From Wikipedia, the free encyclopedia

In chemistry, oxypnictides are a class of materials composed of oxygen, a pnictogen (group-V, especially phosphorus and arsenic) and one or more other elements. Although this group of compounds has been recognized since 1995, [1] interest in these compounds increased dramatically after the publication of the superconducting properties of LaOFeP and LaOFeAs which were discovered in 2006 [2] and 2008. [3] [4] In these experiments the oxide was partly replaced by fluoride.

These and related compounds (e.g. the 122 iron arsenides) form a new group of iron-based superconductors known as iron pnictides or ferropnictides since the oxygen is not essential but the iron seems to be.

Oxypnictides have been patented as magnetic semiconductors in early 2006. [5]

The different subclasses of oxypnictides are oxynitrides, oxyphosphides, oxyarsenides, oxyantimonides, and oxybismuthides.

Structure

Many of the oxypnictides show a layered structure. [6] For example, LaFePO with layers of La3+O2− and Fe2+P3−. [2] This structure is similar to that of ZrCuSiAs, which is now the parent structure for most of the oxypnictide. [7]

Superconductivity

The first superconducting iron oxypnictide was discovered in 2006, based on phosphorus. [2] A drastic increase in the critical temperature was achieved when phosphorus was substituted by arsenic. [3] This discovery boosted the search for similar compounds, like the search for cuprate-based superconductors after their discovery in 1986.

The superconductivity of the oxypnictides seems to depend on the iron-pnictogen layers.

Some found in 2008 to be high-temperature superconductors (up to 55 K) of composition ReOTmPn, where Re is a rare earth, Tm is a transition metal and Pn is from group V e.g. As. [8]

oxypnictides
Material Tc (K)
LaO0.89F0.11FeAs 26 [9]
LaO0.9F0.2FeAs 28.5 [10]
CeFeAsO0.84F0.16 41 [9]
SmFeAsO0.9F0.1 43 [9]
La0.5Y0.5FeAsO0.6 43.1 [11]
NdFeAsO0.89F0.11 52 [9]
PrFeAsO0.89F0.11 52 [12]
GdFeAsO0.85 53.5 [13]
SmFeAsO~0.85 55 [14]

Tests in magnetic fields up to 45 teslas [15] [16] suggest the upper critical field of LaFeAsO0.89F0.11 may be around 64 T. A different lanthanum-based material tested at 6 K predicts an upper critical field of 122 T in La0.8K0.2FeAsO0.8F0.2. [10]

Practical use

Because of the brittleness of the oxypnictides, superconducting wires are formed using the powder-in-tube process (using iron tubes). [17]

See also

References

  1. ^ Zimmer, Barbara I.; Jeitschko, Wolfgang; Albering, Jörg H.; Glaum, Robert; Reehuis, Manfred (1995). "The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure". Journal of Alloys and Compounds. 229 (2): 238–242. doi: 10.1016/0925-8388(95)01672-4.
  2. ^ a b c Kamihara, Y; Hiramatsu, H; Hirano, M; Kawamura, R; Yanagi, H; Kamiya, T; Hosono, H (2006). "Iron-Based Layered Superconductor: LaOFeP". J. Am. Chem. Soc. 128 (31): 10012–10013. doi: 10.1021/ja063355c. PMID  16881620.
  3. ^ a b Takahashi, H; Igawa, K; Arii, K; Kamihara, Y; Hirano, M; Hosono, H (2008). "Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs". Nature. 453 (7193): 376–378. Bibcode: 2008Natur.453..376T. doi: 10.1038/nature06972. PMID  18432191. S2CID  498756.
  4. ^ Day, Charles (2008). "New family of quaternary iron-based compounds superconducts at tens of kelvin". Physics Today. 61 (5): 11–12. Bibcode: 2008PhT....61e..11D. doi: 10.1063/1.2930719.
  5. ^ H. Hosono et al. (2006) Magnetic semiconductor material European Patent Application EP1868215
  6. ^ Ozawa, T. C.; Kauzlarich, S. M. (2008). "Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors". Sci. Technol. Adv. Mater. 9 (3): 033003. arXiv: 0808.1158. Bibcode: 2008STAdM...9c3003O. doi: 10.1088/1468-6996/9/3/033003. PMC  5099654. PMID  27877997.
  7. ^ Tegel, Marcus; Bichler, Daniel; Johrendt, Dirk (2008). "Synthesis, crystal structure and superconductivity of LaNiPO". Solid State Sciences. 10 (2): 193–197. Bibcode: 2008SSSci..10..193T. doi: 10.1016/j.solidstatesciences.2007.08.016.
  8. ^ Ren, Z. A.; Yang, J.; Lu, W.; Yi, W.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhao, Z. X. (2008). "Samarium based SmFeAsO1−xFx". Materials Research Innovations. 12 (3): 105. arXiv: 0803.4283. Bibcode: 2008MatRI..12..105R. doi: 10.1179/143307508X333686. S2CID  55488705.
  9. ^ a b c d Ishida, Kenji; Nakai, Yusuke; Hosono, Hideo (2009). "To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report". J. Phys. Soc. Jpn. 78 (6): 062001. arXiv: 0906.2045. Bibcode: 2009JPSJ...78f2001I. doi: 10.1143/JPSJ.78.062001. S2CID  119295430.
  10. ^ a b Prakash, J.; Singh, S. J.; Samal, S. L.; Patnaik, S.; Ganguli, A. K. (2008). "Potassium fluoride doped LaOFeAs multi-band superconductor: Evidence of extremely high upper critical field". EPL. 84 (5): 57003. Bibcode: 2008EL.....8457003P. doi: 10.1209/0295-5075/84/57003. S2CID  119254951.
  11. ^ Shirage, Parasharam M.; Miyazawa, Kiichi; Kito, Hijiri; Eisaki, Hiroshi; Iyo, Akira (2008). "Superconductivity at 43 K at ambient pressure in the iron-based layered compound La1‑xYxFeAsOy". Physical Review B. 78 (17): 172503. Bibcode: 2008PhRvB..78q2503S. doi: 10.1103/PhysRevB.78.172503.
  12. ^ Ren, Z. A.; Yang, J.; Lu, W.; Yi, W.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhao, Z. X. (2008). "Superconductivity at 52 K in iron based F doped layered quaternary compound Pr[O1–xFx]FeAs". Materials Research Innovations. 12 (3): 105. arXiv: 0803.4283. Bibcode: 2008MatRI..12..105R. doi: 10.1179/143307508X333686. S2CID  55488705.
  13. ^ Yang, Jie; Li, Zheng-Cai; Lu, Wei; Yi, Wei; Shen, Xiao-Li; Ren, Zhi-An; Che, Guang-Can; Dong, Xiao-Li; Sun, Li-Ling; et al. (2008). "Superconductivity at 53.5 K in GdFeAsO1−δ". Superconductor Science and Technology. 21 (8): 082001. arXiv: 0804.3727. Bibcode: 2008SuScT..21h2001Y. doi: 10.1088/0953-2048/21/8/082001. S2CID  121990600.
  14. ^ Ren, Zhi-An; Che, Guang-Can; Dong, Xiao-Li; Yang, Jie; Lu, Wei; Yi, Wei; Shen, Xiao-Li; Li, Zheng-Cai; Sun, Li-Ling; Zhou, Fang; Zhao, Zhong-Xian (2008). "Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping". EPL. 83 (1): 17002. arXiv: 0804.2582. Bibcode: 2008EL.....8317002R. doi: 10.1209/0295-5075/83/17002. S2CID  96240327.
  15. ^ "High-temp superconductors pave way for 'supermagnets'". planetanalog. May 29, 2008.[ permanent dead link]
  16. ^ Hunte, F; Jaroszynski, J; Gurevich, A; Larbalestier, D. C.; Jin, R; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Christen, D. K.; Mandrus, D (2008). "Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields". Nature. 453 (7197): 903–905. arXiv: 0804.0485. Bibcode: 2008Natur.453..903H. doi: 10.1038/nature07058. PMID  18509332. S2CID  115211939.
  17. ^ Gao, Zhaoshun; Wang, Lei; Qi, Yanpeng; Wang, Dongliang; Zhang, Xianping; Ma, Yanwei (2008). "Preparation of LaFeAsO0.9F0.1 wires by the powder-in-tube method". Superconductor Science and Technology. 21 (10): 105024. Bibcode: 2008SuScT..21j5024G. doi: 10.1088/0953-2048/21/10/105024. S2CID  122471407.
From Wikipedia, the free encyclopedia

In chemistry, oxypnictides are a class of materials composed of oxygen, a pnictogen (group-V, especially phosphorus and arsenic) and one or more other elements. Although this group of compounds has been recognized since 1995, [1] interest in these compounds increased dramatically after the publication of the superconducting properties of LaOFeP and LaOFeAs which were discovered in 2006 [2] and 2008. [3] [4] In these experiments the oxide was partly replaced by fluoride.

These and related compounds (e.g. the 122 iron arsenides) form a new group of iron-based superconductors known as iron pnictides or ferropnictides since the oxygen is not essential but the iron seems to be.

Oxypnictides have been patented as magnetic semiconductors in early 2006. [5]

The different subclasses of oxypnictides are oxynitrides, oxyphosphides, oxyarsenides, oxyantimonides, and oxybismuthides.

Structure

Many of the oxypnictides show a layered structure. [6] For example, LaFePO with layers of La3+O2− and Fe2+P3−. [2] This structure is similar to that of ZrCuSiAs, which is now the parent structure for most of the oxypnictide. [7]

Superconductivity

The first superconducting iron oxypnictide was discovered in 2006, based on phosphorus. [2] A drastic increase in the critical temperature was achieved when phosphorus was substituted by arsenic. [3] This discovery boosted the search for similar compounds, like the search for cuprate-based superconductors after their discovery in 1986.

The superconductivity of the oxypnictides seems to depend on the iron-pnictogen layers.

Some found in 2008 to be high-temperature superconductors (up to 55 K) of composition ReOTmPn, where Re is a rare earth, Tm is a transition metal and Pn is from group V e.g. As. [8]

oxypnictides
Material Tc (K)
LaO0.89F0.11FeAs 26 [9]
LaO0.9F0.2FeAs 28.5 [10]
CeFeAsO0.84F0.16 41 [9]
SmFeAsO0.9F0.1 43 [9]
La0.5Y0.5FeAsO0.6 43.1 [11]
NdFeAsO0.89F0.11 52 [9]
PrFeAsO0.89F0.11 52 [12]
GdFeAsO0.85 53.5 [13]
SmFeAsO~0.85 55 [14]

Tests in magnetic fields up to 45 teslas [15] [16] suggest the upper critical field of LaFeAsO0.89F0.11 may be around 64 T. A different lanthanum-based material tested at 6 K predicts an upper critical field of 122 T in La0.8K0.2FeAsO0.8F0.2. [10]

Practical use

Because of the brittleness of the oxypnictides, superconducting wires are formed using the powder-in-tube process (using iron tubes). [17]

See also

References

  1. ^ Zimmer, Barbara I.; Jeitschko, Wolfgang; Albering, Jörg H.; Glaum, Robert; Reehuis, Manfred (1995). "The rate earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure". Journal of Alloys and Compounds. 229 (2): 238–242. doi: 10.1016/0925-8388(95)01672-4.
  2. ^ a b c Kamihara, Y; Hiramatsu, H; Hirano, M; Kawamura, R; Yanagi, H; Kamiya, T; Hosono, H (2006). "Iron-Based Layered Superconductor: LaOFeP". J. Am. Chem. Soc. 128 (31): 10012–10013. doi: 10.1021/ja063355c. PMID  16881620.
  3. ^ a b Takahashi, H; Igawa, K; Arii, K; Kamihara, Y; Hirano, M; Hosono, H (2008). "Superconductivity at 43 K in an iron-based layered compound LaO1−xFxFeAs". Nature. 453 (7193): 376–378. Bibcode: 2008Natur.453..376T. doi: 10.1038/nature06972. PMID  18432191. S2CID  498756.
  4. ^ Day, Charles (2008). "New family of quaternary iron-based compounds superconducts at tens of kelvin". Physics Today. 61 (5): 11–12. Bibcode: 2008PhT....61e..11D. doi: 10.1063/1.2930719.
  5. ^ H. Hosono et al. (2006) Magnetic semiconductor material European Patent Application EP1868215
  6. ^ Ozawa, T. C.; Kauzlarich, S. M. (2008). "Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors". Sci. Technol. Adv. Mater. 9 (3): 033003. arXiv: 0808.1158. Bibcode: 2008STAdM...9c3003O. doi: 10.1088/1468-6996/9/3/033003. PMC  5099654. PMID  27877997.
  7. ^ Tegel, Marcus; Bichler, Daniel; Johrendt, Dirk (2008). "Synthesis, crystal structure and superconductivity of LaNiPO". Solid State Sciences. 10 (2): 193–197. Bibcode: 2008SSSci..10..193T. doi: 10.1016/j.solidstatesciences.2007.08.016.
  8. ^ Ren, Z. A.; Yang, J.; Lu, W.; Yi, W.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhao, Z. X. (2008). "Samarium based SmFeAsO1−xFx". Materials Research Innovations. 12 (3): 105. arXiv: 0803.4283. Bibcode: 2008MatRI..12..105R. doi: 10.1179/143307508X333686. S2CID  55488705.
  9. ^ a b c d Ishida, Kenji; Nakai, Yusuke; Hosono, Hideo (2009). "To What Extent Iron-Pnictide New Superconductors Have Been Clarified: A Progress Report". J. Phys. Soc. Jpn. 78 (6): 062001. arXiv: 0906.2045. Bibcode: 2009JPSJ...78f2001I. doi: 10.1143/JPSJ.78.062001. S2CID  119295430.
  10. ^ a b Prakash, J.; Singh, S. J.; Samal, S. L.; Patnaik, S.; Ganguli, A. K. (2008). "Potassium fluoride doped LaOFeAs multi-band superconductor: Evidence of extremely high upper critical field". EPL. 84 (5): 57003. Bibcode: 2008EL.....8457003P. doi: 10.1209/0295-5075/84/57003. S2CID  119254951.
  11. ^ Shirage, Parasharam M.; Miyazawa, Kiichi; Kito, Hijiri; Eisaki, Hiroshi; Iyo, Akira (2008). "Superconductivity at 43 K at ambient pressure in the iron-based layered compound La1‑xYxFeAsOy". Physical Review B. 78 (17): 172503. Bibcode: 2008PhRvB..78q2503S. doi: 10.1103/PhysRevB.78.172503.
  12. ^ Ren, Z. A.; Yang, J.; Lu, W.; Yi, W.; Che, G. C.; Dong, X. L.; Sun, L. L.; Zhao, Z. X. (2008). "Superconductivity at 52 K in iron based F doped layered quaternary compound Pr[O1–xFx]FeAs". Materials Research Innovations. 12 (3): 105. arXiv: 0803.4283. Bibcode: 2008MatRI..12..105R. doi: 10.1179/143307508X333686. S2CID  55488705.
  13. ^ Yang, Jie; Li, Zheng-Cai; Lu, Wei; Yi, Wei; Shen, Xiao-Li; Ren, Zhi-An; Che, Guang-Can; Dong, Xiao-Li; Sun, Li-Ling; et al. (2008). "Superconductivity at 53.5 K in GdFeAsO1−δ". Superconductor Science and Technology. 21 (8): 082001. arXiv: 0804.3727. Bibcode: 2008SuScT..21h2001Y. doi: 10.1088/0953-2048/21/8/082001. S2CID  121990600.
  14. ^ Ren, Zhi-An; Che, Guang-Can; Dong, Xiao-Li; Yang, Jie; Lu, Wei; Yi, Wei; Shen, Xiao-Li; Li, Zheng-Cai; Sun, Li-Ling; Zhou, Fang; Zhao, Zhong-Xian (2008). "Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1−δ (Re = rare-earth metal) without fluorine doping". EPL. 83 (1): 17002. arXiv: 0804.2582. Bibcode: 2008EL.....8317002R. doi: 10.1209/0295-5075/83/17002. S2CID  96240327.
  15. ^ "High-temp superconductors pave way for 'supermagnets'". planetanalog. May 29, 2008.[ permanent dead link]
  16. ^ Hunte, F; Jaroszynski, J; Gurevich, A; Larbalestier, D. C.; Jin, R; Sefat, A. S.; McGuire, M. A.; Sales, B. C.; Christen, D. K.; Mandrus, D (2008). "Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields". Nature. 453 (7197): 903–905. arXiv: 0804.0485. Bibcode: 2008Natur.453..903H. doi: 10.1038/nature07058. PMID  18509332. S2CID  115211939.
  17. ^ Gao, Zhaoshun; Wang, Lei; Qi, Yanpeng; Wang, Dongliang; Zhang, Xianping; Ma, Yanwei (2008). "Preparation of LaFeAsO0.9F0.1 wires by the powder-in-tube method". Superconductor Science and Technology. 21 (10): 105024. Bibcode: 2008SuScT..21j5024G. doi: 10.1088/0953-2048/21/10/105024. S2CID  122471407.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook