From Wikipedia, the free encyclopedia

Silicibacter pomeroyi
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
Ruegeria pomeroyi

(González et al. 2003) Yi et al. 2007
Synonyms
  • Silicibacter pomeroyi González et al. 2003

Ruegeria pomeroyi is a species of Gram-negative, rod-shaped, aerobic dimethylsulfoniopropionate- demethylating bacterium. Its type strain is DSS-3T (=ATCC 700808T =DSM 15171T). [1] Its genome has been sequenced. [2]

Discovery

Ruegeria pomeroyi was discovered off the coast of the Eastern United States in the laboratory of Mary Ann Moran, Ph.D. [3] at the University of Georgia.

R. pomeroyi was named after Lawrence "Larry" Pomeroy, the marine microbial ecologist who notably established in 1974 that marine bacteria play a substantial and pivotal role in ocean food web dynamics. [4] Pomeroy was also a researcher at the University of Georgia.

Genome

The genome of the Ruegeria pomeroyi type strain (DSS-3) was completed in 2004. The genome is 4,109,442 base pairs long with a megaplasmid that is 491,611 base pairs long. [5]

Ecology

Ruegeria pomeroyi is a coastal ocean bacterium in a lineage of bacteria commonly considered ecological "generalists." [5] The relatively large genome of R. pomeroyi, as compared to other marine bacterial species, supports this concept. In line with this, R. pomeroyi has a highly versatile ability to utilize and sequester carbon and energy. [6]

R. pomeroyi also has the ability to degrade dimethylsulfoniopropionate (DMSP), a sulfur-containing algal osmolyte and use the sulfur to synthesize sulfur-containing amino acids. Although many marine bacteria are capable of degrading DMSP, the genes and proteins used to do so were elusive to researchers for many years. It was in R. pomeroyi that Howard and colleagues discovered the first gene that degrades DMSP. [7] This gene (dmdA) [7] codes for a protein (DmdA) that removes a methyl group (-CH3) from DMSP. The DmdA protein has since been further characterized from R. pomeroyi, [8] as well as the transcriptional response of the dmdA gene to the presence of DMSP [9] and the sequence diversity of the dmdA gene. [10] This demethylation process is the first step in the highly sought-after demethylation pathway of DMSP degradation in marine bacteria. Following the discovery of the dmdA gene, the gene sequence was used to establish that over half of marine bacteria, including both open-ocean and coastal bacteria, are capable of demethylating DMSP. [11]

Following the discovery of the demethylation pathway of DMSP degradation in R. pomeroyi, an alternative pathway of DMSP degradation was discovered in which DMSP is cleaved in half instead of demethylated, a process which R. pomeroyi also is capable. [12]

References

  1. ^ Gonzalez, J. M. (2003). "Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments". International Journal of Systematic and Evolutionary Microbiology. 53 (5): 1261–1269. doi: 10.1099/ijs.0.02491-0. ISSN  1466-5026. PMID  13130004.
  2. ^ Moran, Mary Ann; Buchan, Alison; González, José M.; Heidelberg, John F.; Whitman, William B.; Kiene, Ronald P.; Henriksen, James R.; King, Gary M.; Belas, Robert; Fuqua, Clay; Brinkac, Lauren; Lewis, Matt; Johri, Shivani; Weaver, Bruce; Pai, Grace; Eisen, Jonathan A.; Rahe, Elisha; Sheldon, Wade M.; Ye, Wenying; Miller, Todd R.; Carlton, Jane; Rasko, David A.; Paulsen, Ian T.; Ren, Qinghu; Daugherty, Sean C.; Deboy, Robert T.; Dodson, Robert J.; Durkin, A. Scott; Madupu, Ramana; Nelson, William C.; Sullivan, Steven A.; Rosovitz, M. J.; Haft, Daniel H.; Selengut, Jeremy; Ward, Naomi (2004). "Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment". Nature. 432 (7019): 910–913. Bibcode: 2004Natur.432..910M. doi: 10.1038/nature03170. ISSN  0028-0836. PMID  15602564.
  3. ^ "Moran Lab". moranresearch.uga.edu. Retrieved 2016-07-29.
  4. ^ Pomeroy, Lawrence R. (1974-09-01). "The Ocean's Food Web, A Changing Paradigm". BioScience. 24 (9): 499–504. doi: 10.2307/1296885. ISSN  0006-3568. JSTOR  1296885.
  5. ^ a b Moran, Mary Ann; Buchan, Alison; González, José M.; Heidelberg, John F.; Whitman, William B.; Kiene, Ronald P.; Henriksen, James R.; King, Gary M.; Belas, Robert (2004-12-16). "Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment". Nature. 432 (7019): 910–913. Bibcode: 2004Natur.432..910M. doi: 10.1038/nature03170. ISSN  0028-0836. PMID  15602564.
  6. ^ Newton, Ryan J.; Griffin, Laura E.; Bowles, Kathy M.; Meile, Christof; Gifford, Scott; Givens, Carrie E.; Howard, Erinn C.; King, Eric; Oakley, Clinton A. (2010-06-01). "Genome characteristics of a generalist marine bacterial lineage". The ISME Journal. 4 (6): 784–798. doi: 10.1038/ismej.2009.150. ISSN  1751-7362. PMID  20072162.
  7. ^ a b Howard, Erinn C.; Henriksen, James R.; Buchan, Alison; Reisch, Chris R.; Bürgmann, Helmut; Welsh, Rory; Ye, Wenying; González, José M.; Mace, Kimberly (2006-10-27). "Bacterial Taxa That Limit Sulfur Flux from the Ocean". Science. 314 (5799): 649–652. Bibcode: 2006Sci...314..649H. doi: 10.1126/science.1130657. ISSN  0036-8075. PMID  17068264. S2CID  41199461.
  8. ^ Reisch, Chris R.; Moran, Mary Ann; Whitman, William B. (2008-12-01). "Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi". Journal of Bacteriology. 190 (24): 8018–8024. doi: 10.1128/JB.00770-08. ISSN  1098-5530. PMC  2593244. PMID  18849431.
  9. ^ Bürgmann, Helmut; Howard, Erinn C.; Ye, Wenying; Sun, Feng; Sun, Shulei; Napierala, Sarah; Moran, Mary Ann (2007-11-01). "Transcriptional response of Silicibacter pomeroyi DSS-3 to dimethylsulfoniopropionate (DMSP)". Environmental Microbiology. 9 (11): 2742–2755. doi: 10.1111/j.1462-2920.2007.01386.x. ISSN  1462-2920. PMID  17922758.
  10. ^ Varaljay, Vanessa A.; Howard, Erinn C.; Sun, Shulei; Moran, Mary Ann (2010-01-15). "Deep Sequencing of a Dimethylsulfoniopropionate-Degrading Gene (dmdA) by Using PCR Primer Pairs Designed on the Basis of Marine Metagenomic Data". Applied and Environmental Microbiology. 76 (2): 609–617. Bibcode: 2010ApEnM..76..609V. doi: 10.1128/AEM.01258-09. ISSN  0099-2240. PMC  2805212. PMID  19948858.
  11. ^ Howard, Erinn C.; Sun, Shulei; Biers, Erin J.; Moran, Mary Ann (2008-09-01). "Abundant and diverse bacteria involved in DMSP degradation in marine surface waters". Environmental Microbiology. 10 (9): 2397–2410. doi: 10.1111/j.1462-2920.2008.01665.x. ISSN  1462-2920. PMID  18510552.
  12. ^ Todd, Jonathan D.; Rogers, Rachel; Li, You Guo; Wexler, Margaret; Bond, Philip L.; Sun, Lei; Curson, Andrew R. J.; Malin, Gill; Steinke, Michael (2007-02-02). "Structural and Regulatory Genes Required to Make the Gas Dimethyl Sulfide in Bacteria". Science. 315 (5812): 666–669. Bibcode: 2007Sci...315..666T. doi: 10.1126/science.1135370. ISSN  0036-8075. PMID  17272727. S2CID  22472634.

Further reading


From Wikipedia, the free encyclopedia

Silicibacter pomeroyi
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
Ruegeria pomeroyi

(González et al. 2003) Yi et al. 2007
Synonyms
  • Silicibacter pomeroyi González et al. 2003

Ruegeria pomeroyi is a species of Gram-negative, rod-shaped, aerobic dimethylsulfoniopropionate- demethylating bacterium. Its type strain is DSS-3T (=ATCC 700808T =DSM 15171T). [1] Its genome has been sequenced. [2]

Discovery

Ruegeria pomeroyi was discovered off the coast of the Eastern United States in the laboratory of Mary Ann Moran, Ph.D. [3] at the University of Georgia.

R. pomeroyi was named after Lawrence "Larry" Pomeroy, the marine microbial ecologist who notably established in 1974 that marine bacteria play a substantial and pivotal role in ocean food web dynamics. [4] Pomeroy was also a researcher at the University of Georgia.

Genome

The genome of the Ruegeria pomeroyi type strain (DSS-3) was completed in 2004. The genome is 4,109,442 base pairs long with a megaplasmid that is 491,611 base pairs long. [5]

Ecology

Ruegeria pomeroyi is a coastal ocean bacterium in a lineage of bacteria commonly considered ecological "generalists." [5] The relatively large genome of R. pomeroyi, as compared to other marine bacterial species, supports this concept. In line with this, R. pomeroyi has a highly versatile ability to utilize and sequester carbon and energy. [6]

R. pomeroyi also has the ability to degrade dimethylsulfoniopropionate (DMSP), a sulfur-containing algal osmolyte and use the sulfur to synthesize sulfur-containing amino acids. Although many marine bacteria are capable of degrading DMSP, the genes and proteins used to do so were elusive to researchers for many years. It was in R. pomeroyi that Howard and colleagues discovered the first gene that degrades DMSP. [7] This gene (dmdA) [7] codes for a protein (DmdA) that removes a methyl group (-CH3) from DMSP. The DmdA protein has since been further characterized from R. pomeroyi, [8] as well as the transcriptional response of the dmdA gene to the presence of DMSP [9] and the sequence diversity of the dmdA gene. [10] This demethylation process is the first step in the highly sought-after demethylation pathway of DMSP degradation in marine bacteria. Following the discovery of the dmdA gene, the gene sequence was used to establish that over half of marine bacteria, including both open-ocean and coastal bacteria, are capable of demethylating DMSP. [11]

Following the discovery of the demethylation pathway of DMSP degradation in R. pomeroyi, an alternative pathway of DMSP degradation was discovered in which DMSP is cleaved in half instead of demethylated, a process which R. pomeroyi also is capable. [12]

References

  1. ^ Gonzalez, J. M. (2003). "Silicibacter pomeroyi sp. nov. and Roseovarius nubinhibens sp. nov., dimethylsulfoniopropionate-demethylating bacteria from marine environments". International Journal of Systematic and Evolutionary Microbiology. 53 (5): 1261–1269. doi: 10.1099/ijs.0.02491-0. ISSN  1466-5026. PMID  13130004.
  2. ^ Moran, Mary Ann; Buchan, Alison; González, José M.; Heidelberg, John F.; Whitman, William B.; Kiene, Ronald P.; Henriksen, James R.; King, Gary M.; Belas, Robert; Fuqua, Clay; Brinkac, Lauren; Lewis, Matt; Johri, Shivani; Weaver, Bruce; Pai, Grace; Eisen, Jonathan A.; Rahe, Elisha; Sheldon, Wade M.; Ye, Wenying; Miller, Todd R.; Carlton, Jane; Rasko, David A.; Paulsen, Ian T.; Ren, Qinghu; Daugherty, Sean C.; Deboy, Robert T.; Dodson, Robert J.; Durkin, A. Scott; Madupu, Ramana; Nelson, William C.; Sullivan, Steven A.; Rosovitz, M. J.; Haft, Daniel H.; Selengut, Jeremy; Ward, Naomi (2004). "Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment". Nature. 432 (7019): 910–913. Bibcode: 2004Natur.432..910M. doi: 10.1038/nature03170. ISSN  0028-0836. PMID  15602564.
  3. ^ "Moran Lab". moranresearch.uga.edu. Retrieved 2016-07-29.
  4. ^ Pomeroy, Lawrence R. (1974-09-01). "The Ocean's Food Web, A Changing Paradigm". BioScience. 24 (9): 499–504. doi: 10.2307/1296885. ISSN  0006-3568. JSTOR  1296885.
  5. ^ a b Moran, Mary Ann; Buchan, Alison; González, José M.; Heidelberg, John F.; Whitman, William B.; Kiene, Ronald P.; Henriksen, James R.; King, Gary M.; Belas, Robert (2004-12-16). "Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment". Nature. 432 (7019): 910–913. Bibcode: 2004Natur.432..910M. doi: 10.1038/nature03170. ISSN  0028-0836. PMID  15602564.
  6. ^ Newton, Ryan J.; Griffin, Laura E.; Bowles, Kathy M.; Meile, Christof; Gifford, Scott; Givens, Carrie E.; Howard, Erinn C.; King, Eric; Oakley, Clinton A. (2010-06-01). "Genome characteristics of a generalist marine bacterial lineage". The ISME Journal. 4 (6): 784–798. doi: 10.1038/ismej.2009.150. ISSN  1751-7362. PMID  20072162.
  7. ^ a b Howard, Erinn C.; Henriksen, James R.; Buchan, Alison; Reisch, Chris R.; Bürgmann, Helmut; Welsh, Rory; Ye, Wenying; González, José M.; Mace, Kimberly (2006-10-27). "Bacterial Taxa That Limit Sulfur Flux from the Ocean". Science. 314 (5799): 649–652. Bibcode: 2006Sci...314..649H. doi: 10.1126/science.1130657. ISSN  0036-8075. PMID  17068264. S2CID  41199461.
  8. ^ Reisch, Chris R.; Moran, Mary Ann; Whitman, William B. (2008-12-01). "Dimethylsulfoniopropionate-dependent demethylase (DmdA) from Pelagibacter ubique and Silicibacter pomeroyi". Journal of Bacteriology. 190 (24): 8018–8024. doi: 10.1128/JB.00770-08. ISSN  1098-5530. PMC  2593244. PMID  18849431.
  9. ^ Bürgmann, Helmut; Howard, Erinn C.; Ye, Wenying; Sun, Feng; Sun, Shulei; Napierala, Sarah; Moran, Mary Ann (2007-11-01). "Transcriptional response of Silicibacter pomeroyi DSS-3 to dimethylsulfoniopropionate (DMSP)". Environmental Microbiology. 9 (11): 2742–2755. doi: 10.1111/j.1462-2920.2007.01386.x. ISSN  1462-2920. PMID  17922758.
  10. ^ Varaljay, Vanessa A.; Howard, Erinn C.; Sun, Shulei; Moran, Mary Ann (2010-01-15). "Deep Sequencing of a Dimethylsulfoniopropionate-Degrading Gene (dmdA) by Using PCR Primer Pairs Designed on the Basis of Marine Metagenomic Data". Applied and Environmental Microbiology. 76 (2): 609–617. Bibcode: 2010ApEnM..76..609V. doi: 10.1128/AEM.01258-09. ISSN  0099-2240. PMC  2805212. PMID  19948858.
  11. ^ Howard, Erinn C.; Sun, Shulei; Biers, Erin J.; Moran, Mary Ann (2008-09-01). "Abundant and diverse bacteria involved in DMSP degradation in marine surface waters". Environmental Microbiology. 10 (9): 2397–2410. doi: 10.1111/j.1462-2920.2008.01665.x. ISSN  1462-2920. PMID  18510552.
  12. ^ Todd, Jonathan D.; Rogers, Rachel; Li, You Guo; Wexler, Margaret; Bond, Philip L.; Sun, Lei; Curson, Andrew R. J.; Malin, Gill; Steinke, Michael (2007-02-02). "Structural and Regulatory Genes Required to Make the Gas Dimethyl Sulfide in Bacteria". Science. 315 (5812): 666–669. Bibcode: 2007Sci...315..666T. doi: 10.1126/science.1135370. ISSN  0036-8075. PMID  17272727. S2CID  22472634.

Further reading



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook