of neurofilament light protein, suggestive of very early neuronal damage, in those closest to expected symptom onset. HD-YAS will provide critical information on the very earliest signs of neurodegeneration, identifying a time at which a therapy could potentially be introduced to delay or even ultimately prevent the onset of clinical symptoms in HD. [44] This approach has implications beyond HD, providing a model for disease prevention in neurodegeneration and this work continues to be of major interest in the Tabrizi lab. [45]

In 2022, alongside colleagues at the HD Regulatory Science Consortium and CHDI, Tabrizi developed a novel staging framework, the Huntington’s Disease Integrated Staging System (HD-ISS), that assesses the progression of disease from birth. [46] Similar to the cancer staging system, the HD-ISS defines HD in four stages, from 0-3, and also biologically defines the disease as the presence of the HTT CAG repeat mutation. This will allow clinical trials much earlier in course of the disease process, and well in advance of when people show signs and symptoms of the disease, allowing the possibility of disease prevention in the future.

Tabrizi was the subject of profile articles in The Lancet in 2012 and The Lancet Neurology in 2017. [47] [48]

As of May 2023, Tabrizi had authored over 370 publications, with over 34,000 citations for her research. [49]

Awards and honours

Personal life

Tabrizi lives in London with her husband, the author Michael Nath. [6]

References

  1. ^ "Department of Neurodegenerative Disease". UCL Institute of Neurology. 2 August 2018.
  2. ^ a b "Iris View Profile". IRIS - UCL. Retrieved 5 May 2016.
  3. ^ "UCL Huntington's Disease Research". hdresearch.ucl.ac.uk.
  4. ^ "Prof Sarah Tabrizi". www.uclh.nhs.uk. Archived from the original on 31 August 2022. Retrieved 5 May 2016.
  5. ^ "The UCL Huntington's Disease Centre opens". 2 March 2017.
  6. ^ a b c "Who's Who 2016 - Tabrizi, Prof. Sarah Joanna". Who's Who 2016. Retrieved 6 May 2016.
  7. ^ Shetty, Priya (2012). "Sarah Tabrizi: Tracking Huntington's disease". The Lancet. 379 (9831): 2043. doi: 10.1016/S0140-6736(12)60884-8. PMID  22656876. S2CID  40222846.
  8. ^ "Professor Sarah J Tabrizi". UCL Iris.
  9. ^ Deriziotis, Pelagia; André, Ralph; Smith, David M; Goold, Rob; Kinghorn, Kerri J; Kristiansen, Mark; Nathan, James A; Rosenzweig, Rina; Krutauz, Dasha; Glickman, Michael H; Collinge, John; Goldberg, Alfred L; Tabrizi, Sarah J (8 July 2011). "Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry". The EMBO Journal. 30 (15): 3065–3077. doi: 10.1038/emboj.2011.224. PMC  3160194. PMID  21743439.
  10. ^ Kristiansen, Mark; Messenger, Marcus J.; Klöhn, Peter-Christian; Brandner, Sebastian; Wadsworth, Jonathan D. F.; Collinge, John; Tabrizi, Sarah J. (18 November 2005). "Disease-related Prion Protein Forms Aggresomes in Neuronal Cells Leading to Caspase Activation and Apoptosis". Journal of Biological Chemistry. 280 (46): 38851–38861. doi: 10.1074/jbc.M506600200. PMID  16157591.
  11. ^ Kristiansen, Mark; Deriziotis, Pelagia; Dimcheff, Derek E.; Jackson, Graham S.; Ovaa, Huib; Naumann, Heike; Clarke, Anthony R.; van Leeuwen, Fijs W.B.; Menéndez-Benito, Victoria; Dantuma, Nico P.; Portis, John L.; Collinge, John; Tabrizi, Sarah J. (April 2007). "Disease-Associated Prion Protein Oligomers Inhibit the 26S Proteasome". Molecular Cell. 26 (2): 175–188. doi: 10.1016/j.molcel.2007.04.001. hdl: 11858/00-001M-0000-0012-2650-5. PMID  17466621.
  12. ^ Goold, R.; Rabbanian, S.; Sutton, L.; Andre, R.; Arora, P.; Moonga, J.; Clarke, A.R.; Schiavo, G.; Jat, P.; Collinge, J.; Tabrizi, S.J. (19 April 2011). "Rapid cell-surface prion protein conversion revealed using a novel cell system". Nature Communications. 2 (1): 281–. Bibcode: 2011NatCo...2..281G. doi: 10.1038/ncomms1282. PMC  3104518. PMID  21505437.
  13. ^ McKinnon, Chris; Goold, Rob; Andre, Ralph; Devoy, Anny; Ortega, Zaira; Moonga, Julie; Linehan, Jacqueline M.; Brandner, Sebastian; Lucas, José J.; Collinge, John; Tabrizi, Sarah J. (8 December 2015). "Prion-mediated neurodegeneration is associated with early impairment of the ubiquitin–proteasome system". Acta Neuropathologica. 131 (3): 411–425. doi: 10.1007/s00401-015-1508-y. PMC  4752964. PMID  26646779.
  14. ^ Shetty, Priya (2012). "Sarah Tabrizi: Tracking Huntington's disease". The Lancet. 379 (9831): 2043. doi: 10.1016/S0140-6736(12)60884-8. PMID  22656876. S2CID  40222846.
  15. ^ Mohammadi, Dara (July 2015). "Fast-forwarding treatment for neurodegenerative disorders". The Lancet Neurology. 14 (7): 687–688. doi: 10.1016/S1474-4422(15)00110-6. PMID  26067120.
  16. ^ Deriziotis, Pelagia; André, Ralph; Smith, David M; Goold, Rob; Kinghorn, Kerri J; Kristiansen, Mark; Nathan, James A; Rosenzweig, Rina; Krutauz, Dasha; Glickman, Michael H; Collinge, John (8 July 2011). "Misfolded PrP impairs the UPS by interaction with the 20S proteasome and inhibition of substrate entry". The EMBO Journal. 30 (15): 3065–3077. doi: 10.1038/emboj.2011.224. ISSN  0261-4189. PMC  3160194. PMID  21743439.
  17. ^ Kristiansen, Mark; Deriziotis, Pelagia; Dimcheff, Derek E.; Jackson, Graham S.; Ovaa, Huib; Naumann, Heike; Clarke, Anthony R.; van Leeuwen, Fijs W.B.; Menéndez-Benito, Victoria; Dantuma, Nico P.; Portis, John L. (April 2007). "Disease-Associated Prion Protein Oligomers Inhibit the 26S Proteasome". Molecular Cell. 26 (2): 175–188. doi: 10.1016/j.molcel.2007.04.001. hdl: 11858/00-001M-0000-0012-2650-5. PMID  17466621.
  18. ^ Kristiansen, Mark; Messenger, Marcus J.; Klöhn, Peter-Christian; Brandner, Sebastian; Wadsworth, Jonathan D. F.; Collinge, John; Tabrizi, Sarah J. (18 November 2005). "Disease-related Prion Protein Forms Aggresomes in Neuronal Cells Leading to Caspase Activation and Apoptosis". Journal of Biological Chemistry. 280 (46): 38851–38861. doi: 10.1074/jbc.M506600200. ISSN  0021-9258. PMID  16157591.
  19. ^ Björkqvist, Maria; Wild, Edward J; Thiele, Jenny; Silvestroni, Aurelio; Andre, Ralph; Lahiri, Nayana; Raibon, Elsa; Lee, Richard V; Benn, Caroline L; Soulet, Denis; Magnusson, Anna; Woodman, Ben; Landles, Christian; Pouladi, Mahmoud A; Hayden, Michael R; Khalili-Shirazi, Azadeh; Lowdell, Mark W; Brundin, Patrik; Bates, Gillian P; Leavitt, Blair R; Möller, Thomas; Tabrizi, Sarah J (2008). "A novel pathogenic pathway of immune activation detectable before clinical onset in Huntington's disease". The Journal of Experimental Medicine. 205 (8): 1869–77. doi: 10.1084/jem.20080178. PMC  2525598. PMID  18625748.
  20. ^ Weiss, Andreas; Träger, Ulrike; Wild, Edward J; Grueninger, Stephan; Farmer, Ruth; Landles, Christian; Scahill, Rachael I; Lahiri, Nayana; Haider, Salman; MacDonald, Douglas; Frost, Chris; Bates, Gillian P; Bilbe, Graeme; Kuhn, Rainer; Andre, Ralph; Tabrizi, Sarah J (2012). "Mutant huntingtin fragmentation in immune cells tracks Huntington's disease progression". Journal of Clinical Investigation. 122 (10): 3731–6. doi: 10.1172/jci64565. PMC  3461928. PMID  22996692.
  21. ^ a b Tabrizi, Sarah J; Langbehn, Douglas R; Leavitt, Blair R; Roos, Raymund AC; Durr, Alexandra; Craufurd, David; Kennard, Christopher; Hicks, Stephen L; Fox, Nick C; Scahill, Rachael I; Borowsky, Beth; Tobin, Allan J; Rosas, H Diana; Johnson, Hans; Reilmann, Ralf; Landwehrmeyer, Bernhard; Stout, Julie C (2009). "Biological and clinical manifestations of Huntington's disease in the longitudinal TRACK-HD study: Cross-sectional analysis of baseline data". The Lancet Neurology. 8 (9): 791–801. doi: 10.1016/s1474-4422(09)70170-x. PMC  3725974. PMID  19646924.
  22. ^ a b Tabrizi, Sarah J; Scahill, Rachael I; Durr, Alexandra; Roos, Raymund AC; Leavitt, Blair R; Jones, Rebecca; Landwehrmeyer, G Bernhard; Fox, Nick C; Johnson, Hans; Hicks, Stephen L; Kennard, Christopher; Craufurd, David; Frost, Chris; Langbehn, Douglas R; Reilmann, Ralf; Stout, Julie C; TRACK-HD Investigators (2011). "Biological and clinical changes in premanifest and early stage Huntington's disease in the TRACK-HD study: The 12-month longitudinal analysis". The Lancet Neurology. 10 (1): 31–42. doi: 10.1016/s1474-4422(10)70276-3. PMID  21130037. S2CID  2602096.
  23. ^ a b Tabrizi, Sarah J; Reilmann, Ralf; Roos, Raymund AC; Durr, Alexandra; Leavitt, Blair; Owen, Gail; Jones, Rebecca; Johnson, Hans; Craufurd, David; Hicks, Stephen L; Kennard, Christopher; Landwehrmeyer, Bernhard; Stout, Julie C; Borowsky, Beth; Scahill, Rachael I; Frost, Chris; Langbehn, Douglas R; TRACK-HD investigators (2012). "Potential endpoints for clinical trials in premanifest and early Huntington's disease in the TRACK-HD study: Analysis of 24 month observational data". The Lancet Neurology. 11 (1): 42–53. doi: 10.1016/s1474-4422(11)70263-0. PMID  22137354. S2CID  34929053.
  24. ^ a b Tabrizi, Sarah J; Scahill, Rachael I; Owen, Gail; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund A; Borowsky, Beth; Landwehrmeyer, Bernhard; Frost, Chris; Johnson, Hans; Craufurd, David; Reilmann, Ralf; Stout, Julie C; Langbehn, Douglas R (2013). "Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington's disease in the TRACK-HD study: Analysis of 36-month observational data". The Lancet Neurology. 12 (7): 637–49. doi: 10.1016/s1474-4422(13)70088-7. PMID  23664844. S2CID  12204298.
  25. ^ Klöppel, Stefan; Gregory, Sarah; Scheller, Elisa; Minkova, Lora; Razi, Adeel; Durr, Alexandra; Roos, Raymund A.C; Leavitt, Blair R; Papoutsi, Marina; Landwehrmeyer, G. Bernhard; Reilmann, Ralf; Borowsky, Beth; Johnson, Hans; Mills, James A; Owen, Gail; Stout, Julie; Scahill, Rachael I; Long, Jeffrey D; Rees, Geraint; Tabrizi, Sarah J (2015). "Compensation in Preclinical Huntington's Disease: Evidence from the Track-On HD Study". eBioMedicine. 2 (10): 1420–9. doi: 10.1016/j.ebiom.2015.08.002. PMC  4634199. PMID  26629536.
  26. ^ Gregory, Sarah; Long, Jeffrey D; Klöppel, Stefan; Razi, Adeel; Scheller, Elisa; Minkova, Lora; Papoutsi, Marina; Mills, James A; Durr, Alexandra; Leavitt, Blair R; Roos, Raymund A. C; Stout, Julie C; Scahill, Rachael I; Langbehn, Douglas R; Tabrizi, Sarah J; Rees, Geraint (2017). "Operationalizing compensation over time in neurodegenerative disease". Brain. 140 (4): 1158–1165. doi: 10.1093/brain/awx022. PMC  5382953. PMID  28334888.
  27. ^ Gregory, Sarah; Long, Jeffrey D; Klöppel, Stefan; Razi, Adeel; Scheller, Elisa; Minkova, Lora; Johnson, Eileanoir B; Durr, Alexandra; Roos, Raymund A C; Leavitt, Blair R; Mills, James A; Stout, Julie C; Scahill, Rachael I; Tabrizi, Sarah J; Rees, Geraint; Coleman, A; Decolongon, J; Fan, M; Koren, T; Leavitt, B; Durr, A; Jauffret, C; Justo, D; Lehericy, S; Nigaud, K; Valabrègue, R; Roos, R; Hart, E P 't; Schoonderbeek, A; et al. (2018). "Testing a longitudinal compensation model in premanifest Huntington's disease". Brain. 141 (7): 2156–2166. doi: 10.1093/brain/awy122. PMC  6022638. PMID  29788038.
  28. ^ Shetty, Priya (2012). "Sarah Tabrizi: Tracking Huntington's disease". The Lancet. 379 (9831): 2043. doi: 10.1016/s0140-6736(12)60884-8. PMID  22656876. S2CID  40222846.
  29. ^ Arney, Kat (2018). "Improved metrics for Huntington's disease trials". Nature. 557 (7707): S46–S47. Bibcode: 2018Natur.557S..46A. doi: 10.1038/d41586-018-05179-w. PMID  29844554. S2CID  256768548.
  30. ^ Moss, Davina J Hensman; Pardiñas, Antonio F; Langbehn, Douglas; Lo, Kitty; Leavitt, Blair R; Roos, Raymund; Durr, Alexandra; Mead, Simon; Holmans, Peter; Jones, Lesley; Tabrizi, Sarah J; Coleman, A; Santos, R Dar; Decolongon, J; Sturrock, A; Bardinet, E; Ret, C Jauff; Justo, D; Lehericy, S; Marelli, C; Nigaud, K; Valabrègue, R; Van Den Bogaard, SJA; Dumas, E M; Van Der Grond, J; t'Hart, EP; Jurgens, C; Witjes-Ane, M-N; Arran, N; et al. (2017). "Identification of genetic variants associated with Huntington's disease progression: A genome-wide association study" (PDF). The Lancet Neurology. 16 (9): 701–711. doi: 10.1016/s1474-4422(17)30161-8. PMID  28642124. S2CID  588163.
  31. ^ Flower, Michael; Lomeikaite, Vilija; Ciosi, Marc; Cumming, Sarah; Morales, Fernando; Lo, Kitty; Hensman Moss, Davina; Jones, Lesley; Holmans, Peter; Monckton, Darren G.; Tabrizi, Sarah J. (1 July 2019). "MSH3 modifies somatic instability and disease severity in Huntington's and myotonic dystrophy type 1". Brain. 142 (7): 1876–1886. doi: 10.1093/brain/awz115. ISSN  0006-8950. PMC  6598626. PMID  31216018.
  32. ^ Tabrizi, Sarah J.; Estevez-Fraga, Carlos; van Roon-Mom, Willeke M. C.; Flower, Michael D.; Scahill, Rachael I.; Wild, Edward J.; Muñoz-Sanjuan, Ignacio; Sampaio, Cristina; Rosser, Anne E.; Leavitt, Blair R. (July 2022). "Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities". The Lancet. Neurology. 21 (7): 645–658. doi: 10.1016/S1474-4422(22)00121-1. ISSN  1474-4465. PMC  7613206. PMID  35716694.
  33. ^ Goold, Robert; Flower, Michael; Moss, Davina Hensman; Medway, Chris; Wood-Kaczmar, Alison; Andre, Ralph; Farshim, Pamela; Bates, Gill P; Holmans, Peter; Jones, Lesley; Tabrizi, Sarah J (15 February 2019). "FAN1 modifies Huntington's disease progression by stabilizing the expanded HTT CAG repeat". Human Molecular Genetics. 28 (4): 650–661. doi: 10.1093/hmg/ddy375. ISSN  0964-6906. PMC  6360275. PMID  30358836.
  34. ^ Goold, Robert; Hamilton, Joseph; Menneteau, Thomas; Flower, Michael; Bunting, Emma L.; Aldous, Sarah G.; Porro, Antonio; Vicente, José R.; Allen, Nicholas D.; Wilkinson, Hilary; Bates, Gillian P.; Sartori, Alessandro A.; Thalassinos, Konstantinos; Balmus, Gabriel; Tabrizi, Sarah J. (August 2021). "FAN1 controls mismatch repair complex assembly via MLH1 retention to stabilize CAG repeat expansion in Huntington's disease". Cell Reports. 36 (9): 109649. doi: 10.1016/j.celrep.2021.109649. PMC  8424649. PMID  34469738.
  35. ^ Tabrizi, Sarah J.; Flower, Michael D.; Ross, Christopher A.; Wild, Edward J. (October 2020). "Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities". Nature Reviews Neurology. 16 (10): 529–546. doi: 10.1038/s41582-020-0389-4. ISSN  1759-4758. PMID  32796930. S2CID  221129777.
  36. ^ Tabrizi, Sarah (May 2016). "The Human Revolution". zeitgeistminds.com.
  37. ^ Gallagher, James (11 December 2017). "Huntington's breakthrough may stop disease". bbc.co.uk.
  38. ^ Devlin, Hannah (11 December 2017). "Excitement as trial shows Huntington's drug could slow progress of disease". guardian.com.
  39. ^ Drew, Liam (2018). "How the gene behind Huntington's disease could be neutralized". Nature. 557 (7707): S39–S41. Bibcode: 2018Natur.557S..39D. doi: 10.1038/d41586-018-05176-z. PMID  29844556. S2CID  256768090.
  40. ^ Tabrizi, Sarah J.; Leavitt, Blair R.; Landwehrmeyer, G. Bernhard; Wild, Edward J.; Saft, Carsten; Barker, Roger A.; Blair, Nick F.; Craufurd, David; Priller, Josef (6 May 2019). "Targeting Huntingtin Expression in Patients with Huntington's Disease" (PDF). New England Journal of Medicine. 380 (24): 2307–2316. doi: 10.1056/NEJMoa1900907. ISSN  0028-4793. PMID  31059641.
  41. ^ "Full Results from Huntingtin Lowering Antisense Oligonucleotides Trial now published". UCL Queen Square Institute of Neurology. 7 May 2019.
  42. ^ Leavitt, Blair R.; Tabrizi, Sarah J. (27 March 2020). "Antisense oligonucleotides for neurodegeneration". Science. 367 (6485): 1428–1429. Bibcode: 2020Sci...367.1428L. doi: 10.1126/science.aba4624. ISSN  0036-8075. PMID  32217715. S2CID  214671177.
  43. ^ Tabrizi, Sarah J; Estevez-Fraga, Carlos; van Roon-Mom, Willeke M C; Flower, Michael D; Scahill, Rachael I; Wild, Edward J; Muñoz-Sanjuan, Ignacio; Sampaio, Cristina; Rosser, Anne E; Leavitt, Blair R (July 2022). "Potential disease-modifying therapies for Huntington's disease: lessons learned and future opportunities". The Lancet Neurology. 21 (7): 645–658. doi: 10.1016/S1474-4422(22)00121-1. PMC  7613206. PMID  35716694.
  44. ^ a b Scahill, Rachael I; Zeun, Paul; Osborne-Crowley, Katherine; Johnson, Eileanoir B; Gregory, Sarah; Parker, Christopher; Lowe, Jessica; Nair, Akshay; O'Callaghan, Claire; Langley, Christelle; Papoutsi, Marina (June 2020). "Biological and clinical characteristics of gene carriers far from predicted onset in the Huntington's disease Young Adult Study (HD-YAS): a cross-sectional analysis". The Lancet Neurology. 19 (6): 502–512. doi: 10.1016/S1474-4422(20)30143-5. PMC  7254065. PMID  32470422.
  45. ^ "Study provides 'vital insights' into best time to treat Huntington's disease". ITV News. 26 May 2020. Retrieved 30 November 2020.
  46. ^ Tabrizi, Sarah J.; Schobel, Scott; Gantman, Emily C.; Mansbach, Alexandra; Borowsky, Beth; Konstantinova, Pavlina; Mestre, Tiago A.; Panagoulias, Jennifer; Ross, Christopher A.; Zauderer, Maurice; Mullin, Ariana P.; Romero, Klaus; Sivakumaran, Sudhir; Turner, Emily C.; Long, Jeffrey D. (July 2022). "A biological classification of Huntington's disease: the Integrated Staging System". The Lancet. Neurology. 21 (7): 632–644. doi: 10.1016/S1474-4422(22)00120-X. ISSN  1474-4465. PMID  35716693. S2CID  249682267.
  47. ^ Shetty, Priya (2 June 2012). "Sarah Tabrizi: tracking Huntington's disease". The Lancet. 379 (9831): 2043. doi: 10.1016/S0140-6736(12)60884-8. ISSN  0140-6736. PMID  22656876. S2CID  40222846.
  48. ^ Burton, Adrian (2018). "Sarah Tabrizi: Timed to perfection". The Lancet Neurology. 17 (2): 117. doi: 10.1016/s1474-4422(17)30303-4. PMID  28916420.
  49. ^ "Sarah J Tabrizi - Google Scholar Citations". scholar.google.co.uk.
  50. ^ UCL (5 June 2023). "Professor Sarah Tabrizi receives the 2023 Arvid Carlsson Award". UCL Queen Square Institute of Neurology. Retrieved 5 June 2023.
  51. ^ "MRC announces Millennium Medal winners and Impact Prize finalists". www.ukri.org. 8 December 2022. Retrieved 13 December 2022.
  52. ^ UCL (28 June 2022). "Professor Sarah Tabrizi receives 2022 Osler Medal and HDSA 2022 Research Award". UCL Queen Square Institute of Neurology. Retrieved 20 July 2022.
  53. ^ "Programme and Speakers - AoPGBI". Retrieved 24 June 2022.
  54. ^ UCL (5 November 2019). "Co-Heads of Department awarded Alexander Morison medal in successive years". UCL Queen Square Institute of Neurology. Retrieved 6 November 2019.
  55. ^ UCL (31 October 2019). "Professor Sarah Tabrizi receives Yahr award at World Congress of Neurology 2019". UCL Queen Square Institute of Neurology. Retrieved 6 November 2019.
  56. ^ "Professor Sarah Tabrizi, UCL Queen Square Institute of Neurology, receives the 2018 Cotzias Award". UCL News. 16 November 2018.
  57. ^ Tabrizi, Sarah (19 October 2018). "The NHS at 70 years". ucl.ac.uk.
  58. ^ "UCL News". ucl.ac.uk. 9 November 2017.
  59. ^ "Fellow - Academy of Medical Sciences". www.acmedsci.ac.uk.
  60. ^ "Governance - Wellcome". wellcome.ac.uk.
  61. ^ "Journal of Huntington's Disease". www.iospress.nl. Retrieved 13 June 2016.

External links


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook