From Wikipedia, the free encyclopedia

A mechanical system is rheonomous if its equations of constraints contain the time as an explicit variable. [1] [2] Such constraints are called rheonomic constraints. The opposite of rheonomous is scleronomous. [1] [2]

Example: simple 2D pendulum

A simple pendulum

As shown at right, a simple pendulum is a system composed of a weight and a string. The string is attached at the top end to a pivot and at the bottom end to a weight. Being inextensible, the string has a constant length. Therefore, this system is scleronomous; it obeys the scleronomic constraint

,

where is the position of the weight and the length of the string.

A simple pendulum with oscillating pivot point

The situation changes if the pivot point is moving, e.g. undergoing a simple harmonic motion

,

where is the amplitude, the angular frequency, and time.

Although the top end of the string is not fixed, the length of this inextensible string is still a constant. The distance between the top end and the weight must stay the same. Therefore, this system is rheonomous; it obeys the rheonomic constraint

.

See also

References

  1. ^ a b Goldstein, Herbert (1980). Classical Mechanics (2nd ed.). United States of America: Addison Wesley. p.  12. ISBN  0-201-02918-9. Constraints are further classified according as the equations of constraint contain the time as an explicit variable (rheonomous) or are not explicitly dependent on time (scleronomous).
  2. ^ a b Spiegel, Murray R. (1994). Theory and Problems of THEORETICAL MECHANICS with an Introduction to Lagrange's Equations and Hamiltonian Theory. Schaum's Outline Series. McGraw Hill. p. 283. ISBN  0-07-060232-8. In many mechanical systems of importance the time t does not enter explicitly in the equations (2) or (3). Such systems are sometimes called scleronomic. In others, as for example those involving moving constraints, the time t does enter explicitly. Such systems are called rheonomic.
From Wikipedia, the free encyclopedia

A mechanical system is rheonomous if its equations of constraints contain the time as an explicit variable. [1] [2] Such constraints are called rheonomic constraints. The opposite of rheonomous is scleronomous. [1] [2]

Example: simple 2D pendulum

A simple pendulum

As shown at right, a simple pendulum is a system composed of a weight and a string. The string is attached at the top end to a pivot and at the bottom end to a weight. Being inextensible, the string has a constant length. Therefore, this system is scleronomous; it obeys the scleronomic constraint

,

where is the position of the weight and the length of the string.

A simple pendulum with oscillating pivot point

The situation changes if the pivot point is moving, e.g. undergoing a simple harmonic motion

,

where is the amplitude, the angular frequency, and time.

Although the top end of the string is not fixed, the length of this inextensible string is still a constant. The distance between the top end and the weight must stay the same. Therefore, this system is rheonomous; it obeys the rheonomic constraint

.

See also

References

  1. ^ a b Goldstein, Herbert (1980). Classical Mechanics (2nd ed.). United States of America: Addison Wesley. p.  12. ISBN  0-201-02918-9. Constraints are further classified according as the equations of constraint contain the time as an explicit variable (rheonomous) or are not explicitly dependent on time (scleronomous).
  2. ^ a b Spiegel, Murray R. (1994). Theory and Problems of THEORETICAL MECHANICS with an Introduction to Lagrange's Equations and Hamiltonian Theory. Schaum's Outline Series. McGraw Hill. p. 283. ISBN  0-07-060232-8. In many mechanical systems of importance the time t does not enter explicitly in the equations (2) or (3). Such systems are sometimes called scleronomic. In others, as for example those involving moving constraints, the time t does enter explicitly. Such systems are called rheonomic.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook