From Wikipedia, the free encyclopedia
Phloretin
Names
Preferred IUPAC name
3-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one
Other names
Dihydronaringenin
Phloretol
Identifiers
3D model ( JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.000.444 Edit this at Wikidata
KEGG
PubChem CID
UNII
  • InChI=1S/C15H14O5/c16-10-4-1-9(2-5-10)3-6-12(18)15-13(19)7-11(17)8-14(15)20/h1-2,4-5,7-8,16-17,19-20H,3,6H2 ☒N
    Key: VGEREEWJJVICBM-UHFFFAOYSA-N ☒N
  • InChI=1/C15H14O5/c16-10-4-1-9(2-5-10)3-6-12(18)15-13(19)7-11(17)8-14(15)20/h1-2,4-5,7-8,16-17,19-20H,3,6H2
    Key: VGEREEWJJVICBM-UHFFFAOYAB
  • C1=CC(=CC=C1CCC(=O)C2=C(C=C(C=C2O)O)O)O
Properties
C15H14O5
Molar mass 274.272 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  verify ( what is checkY☒N ?)

Phloretin is a dihydrochalcone, a type of natural phenol. It can be found in apple tree leaves [1] and the Manchurian apricot. [2]

Metabolism

In rats, ingested phlorizin is converted into phloretin by hydrolytic enzymes in the small intestine. [3] [4] Phloretin hydrolase hydrolyses phloretin into phloretic acid and phloroglucinol.

Pharmacological research

In an animal model, phloretin inhibited active transport of glucose into cells by SGLT1 and SGLT2, though the inhibition is weaker than by its glycoside phlorizin. [5] An important effect of this is the inhibition of glucose absorption by the small intestine [4] and the inhibition of renal glucose reabsorption. [3] Phloretin also inhibits a variety of urea transporters. [6] [7] It induces urea loss and diuresis when coupled with high protein diets. Phloretin has been found to inhibit weight gain and improve metabolic homeostasis in mice fed with high-fat diet. [8] Phloretin inhibits aquaporin 9 (AQP9) on mouse hepatocytes. [9]

Nanoparticle Synthesis

Phloretin functionalized gold-nanoparticles (Pht-GNPs) were synthesized using a single-step synthesis method and tested for its anticancer activity. Pht-GNPs showed significant cancer cell toxicities compared to free phloretin. [10]

Glycosides

See also

References

  1. ^ Picinelli A.; Dapena E.; Mangas J. J. (1995). "Polyphenolic pattern in apple tree leaves in relation to scab resistance. A preliminary study". Journal of Agricultural and Food Chemistry. 43 (8): 2273–2278. doi: 10.1021/jf00056a057.
  2. ^ "Manchurian Apricot (Prunus armeniaca var. mandshurica)" (PDF). North Dakota State University. Retrieved January 30, 2014.
  3. ^ a b Idris, I.; Donnelly, R. (2009). "Sodium-glucose co-transporter-2 inhibitors: An emerging new class of oral antidiabetic drug". Diabetes, Obesity and Metabolism. 11 (2): 79–88. doi: 10.1111/j.1463-1326.2008.00982.x. PMID  19125776.
  4. ^ a b Crespy, V.; Aprikian, O.; Morand, C.; Besson, C.; Manach, C.; Demigné, C.; Rémésy, C. (2001). "Bioavailability of phloretin and phloridzin in rats". The Journal of Nutrition. 131 (12): 3227–3230. doi: 10.1093/jn/131.12.3227. PMID  11739871.
  5. ^ Chan, Stephen S.; William D. Lotspeich (1962-12-01). "Comparative effects of phlorizin and phloretin on glucose transport in the cat kidney". American Journal of Physiology. Legacy Content. 203 (6): 975–979. doi: 10.1152/ajplegacy.1962.203.6.975. ISSN  0002-9513. PMID  14019989. Retrieved 2012-10-21.
  6. ^ Fenton, Robert A.; Chung-Lin Chou; Gavin S. Stewart; Craig P. Smith; Mark A. Knepper (2004-05-11). "Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct". Proceedings of the National Academy of Sciences of the United States of America. 101 (19): 7469–7474. Bibcode: 2004PNAS..101.7469F. doi: 10.1073/pnas.0401704101. ISSN  0027-8424. PMC  409942. PMID  15123796.
  7. ^ Shayakul, Chairat; Hiroyasu Tsukaguchi; Urs V. Berger; Matthias A. Hediger (2001-03-01). "Molecular characterization of a novel urea transporter from kidney inner medullary collecting ducts". American Journal of Physiology. Renal Physiology. 280 (3): F487–F494. doi: 10.1152/ajprenal.2001.280.3.f487. ISSN  1931-857X. PMID  11181411. S2CID  22143248. Archived from the original on 2016-03-04. Retrieved 2012-10-21.
  8. ^ Alsanea, Sary; Gao, Mingming; Liu, Dexi (May 2017). "Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis". The AAPS Journal. 19 (3): 797–805. doi: 10.1208/s12248-017-0053-0. ISSN  1550-7416. PMID  28197827. S2CID  3638970.
  9. ^ Fenton, Robert A.; Chou, Chung-Lin; Stewart, Gavin S.; Smith, Craig P.; Knepper, Mark A. (2004-05-11). "Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct". Proceedings of the National Academy of Sciences of the United States of America. 101 (19): 7469–7474. Bibcode: 2004PNAS..101.7469F. doi: 10.1073/pnas.0401704101. ISSN  0027-8424. PMC  409942. PMID  15123796.
  10. ^ Payne NJ, Badwaik VD, Waghwani HK, Moolani HV, Tockstein S, Thompson DH, Dakshinamurthy R (March 2018). "Development of dihydrochalcone-functionalized gold nanoparticles for augmented antineoplastic activity". International Journal of Nanomedicine. 13: 1917–1926. doi: 10.2147/IJN.S143506. PMC  5880570. PMID  29636609.
From Wikipedia, the free encyclopedia
Phloretin
Names
Preferred IUPAC name
3-(4-Hydroxyphenyl)-1-(2,4,6-trihydroxyphenyl)propan-1-one
Other names
Dihydronaringenin
Phloretol
Identifiers
3D model ( JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.000.444 Edit this at Wikidata
KEGG
PubChem CID
UNII
  • InChI=1S/C15H14O5/c16-10-4-1-9(2-5-10)3-6-12(18)15-13(19)7-11(17)8-14(15)20/h1-2,4-5,7-8,16-17,19-20H,3,6H2 ☒N
    Key: VGEREEWJJVICBM-UHFFFAOYSA-N ☒N
  • InChI=1/C15H14O5/c16-10-4-1-9(2-5-10)3-6-12(18)15-13(19)7-11(17)8-14(15)20/h1-2,4-5,7-8,16-17,19-20H,3,6H2
    Key: VGEREEWJJVICBM-UHFFFAOYAB
  • C1=CC(=CC=C1CCC(=O)C2=C(C=C(C=C2O)O)O)O
Properties
C15H14O5
Molar mass 274.272 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N  verify ( what is checkY☒N ?)

Phloretin is a dihydrochalcone, a type of natural phenol. It can be found in apple tree leaves [1] and the Manchurian apricot. [2]

Metabolism

In rats, ingested phlorizin is converted into phloretin by hydrolytic enzymes in the small intestine. [3] [4] Phloretin hydrolase hydrolyses phloretin into phloretic acid and phloroglucinol.

Pharmacological research

In an animal model, phloretin inhibited active transport of glucose into cells by SGLT1 and SGLT2, though the inhibition is weaker than by its glycoside phlorizin. [5] An important effect of this is the inhibition of glucose absorption by the small intestine [4] and the inhibition of renal glucose reabsorption. [3] Phloretin also inhibits a variety of urea transporters. [6] [7] It induces urea loss and diuresis when coupled with high protein diets. Phloretin has been found to inhibit weight gain and improve metabolic homeostasis in mice fed with high-fat diet. [8] Phloretin inhibits aquaporin 9 (AQP9) on mouse hepatocytes. [9]

Nanoparticle Synthesis

Phloretin functionalized gold-nanoparticles (Pht-GNPs) were synthesized using a single-step synthesis method and tested for its anticancer activity. Pht-GNPs showed significant cancer cell toxicities compared to free phloretin. [10]

Glycosides

See also

References

  1. ^ Picinelli A.; Dapena E.; Mangas J. J. (1995). "Polyphenolic pattern in apple tree leaves in relation to scab resistance. A preliminary study". Journal of Agricultural and Food Chemistry. 43 (8): 2273–2278. doi: 10.1021/jf00056a057.
  2. ^ "Manchurian Apricot (Prunus armeniaca var. mandshurica)" (PDF). North Dakota State University. Retrieved January 30, 2014.
  3. ^ a b Idris, I.; Donnelly, R. (2009). "Sodium-glucose co-transporter-2 inhibitors: An emerging new class of oral antidiabetic drug". Diabetes, Obesity and Metabolism. 11 (2): 79–88. doi: 10.1111/j.1463-1326.2008.00982.x. PMID  19125776.
  4. ^ a b Crespy, V.; Aprikian, O.; Morand, C.; Besson, C.; Manach, C.; Demigné, C.; Rémésy, C. (2001). "Bioavailability of phloretin and phloridzin in rats". The Journal of Nutrition. 131 (12): 3227–3230. doi: 10.1093/jn/131.12.3227. PMID  11739871.
  5. ^ Chan, Stephen S.; William D. Lotspeich (1962-12-01). "Comparative effects of phlorizin and phloretin on glucose transport in the cat kidney". American Journal of Physiology. Legacy Content. 203 (6): 975–979. doi: 10.1152/ajplegacy.1962.203.6.975. ISSN  0002-9513. PMID  14019989. Retrieved 2012-10-21.
  6. ^ Fenton, Robert A.; Chung-Lin Chou; Gavin S. Stewart; Craig P. Smith; Mark A. Knepper (2004-05-11). "Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct". Proceedings of the National Academy of Sciences of the United States of America. 101 (19): 7469–7474. Bibcode: 2004PNAS..101.7469F. doi: 10.1073/pnas.0401704101. ISSN  0027-8424. PMC  409942. PMID  15123796.
  7. ^ Shayakul, Chairat; Hiroyasu Tsukaguchi; Urs V. Berger; Matthias A. Hediger (2001-03-01). "Molecular characterization of a novel urea transporter from kidney inner medullary collecting ducts". American Journal of Physiology. Renal Physiology. 280 (3): F487–F494. doi: 10.1152/ajprenal.2001.280.3.f487. ISSN  1931-857X. PMID  11181411. S2CID  22143248. Archived from the original on 2016-03-04. Retrieved 2012-10-21.
  8. ^ Alsanea, Sary; Gao, Mingming; Liu, Dexi (May 2017). "Phloretin Prevents High-Fat Diet-Induced Obesity and Improves Metabolic Homeostasis". The AAPS Journal. 19 (3): 797–805. doi: 10.1208/s12248-017-0053-0. ISSN  1550-7416. PMID  28197827. S2CID  3638970.
  9. ^ Fenton, Robert A.; Chou, Chung-Lin; Stewart, Gavin S.; Smith, Craig P.; Knepper, Mark A. (2004-05-11). "Urinary concentrating defect in mice with selective deletion of phloretin-sensitive urea transporters in the renal collecting duct". Proceedings of the National Academy of Sciences of the United States of America. 101 (19): 7469–7474. Bibcode: 2004PNAS..101.7469F. doi: 10.1073/pnas.0401704101. ISSN  0027-8424. PMC  409942. PMID  15123796.
  10. ^ Payne NJ, Badwaik VD, Waghwani HK, Moolani HV, Tockstein S, Thompson DH, Dakshinamurthy R (March 2018). "Development of dihydrochalcone-functionalized gold nanoparticles for augmented antineoplastic activity". International Journal of Nanomedicine. 13: 1917–1926. doi: 10.2147/IJN.S143506. PMC  5880570. PMID  29636609.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook