From Wikipedia, the free encyclopedia
SOX17
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases SOX17, VUR3, SRY-box 17, SRY-box transcription factor 17
External IDs OMIM: 610928; MGI: 107543; HomoloGene: 7948; GeneCards: SOX17; OMA: SOX17 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_022454

NM_001289464
NM_001289465
NM_001289466
NM_001289467
NM_011441

RefSeq (protein)

NP_071899

NP_001276393
NP_001276394
NP_001276395
NP_001276396
NP_035571

Location (UCSC) Chr 8: 54.46 – 54.46 Mb Chr 1: 4.56 – 4.57 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

SRY-box 17 is a protein that in humans is encoded by the SOX17 gene. [5]

Regulation at the human SOX17 locus

The gene encodes a member of the SOX (SRY-related HMG-box) family of transcription factors, located on Chromosome 8 q11.23. Its gene body is isolated within a CTCF loop domain. [6] [7] [8] Approximately 230 kb upstream of SOX17 it has been identified a tissue specific differentially (hypo-)methylated region (DMR), which consists of SOX17 regulatory elements. [9] [10] The DMR in particular bears the most distal definitive endoderm specific enhancer at the SOX17 locus. [11] SOX17 itself has recently been defined as so called topologically insulated gene (TIG). TIGs per definition are single protein coding genes (PCGs) within CTCF loop domains, that are mainly enriched in developmental regulators and suggested to be very tightly controlled via their 3D loop-domain architecture. [12]

Function in development

SOX17 is involved in the regulation of vertebrate embryonic development and in the determination of the endodermal cell fate. The encoded protein acts downstream of TGF beta signaling (Activin) and canonical WNT signaling (Wnt3a). [13] [14] Especially the correct phosphorylation of SMAD2/3 within the respective cell cycle (early G1 phase) is crucial for the activation of cardinal endodermal genes (e.g. SOX17) to further enter the definitive endodermal lineage. [15] Besides that, perturbation of the SOX17 centromertic CTCF-boundary in early definitive endoderm differentiation, leads to massive developmental failure and a so-called mes-endodermal like trapped cell-state, which can be rescued by ectopic SOX17 expression. [16] In Xenopus gastrulae it has been shown that SOX17 modifies Wnt responses, where genomic specificity of Wnt/β-catenin transcription is determined through functional interactions between SOX17 and β-catenin/Tcf transcriptional complexes. [17]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000164736Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025902Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: SRY-box 17". Retrieved 2017-09-07.
  6. ^ Rao SS, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, et al. (October 2017). "Cohesin Loss Eliminates All Loop Domains". Cell. 171 (2): 305–320.e24. doi: 10.1016/j.cell.2017.09.026. hdl: 1721.1/118942. PMC  5846482. PMID  28985562.
  7. ^ Szabo Q, Bantignies F, Cavalli G (April 2019). "Principles of genome folding into topologically associating domains". Science Advances. 5 (4): eaaw1668. Bibcode: 2019SciA....5.1668S. doi: 10.1126/sciadv.aaw1668. PMC  6457944. PMID  30989119.
  8. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  9. ^ Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, et al. (February 2015). "Transcription factor binding dynamics during human ES cell differentiation". Nature. 518 (7539): 344–9. Bibcode: 2015Natur.518..344T. doi: 10.1038/nature14233. PMC  4499331. PMID  25693565.
  10. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  11. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  12. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  13. ^ Engert S, Burtscher I, Liao WP, Dulev S, Schotta G, Lickert H (August 2013). "Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse". Development. 140 (15): 3128–38. doi: 10.1242/dev.088765. PMID  23824574.
  14. ^ Mukherjee S, Chaturvedi P, Rankin SA, Fish MB, Wlizla M, Paraiso KD, et al. (September 2020). LaBonne C, Morrisey EE (eds.). "Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network". eLife. 9: e58029. doi: 10.7554/eLife.58029. PMC  7498262. PMID  32894225.
  15. ^ Pauklin S, Vallier L (September 2013). "The cell-cycle state of stem cells determines cell fate propensity". Cell. 155 (1): 135–47. doi: 10.1016/j.cell.2013.08.031. PMC  3898746. PMID  24074866.
  16. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  17. ^ Mukherjee, Shreyasi; Chaturvedi, Praneet; Rankin, Scott A; Fish, Margaret B; Wlizla, Marcin; Paraiso, Kitt D; MacDonald, Melissa; Chen, Xiaoting; Weirauch, Matthew T; Blitz, Ira L; Cho, Ken WY (2020-09-07). LaBonne, Carole; Morrisey, Edward E (eds.). "Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network". eLife. 9: e58029. doi: 10.7554/eLife.58029. ISSN  2050-084X. PMC  7498262. PMID  32894225.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.


From Wikipedia, the free encyclopedia
SOX17
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
Aliases SOX17, VUR3, SRY-box 17, SRY-box transcription factor 17
External IDs OMIM: 610928; MGI: 107543; HomoloGene: 7948; GeneCards: SOX17; OMA: SOX17 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_022454

NM_001289464
NM_001289465
NM_001289466
NM_001289467
NM_011441

RefSeq (protein)

NP_071899

NP_001276393
NP_001276394
NP_001276395
NP_001276396
NP_035571

Location (UCSC) Chr 8: 54.46 – 54.46 Mb Chr 1: 4.56 – 4.57 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

SRY-box 17 is a protein that in humans is encoded by the SOX17 gene. [5]

Regulation at the human SOX17 locus

The gene encodes a member of the SOX (SRY-related HMG-box) family of transcription factors, located on Chromosome 8 q11.23. Its gene body is isolated within a CTCF loop domain. [6] [7] [8] Approximately 230 kb upstream of SOX17 it has been identified a tissue specific differentially (hypo-)methylated region (DMR), which consists of SOX17 regulatory elements. [9] [10] The DMR in particular bears the most distal definitive endoderm specific enhancer at the SOX17 locus. [11] SOX17 itself has recently been defined as so called topologically insulated gene (TIG). TIGs per definition are single protein coding genes (PCGs) within CTCF loop domains, that are mainly enriched in developmental regulators and suggested to be very tightly controlled via their 3D loop-domain architecture. [12]

Function in development

SOX17 is involved in the regulation of vertebrate embryonic development and in the determination of the endodermal cell fate. The encoded protein acts downstream of TGF beta signaling (Activin) and canonical WNT signaling (Wnt3a). [13] [14] Especially the correct phosphorylation of SMAD2/3 within the respective cell cycle (early G1 phase) is crucial for the activation of cardinal endodermal genes (e.g. SOX17) to further enter the definitive endodermal lineage. [15] Besides that, perturbation of the SOX17 centromertic CTCF-boundary in early definitive endoderm differentiation, leads to massive developmental failure and a so-called mes-endodermal like trapped cell-state, which can be rescued by ectopic SOX17 expression. [16] In Xenopus gastrulae it has been shown that SOX17 modifies Wnt responses, where genomic specificity of Wnt/β-catenin transcription is determined through functional interactions between SOX17 and β-catenin/Tcf transcriptional complexes. [17]

References

  1. ^ a b c GRCh38: Ensembl release 89: ENSG00000164736Ensembl, May 2017
  2. ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000025902Ensembl, May 2017
  3. ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. ^ "Entrez Gene: SRY-box 17". Retrieved 2017-09-07.
  6. ^ Rao SS, Huang SC, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon KR, et al. (October 2017). "Cohesin Loss Eliminates All Loop Domains". Cell. 171 (2): 305–320.e24. doi: 10.1016/j.cell.2017.09.026. hdl: 1721.1/118942. PMC  5846482. PMID  28985562.
  7. ^ Szabo Q, Bantignies F, Cavalli G (April 2019). "Principles of genome folding into topologically associating domains". Science Advances. 5 (4): eaaw1668. Bibcode: 2019SciA....5.1668S. doi: 10.1126/sciadv.aaw1668. PMC  6457944. PMID  30989119.
  8. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  9. ^ Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J, Amit I, et al. (February 2015). "Transcription factor binding dynamics during human ES cell differentiation". Nature. 518 (7539): 344–9. Bibcode: 2015Natur.518..344T. doi: 10.1038/nature14233. PMC  4499331. PMID  25693565.
  10. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  11. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  12. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  13. ^ Engert S, Burtscher I, Liao WP, Dulev S, Schotta G, Lickert H (August 2013). "Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse". Development. 140 (15): 3128–38. doi: 10.1242/dev.088765. PMID  23824574.
  14. ^ Mukherjee S, Chaturvedi P, Rankin SA, Fish MB, Wlizla M, Paraiso KD, et al. (September 2020). LaBonne C, Morrisey EE (eds.). "Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network". eLife. 9: e58029. doi: 10.7554/eLife.58029. PMC  7498262. PMID  32894225.
  15. ^ Pauklin S, Vallier L (September 2013). "The cell-cycle state of stem cells determines cell fate propensity". Cell. 155 (1): 135–47. doi: 10.1016/j.cell.2013.08.031. PMC  3898746. PMID  24074866.
  16. ^ Wu, Hua-Jun; Landshammer, Alexandro; Stamenova, Elena K.; Bolondi, Adriano; Kretzmer, Helene; Meissner, Alexander; Michor, Franziska (2021-08-12). "Topological isolation of developmental regulators in mammalian genomes". Nature Communications. 12 (1): 4897. Bibcode: 2021NatCo..12.4897W. doi: 10.1038/s41467-021-24951-7. ISSN  2041-1723. PMC  8361032. PMID  34385432.
  17. ^ Mukherjee, Shreyasi; Chaturvedi, Praneet; Rankin, Scott A; Fish, Margaret B; Wlizla, Marcin; Paraiso, Kitt D; MacDonald, Melissa; Chen, Xiaoting; Weirauch, Matthew T; Blitz, Ira L; Cho, Ken WY (2020-09-07). LaBonne, Carole; Morrisey, Edward E (eds.). "Sox17 and β-catenin co-occupy Wnt-responsive enhancers to govern the endoderm gene regulatory network". eLife. 9: e58029. doi: 10.7554/eLife.58029. ISSN  2050-084X. PMC  7498262. PMID  32894225.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook