From Wikipedia, the free encyclopedia

Optoelectrofluidics, also known as optically induced electrohydrodynamics, refers to the study of the motions of particles or molecules and their interactions with optically-induced electric field and the surrounding fluid.

This concept includes electrothermal vortex, electrophoresis, dielectrophoresis, and electroosmosis induced by combination of optical and electrical energy or by optical-electrical energy transfer.

In 1995, an electrothermal vortices induced by a strong IR ( infrared) laser projected into an electric field have been utilized to concentrate microparticles and molecules. In 2000, UV( ultraviolet) pattern projected onto ITO ( indium tin oxide) electrode has been applied for patterning colloidal particles. Illumination of the ITO electrode by UV light results in a small increase in the current from the generation of electron-hole pairs at the ITO/water interface. In 2005, optoelectronic tweezers (OET), wherein a photoconductive material was utilized to induce electric field using the optical decrement of electrical resistance on a partially illuminated area, has been reported. After that, many researches in several view-points have been performed as below.

Display Devices

1. DMD( digital micromirror device)-based Optoelectronic Tweezers (OET) : P.Y. Chiou, et al., Nature 436, pp. 370-372 (2005)
2. Projector-based Image Dielectrophoresis (iDEP) : Y.-s. Lu, et al., Opt. Quant. Elec. 37, pp. 1385-1395 (2006)
3. LCD( liquid crystal display)-based Lab-on-a-Display (LOD) : W. Choi, et al., Microfluid. Nanofluid. 3, pp. 217-225 (2007)
4. Lens-integrated LCD-based System : H. Hwang, et al., Electrophoresis 29, pp. 1203-1212 (2008)

System Configuration

1. Interactive & Microscope-integrated System : H. Hwang, et al., Electrophoresis 29, pp. 1203-1212 (2008)
2. Double Photoconductive Layers : H. Hwang, et al., Appl. Phys. Lett. 92, pp. 024108 (2008)
3. Floating Electrode OET : S. Park, et al., Appl. Phys. Lett. 92, pp. 151101 (2008)
4. Integration with Electrowetting Device : G.J. Shah, et al., Lab Chip doi: 10.1039/b821508a (2009)
5. Optoelectrofluidic Fluorescence Microscopy: H. Hwang and J.-K. Park, Anal. Chem. doi: 10.1021/ac901047v (2009)

Target Materials

1. Cultured cells : A.T. Ohta, et al., IEEE J. Sel. Top. Quant. Elec. 13, pp. 237-240 (2007)
2. DNA : M. Hoeb, et al., Biophys. J. 93, pp. 1032-1038 (2007)
3. Blood cell : H. Hwang, et al., Electrophoresis 29, pp. 1203-1212 (2008)
4. Semiconducting nanowires : A. Jamshidi, et al., Nat. Photon. 2, pp. 86-89 (2008)
5. Swimming bacteria : W. Choi, et al., Appl. Phys. Lett. 93, pp. 143901 (2008)
6. Oocyte : H. Hwang, et al., Biomicrofluidics 3, pp. 014103 (2009)
7. Polysaccharide, Protein and Fluorophore : H. Hwang and J.-K. Park, Anal. Chem. doi: 10.1021/ac901047v (2009)

Operating Principles

1. Dielectrophoresis (DEP) : Most of the researches above.
2. AC Electro-osmosis (ACEO) : P.-Y. Chiou, et al., J. Microelectromech. Syst. 17, pp. 525-531 (2008)
3. Electro-orientation : W. Choi, et al., Appl. Phys. Lett. 93, pp. 143901 (2008)
4. Electrothermal flow : A. Mizuno, et al., IEEE Trans. Ind. Appl. 31, pp. 464-468 (1995), S.J. Williams, A. Kumar and S. T. Wereley, Lab Chip 8, pp. 1879-1882 (2008)
5. Combination of AC Electrokinetics : H. Hwang and J.-K. Park, Lab Chip 9, pp. 199-206 (2009), H. Hwang and J.-K. Park, Anal. Chem. doi: 10.1021/ac901047v (2009)

6. Optically induced electrohydrodynamic instability (OEHI): Feifei Wang, Haibo Yu, Wenfeng Liang, Lianqing Liu, John D. Mai, Gwo-Bin Lee, Wen Jung Li, Microfluidics and Nanofluidics, Volume 16, Issue 6, pp. 1097–1106

Other Phenomena

1. Surface-Particle Interactions : H. Hwang, et al., Appl. Phys. Lett. 92, pp. 024108 (2008)
2. Particle-Particle Interactions : H. Hwang, et al., J. Phys. Chem. B 32, pp.  9903–9908 (2008) doi: 10.1021/jp803596r

Applications

1. Microlens Array Fabrication : J.-Y. Huang, Y.-S. Lu and J. A. Teh, Opt. Express 14, pp. 10779-10784 (2006)
2. Microparticle Separation : H. Hwang and J.-K. Park, Lab Chip 9, pp. 199-206 (2009)
3. In vitro Fertilization : H. Hwang, et al., Biomicrofluidics 3, pp.  014103 (2009)
4. Electroporation : J.K. Valley, et al., Lab Chip doi: 10.1039/b821678a (2009)
5. Local Chemical Concentration Control : H. Hwang and J.-K. Park, Anal. Chem. doi: 10.1021/ac901047v (2009)
6. Colloidal Assembly : H. Hwang, Y.-H. Park and J.-K. Park, Langmuir 25, pp. 6010-6014 (2009)

Research Groups

1. Ming C. Wu's Group : Integrated Photonics Laboratory, UC Berkeley, CA, USA
2. Je-Kyun Park's Group : NanoBiotech Laboratory, KAIST, KOREA
3. P.Y. Chiou's Group : Optoelectronic Biofluidics Laboratory, UCLA, CA, USA
4. Steve Wereley's Group : Microfluidics Laboratory, Purdue University, IN, USA
5. Aloke Kumar's Group : Kumar Biomicrofluidics Laboratory
6. Stuart William's Group : [1]
7. Han-Sheng Chuang's Group : [2]

References

From Wikipedia, the free encyclopedia

Optoelectrofluidics, also known as optically induced electrohydrodynamics, refers to the study of the motions of particles or molecules and their interactions with optically-induced electric field and the surrounding fluid.

This concept includes electrothermal vortex, electrophoresis, dielectrophoresis, and electroosmosis induced by combination of optical and electrical energy or by optical-electrical energy transfer.

In 1995, an electrothermal vortices induced by a strong IR ( infrared) laser projected into an electric field have been utilized to concentrate microparticles and molecules. In 2000, UV( ultraviolet) pattern projected onto ITO ( indium tin oxide) electrode has been applied for patterning colloidal particles. Illumination of the ITO electrode by UV light results in a small increase in the current from the generation of electron-hole pairs at the ITO/water interface. In 2005, optoelectronic tweezers (OET), wherein a photoconductive material was utilized to induce electric field using the optical decrement of electrical resistance on a partially illuminated area, has been reported. After that, many researches in several view-points have been performed as below.

Display Devices

1. DMD( digital micromirror device)-based Optoelectronic Tweezers (OET) : P.Y. Chiou, et al., Nature 436, pp. 370-372 (2005)
2. Projector-based Image Dielectrophoresis (iDEP) : Y.-s. Lu, et al., Opt. Quant. Elec. 37, pp. 1385-1395 (2006)
3. LCD( liquid crystal display)-based Lab-on-a-Display (LOD) : W. Choi, et al., Microfluid. Nanofluid. 3, pp. 217-225 (2007)
4. Lens-integrated LCD-based System : H. Hwang, et al., Electrophoresis 29, pp. 1203-1212 (2008)

System Configuration

1. Interactive & Microscope-integrated System : H. Hwang, et al., Electrophoresis 29, pp. 1203-1212 (2008)
2. Double Photoconductive Layers : H. Hwang, et al., Appl. Phys. Lett. 92, pp. 024108 (2008)
3. Floating Electrode OET : S. Park, et al., Appl. Phys. Lett. 92, pp. 151101 (2008)
4. Integration with Electrowetting Device : G.J. Shah, et al., Lab Chip doi: 10.1039/b821508a (2009)
5. Optoelectrofluidic Fluorescence Microscopy: H. Hwang and J.-K. Park, Anal. Chem. doi: 10.1021/ac901047v (2009)

Target Materials

1. Cultured cells : A.T. Ohta, et al., IEEE J. Sel. Top. Quant. Elec. 13, pp. 237-240 (2007)
2. DNA : M. Hoeb, et al., Biophys. J. 93, pp. 1032-1038 (2007)
3. Blood cell : H. Hwang, et al., Electrophoresis 29, pp. 1203-1212 (2008)
4. Semiconducting nanowires : A. Jamshidi, et al., Nat. Photon. 2, pp. 86-89 (2008)
5. Swimming bacteria : W. Choi, et al., Appl. Phys. Lett. 93, pp. 143901 (2008)
6. Oocyte : H. Hwang, et al., Biomicrofluidics 3, pp. 014103 (2009)
7. Polysaccharide, Protein and Fluorophore : H. Hwang and J.-K. Park, Anal. Chem. doi: 10.1021/ac901047v (2009)

Operating Principles

1. Dielectrophoresis (DEP) : Most of the researches above.
2. AC Electro-osmosis (ACEO) : P.-Y. Chiou, et al., J. Microelectromech. Syst. 17, pp. 525-531 (2008)
3. Electro-orientation : W. Choi, et al., Appl. Phys. Lett. 93, pp. 143901 (2008)
4. Electrothermal flow : A. Mizuno, et al., IEEE Trans. Ind. Appl. 31, pp. 464-468 (1995), S.J. Williams, A. Kumar and S. T. Wereley, Lab Chip 8, pp. 1879-1882 (2008)
5. Combination of AC Electrokinetics : H. Hwang and J.-K. Park, Lab Chip 9, pp. 199-206 (2009), H. Hwang and J.-K. Park, Anal. Chem. doi: 10.1021/ac901047v (2009)

6. Optically induced electrohydrodynamic instability (OEHI): Feifei Wang, Haibo Yu, Wenfeng Liang, Lianqing Liu, John D. Mai, Gwo-Bin Lee, Wen Jung Li, Microfluidics and Nanofluidics, Volume 16, Issue 6, pp. 1097–1106

Other Phenomena

1. Surface-Particle Interactions : H. Hwang, et al., Appl. Phys. Lett. 92, pp. 024108 (2008)
2. Particle-Particle Interactions : H. Hwang, et al., J. Phys. Chem. B 32, pp.  9903–9908 (2008) doi: 10.1021/jp803596r

Applications

1. Microlens Array Fabrication : J.-Y. Huang, Y.-S. Lu and J. A. Teh, Opt. Express 14, pp. 10779-10784 (2006)
2. Microparticle Separation : H. Hwang and J.-K. Park, Lab Chip 9, pp. 199-206 (2009)
3. In vitro Fertilization : H. Hwang, et al., Biomicrofluidics 3, pp.  014103 (2009)
4. Electroporation : J.K. Valley, et al., Lab Chip doi: 10.1039/b821678a (2009)
5. Local Chemical Concentration Control : H. Hwang and J.-K. Park, Anal. Chem. doi: 10.1021/ac901047v (2009)
6. Colloidal Assembly : H. Hwang, Y.-H. Park and J.-K. Park, Langmuir 25, pp. 6010-6014 (2009)

Research Groups

1. Ming C. Wu's Group : Integrated Photonics Laboratory, UC Berkeley, CA, USA
2. Je-Kyun Park's Group : NanoBiotech Laboratory, KAIST, KOREA
3. P.Y. Chiou's Group : Optoelectronic Biofluidics Laboratory, UCLA, CA, USA
4. Steve Wereley's Group : Microfluidics Laboratory, Purdue University, IN, USA
5. Aloke Kumar's Group : Kumar Biomicrofluidics Laboratory
6. Stuart William's Group : [1]
7. Han-Sheng Chuang's Group : [2]

References


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook