From Wikipedia, the free encyclopedia

In mathematics, in the field of group theory, a subgroup of a group is termed a retract if there is an endomorphism of the group that maps surjectively to the subgroup and is the identity on the subgroup. In symbols, is a retract of if and only if there is an endomorphism such that for all and for all . [1] [2]

The endomorphism is an idempotent element in the transformation monoid of endomorphisms, so it is called an idempotent endomorphism [1] [3] or a retraction. [2]

The following is known about retracts:

See also

References

  1. ^ a b c Baer, Reinhold (1946), "Absolute retracts in group theory", Bulletin of the American Mathematical Society, 52 (6): 501–506, doi: 10.1090/S0002-9904-1946-08601-2, MR  0016419.
  2. ^ a b Lyndon, Roger C.; Schupp, Paul E. (2001), Combinatorial group theory, Classics in Mathematics, Berlin: Springer-Verlag, p. 2, ISBN  3-540-41158-5, MR  1812024
  3. ^ Krylov, Piotr A.; Mikhalev, Alexander V.; Tuganbaev, Askar A. (2003), Endomorphism rings of abelian groups, Algebras and Applications, vol. 2, Dordrecht: Kluwer Academic Publishers, p. 24, doi: 10.1007/978-94-017-0345-1, ISBN  1-4020-1438-4, MR  2013936.
  4. ^ Myasnikov, Alexei G.; Roman'kov, Vitaly (2014), "Verbally closed subgroups of free groups", Journal of Group Theory, 17 (1): 29–40, arXiv: 1201.0497, doi: 10.1515/jgt-2013-0034, MR  3176650, S2CID  119323021.
  5. ^ For an example of a normal subgroup that is not a retract, and therefore is not a direct factor, see García, O. C.; Larrión, F. (1982), "Injectivity in varieties of groups", Algebra Universalis, 14 (3): 280–286, doi: 10.1007/BF02483931, MR  0654396, S2CID  122193204.
From Wikipedia, the free encyclopedia

In mathematics, in the field of group theory, a subgroup of a group is termed a retract if there is an endomorphism of the group that maps surjectively to the subgroup and is the identity on the subgroup. In symbols, is a retract of if and only if there is an endomorphism such that for all and for all . [1] [2]

The endomorphism is an idempotent element in the transformation monoid of endomorphisms, so it is called an idempotent endomorphism [1] [3] or a retraction. [2]

The following is known about retracts:

See also

References

  1. ^ a b c Baer, Reinhold (1946), "Absolute retracts in group theory", Bulletin of the American Mathematical Society, 52 (6): 501–506, doi: 10.1090/S0002-9904-1946-08601-2, MR  0016419.
  2. ^ a b Lyndon, Roger C.; Schupp, Paul E. (2001), Combinatorial group theory, Classics in Mathematics, Berlin: Springer-Verlag, p. 2, ISBN  3-540-41158-5, MR  1812024
  3. ^ Krylov, Piotr A.; Mikhalev, Alexander V.; Tuganbaev, Askar A. (2003), Endomorphism rings of abelian groups, Algebras and Applications, vol. 2, Dordrecht: Kluwer Academic Publishers, p. 24, doi: 10.1007/978-94-017-0345-1, ISBN  1-4020-1438-4, MR  2013936.
  4. ^ Myasnikov, Alexei G.; Roman'kov, Vitaly (2014), "Verbally closed subgroups of free groups", Journal of Group Theory, 17 (1): 29–40, arXiv: 1201.0497, doi: 10.1515/jgt-2013-0034, MR  3176650, S2CID  119323021.
  5. ^ For an example of a normal subgroup that is not a retract, and therefore is not a direct factor, see García, O. C.; Larrión, F. (1982), "Injectivity in varieties of groups", Algebra Universalis, 14 (3): 280–286, doi: 10.1007/BF02483931, MR  0654396, S2CID  122193204.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook