From Wikipedia, the free encyclopedia

Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction. As of 2015, although they have been studied for over fifty years, [1] the mechanism for this effect is still not completely understood, and is the subject of continuing research. [2] [3] [4]

Examples of relaxor ferroelectrics include:

Applications

Relaxor Ferroelectric materials find application in high efficiency energy storage and conversion as they have high dielectric constants, orders-of-magnitude higher than those of conventional ferroelectric materials. Like conventional ferroelectrics, Relaxor Ferroelectrics show permanent dipole moment in domains. However, these domains are on the nano-length scale, unlike conventional ferroelectrics domains that are generally on the micro-length scale, and take less energy to align. Consequently, Relaxor Ferroelectrics have very high specific capacitance and have thus generated interest in the fields of energy storage. [9] Furthermore, due to their slim hysteresis curve with high saturated polarization and low remnant polarization, Relaxor ferroelectrics have high discharge energy density and high discharge rates. BT-BZNT Multilayer Energy Storage Ceramic Capacitors (MLESCC) were experimentally determined to have very high efficiency(>80%) and stable thermal properties over a wide temperature range. [11]

References

  1. ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31. Bibcode: 2006JMatS..41...31B. doi: 10.1007/s10853-005-5915-7. S2CID  189842194.
  2. ^ Takenaka, H.; Grinberg, I.; Rappe, A. M. (2013). "Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric". Physical Review Letters. 110 (14): 147602. arXiv: 1212.0867. Bibcode: 2013PhRvL.110n7602T. doi: 10.1103/PhysRevLett.110.147602. PMID  25167037. S2CID  9758988.
  3. ^ Ganesh, P.; Cockayne, E.; Ahart, M.; Cohen, R. E.; Burton, B.; Hemley, Russell J.; Ren, Yang; Yang, Wenge; Ye, Z.-G. (2010-04-05). "Origin of diffuse scattering in relaxor ferroelectrics". Physical Review B. 81 (14): 144102. arXiv: 0908.2373. Bibcode: 2010PhRvB..81n4102G. doi: 10.1103/PhysRevB.81.144102. S2CID  119279021.
  4. ^ Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang (2014). "Role of random electric fields in relaxors". Proceedings of the National Academy of Sciences. 111 (5): 1754–1759. arXiv: 1405.2306. Bibcode: 2014PNAS..111.1754P. doi: 10.1073/pnas.1314780111. ISSN  0027-8424. PMC  3918832. PMID  24449912.
  5. ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31–52. Bibcode: 2006JMatS..41...31B. doi: 10.1007/s10853-005-5915-7. S2CID  189842194.
  6. ^ Shipman, Matt (20 February 2018). "Atomic Structure of Ultrasound Material Not What Anyone Expected". NC State News.
  7. ^ Cabral, Matthew J.; Zhang, Shujun; Dickey, Elizabeth C.; LeBeau, James M. (19 February 2018). "Gradient chemical order in the relaxor Pb(MgNb)O". Applied Physics Letters. 112 (8): 082901. Bibcode: 2018ApPhL.112h2901C. doi: 10.1063/1.5016561.
  8. ^ and, and (September 1988). "Lead magnesium niobate relaxor ferroelectric ceramics of low-firing for multilayer capacitors". Proceedings., Second International Conference on Properties and Applications of Dielectric Materials. pp. 125–128 vol.1. doi: 10.1109/ICPADM.1988.38349. S2CID  137495812.
  9. ^ a b Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun (2014-12-24). "Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness". ACS Applied Materials & Interfaces. 6 (24): 22417–22422. doi: 10.1021/am506247w. ISSN  1944-8244. OSTI  1392947. PMID  25405727.
  10. ^ Drnovšek, Silvo; Casar, Goran; Uršič, Hana; Bobnar, Vid (2013-10-01). "Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system". Physica Status Solidi B. 250 (10): 2232–2236. Bibcode: 2013PSSBR.250.2232B. doi: 10.1002/pssb.201349259. ISSN  1521-3951. S2CID  119554924.
  11. ^ a b Zhao, Peiyao; Wang, Hongxian; Wu, Longwen; Chen, Lingling; Cai, Ziming; Li, Longtu; Wang, Xiaohui (2019). "High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications". Advanced Energy Materials. 9 (17): 1803048. doi: 10.1002/aenm.201803048. ISSN  1614-6840. S2CID  107988812.
  12. ^ Ortega, N; Kumar, A; Scott, J F; Chrisey, Douglas B; Tomazawa, M; Kumari, Shalini; Diestra, D G B; Katiyar, R S (2012-10-10). "Relaxor-ferroelectric superlattices: high energy density capacitors". Journal of Physics: Condensed Matter. 24 (44): 445901. Bibcode: 2012JPCM...24R5901O. doi: 10.1088/0953-8984/24/44/445901. ISSN  0953-8984. PMID  23053172. S2CID  25298142.


From Wikipedia, the free encyclopedia

Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction. As of 2015, although they have been studied for over fifty years, [1] the mechanism for this effect is still not completely understood, and is the subject of continuing research. [2] [3] [4]

Examples of relaxor ferroelectrics include:

Applications

Relaxor Ferroelectric materials find application in high efficiency energy storage and conversion as they have high dielectric constants, orders-of-magnitude higher than those of conventional ferroelectric materials. Like conventional ferroelectrics, Relaxor Ferroelectrics show permanent dipole moment in domains. However, these domains are on the nano-length scale, unlike conventional ferroelectrics domains that are generally on the micro-length scale, and take less energy to align. Consequently, Relaxor Ferroelectrics have very high specific capacitance and have thus generated interest in the fields of energy storage. [9] Furthermore, due to their slim hysteresis curve with high saturated polarization and low remnant polarization, Relaxor ferroelectrics have high discharge energy density and high discharge rates. BT-BZNT Multilayer Energy Storage Ceramic Capacitors (MLESCC) were experimentally determined to have very high efficiency(>80%) and stable thermal properties over a wide temperature range. [11]

References

  1. ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31. Bibcode: 2006JMatS..41...31B. doi: 10.1007/s10853-005-5915-7. S2CID  189842194.
  2. ^ Takenaka, H.; Grinberg, I.; Rappe, A. M. (2013). "Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric". Physical Review Letters. 110 (14): 147602. arXiv: 1212.0867. Bibcode: 2013PhRvL.110n7602T. doi: 10.1103/PhysRevLett.110.147602. PMID  25167037. S2CID  9758988.
  3. ^ Ganesh, P.; Cockayne, E.; Ahart, M.; Cohen, R. E.; Burton, B.; Hemley, Russell J.; Ren, Yang; Yang, Wenge; Ye, Z.-G. (2010-04-05). "Origin of diffuse scattering in relaxor ferroelectrics". Physical Review B. 81 (14): 144102. arXiv: 0908.2373. Bibcode: 2010PhRvB..81n4102G. doi: 10.1103/PhysRevB.81.144102. S2CID  119279021.
  4. ^ Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang (2014). "Role of random electric fields in relaxors". Proceedings of the National Academy of Sciences. 111 (5): 1754–1759. arXiv: 1405.2306. Bibcode: 2014PNAS..111.1754P. doi: 10.1073/pnas.1314780111. ISSN  0027-8424. PMC  3918832. PMID  24449912.
  5. ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31–52. Bibcode: 2006JMatS..41...31B. doi: 10.1007/s10853-005-5915-7. S2CID  189842194.
  6. ^ Shipman, Matt (20 February 2018). "Atomic Structure of Ultrasound Material Not What Anyone Expected". NC State News.
  7. ^ Cabral, Matthew J.; Zhang, Shujun; Dickey, Elizabeth C.; LeBeau, James M. (19 February 2018). "Gradient chemical order in the relaxor Pb(MgNb)O". Applied Physics Letters. 112 (8): 082901. Bibcode: 2018ApPhL.112h2901C. doi: 10.1063/1.5016561.
  8. ^ and, and (September 1988). "Lead magnesium niobate relaxor ferroelectric ceramics of low-firing for multilayer capacitors". Proceedings., Second International Conference on Properties and Applications of Dielectric Materials. pp. 125–128 vol.1. doi: 10.1109/ICPADM.1988.38349. S2CID  137495812.
  9. ^ a b Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun (2014-12-24). "Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness". ACS Applied Materials & Interfaces. 6 (24): 22417–22422. doi: 10.1021/am506247w. ISSN  1944-8244. OSTI  1392947. PMID  25405727.
  10. ^ Drnovšek, Silvo; Casar, Goran; Uršič, Hana; Bobnar, Vid (2013-10-01). "Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system". Physica Status Solidi B. 250 (10): 2232–2236. Bibcode: 2013PSSBR.250.2232B. doi: 10.1002/pssb.201349259. ISSN  1521-3951. S2CID  119554924.
  11. ^ a b Zhao, Peiyao; Wang, Hongxian; Wu, Longwen; Chen, Lingling; Cai, Ziming; Li, Longtu; Wang, Xiaohui (2019). "High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications". Advanced Energy Materials. 9 (17): 1803048. doi: 10.1002/aenm.201803048. ISSN  1614-6840. S2CID  107988812.
  12. ^ Ortega, N; Kumar, A; Scott, J F; Chrisey, Douglas B; Tomazawa, M; Kumari, Shalini; Diestra, D G B; Katiyar, R S (2012-10-10). "Relaxor-ferroelectric superlattices: high energy density capacitors". Journal of Physics: Condensed Matter. 24 (44): 445901. Bibcode: 2012JPCM...24R5901O. doi: 10.1088/0953-8984/24/44/445901. ISSN  0953-8984. PMID  23053172. S2CID  25298142.



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook