From Wikipedia, the free encyclopedia

The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement. [1]

Related compounds include pnictogenidosilicates : phosphidosilicates, arsenidosilicates and antimonosilicates; pnictogenidogernamates: phosphidogermanates. By replacing silicon, there are also nitridogermanates, nitridostannates, nitridotantalates and nitridotitanates.

Use

Nitridosilicates are used as host substances for europium in LED phosphors. Examples include CASN ( calcium aluminium silicide nitride) (CaAlSiN3), SCASN (SrCaAlSiN3) and SCSN (SrCaSiN3). These fluoresce red. [2]

Production

Nitridosilicates can be made in a solid state reaction by heating silicon nitride with metallic nitrides in a nitrogen atmosphere at over 1300°C. If the mixtures are exposed to oxygen or air, then oxides or oxynitridosilicates are produced instead. Instead of metal nitrides, ammine complexes, amides or imides can be used instead. In place of the highly stable silicon nitride, silicon diimide can be used. [3] Carbothermal reduction involves using a metal oxide or carbonate heated with carbon in a nitrogen atmosphere. [4]

Properties

The ratio of silicon to nitrogen varies from 1:4 to 7:10 (0.25 to 0.7) with increased condensation, and fewer sites for metals with high silicon content. At a ratio of 3:4 (0.75) there is no longer capacity for metal, as that is silicon nitride. [5] The more condensed substances, with lower nitrogen content, have greater number of silicon atoms surrounding the nitrogen. This coordination number can vary from one to four, with the most common being three. The silicon atom always is coordinated by four nitrogen atoms. In the silicates, silicon is surrounded by four oxygen atoms, but each oxygen is only connected to one or two silicon atoms, and only very rarely three. So nitridosilicates can form more diverse structures than the silicates. [6]

Nitridosilicates with higher proportion of silicon (more condensed) are more resistant to attack by water and oxygen, and so can be exposed to the atmosphere without decomposition. [6] These condensed nitridosilicates are mechanically strong, and resistant to heat, acids and alkalis. [1]

SiN4 tetrahedra can be connected to each other via vertices or edges. This differs from SiO4 which only connects via vertices. [1]

Use

Nitridosilicates have been used to make abrasives, turbine blades, cutting tools and phosphors. [4]

Nitridosilicates

name formula formula

weight

crystal

system

space

group

unit cell volume density comments ref
LiSi2N3 [5]
Li2SiN2 [7]
Li5SiN3 [7]
Li8SiN4 [8]
Li18Si3N10 [7]
Li21Si3N11 I4 a=9.4584 c=9.5194 antifluorite structure [7]
BeSiN2 [9]
MgSiN2 [5]
NaSi2N3 [9]
Ca2Si5N8 332.64 monoclinic Cc a = 14.3280 b = 5.61165 c = 9.69406 β = 112.1484 Z=4 721.92 3.06 Eu orange fluorescence [5] [10] [4]
CaSiN2 [5]
Ca3SiN3H monoclinic C2/c a = 5.236 b = 10.461 c = 16.389 β = 91.182° Z = 8 semiconductor: band gap 3.1 eV [11]
Ca4SiN4 [5]
Ca5Si2N6 [5]
Ca12Si4[SiN4] triclinic P1 a 9.0103 b 9.0218 c 13.8252 α 71.053° β 82.738° γ 69.763° black [12]
Ca16Si17N34 [5]
CaMg3SiN4 I41/a [13]
Ca5[Si2Al2N8] orthorhombic Pbcn a = 9.255 b = 6.140 c = 15.578 [14]
LiCa3Si2N5 monoclinic C2/c a = 5.145 b = 20.380 c = 10.357 β = 91.24° [15]
Li4Ca3Si2N6 288.24 monoclinic C2/m a=5.787 b=9.705 c=5.977 β=90.45 335.7 2.852 [5] [16]
Li2CaSi2N4 [5]
Li2Ca2Mg2Si2N6 [5]
Li2Ca3MgSi2N6 [5]
CaMg3SiN4 I41/a a = 11.424 c = 13.445 Z=16 [9]
CaAlSiN3 orthorhombic Cmc21 Eu yellow fluorescence [17]
CaAlSi4N7 orthorhombic Pna21 a = 11.6819, b = 21.0193, c = 4.9177 Å [18]
Ca4AlSiN5 orthorhombic Pna21 a 11.2058 b 9.0512 c 6.0203 faint red [12]
Ca5Al2Si2N8 orthorhombic Pbca a= 9.255 b = 6.140 c = 15.578 Z=4 885.2 3.171 yellow [9] [19]
CaScSi4N7 [5]
Manganese silicide dinitride MnSiN2 orthorhombic Pna21 a = 5.271, b = 6.521, and c = 5.0706 V=174.26 intense red [8]
Fe2Si5N8 364.23 monoclinic Cc a= 14.0408 b = 5.32635 c = 9.5913 β = 110.728 Z=4 decompose 1370K; brown [10]
ZnSiN2 [9]
SrSiN2 [5]
Sr2Si5N8 orthorhombic Pmn21 a = 5.71006 b = 6.81914 c = 9.33599 Z=2 363.52 3.908 Eu red fluorescence [5] [4] [20]
SrSi6N8 [5]
SrSi7N10 [18]
Sr5Si7P2N16 920.83 Pnma a=5.6748 b=28.0367 c=9.5280 Z=4 1522.1 4.018 [21]
SrAlSi4N7 orthorhombic Pna21 a = 11.742 b = 21.391 c = 4.966 Z = 8 1247.2 [22]
Li2SrSi2N4 cubic a=10.69 Z=12 1220 [5] [23]
Li4Sr3Si2N6 monoclinic C2/m a = 6.127, b = 9.687, c = 6.220, β = 90.24° Z=2 369.1 3.876 [16]
SrBeSi2N4 p62c a=4.86082 c=9.42264 Z=2 [24]
SrMg3SiN4 I41/a a = 11.495 c = 13.512 Z=16 [9] [13]
Sr8Mg7Si9N22 Cm a 15.280 b 7.4691 c 10.936 β 110.462° [25]
SrAlSiN3 Cmc21 [17]
SrAlSi4N7 Pna21 [18]
SrScSi4N7 [5]
YScSi4N6C hexagonal P63mc a=5.9109 c=9.677 [26]
CaYSi4N7 [5]
SrYSi4N7 [5]
Ca8In2SiN4 orthorhombic Ibam a = 12.904 b = 9.688 c = 10.899 Z = 4 metallic [11]
BaSiN2 [5]
Ba5Si2N6 [9]
Ba2Si5N8 orthorhombic Pmn21 Eu red fluorescence [5] [4]
BaSi6N8 Imm2 a = 7.9316, b = 9.3437, c = 4.8357, Z = 2 358.38 [5] [27]
BaSi7N10 monoclinic a = 6.8729, b = 6.7129, c = 9.6328, β = 106.269, Z = 2 most condensed [5] [28]
Ba6Si6N10O2(CN2) P6 a = 16.255, c = 5.469, Z = 3 yellow, grown in liquid sodium [29]
BaMg3SiN4 P1 a = 3.451 b = 6.069 c = 6.101 α = 85.200 β = 73.697 γ = 73.566° Z=1 [30]
Ba2AlSi5N9 triclinic P1 a = 9.860 b = 10.320 c = 10.346 α = 90.37° β = 118.43° γ = 103.69° Z = 4 [31]
Ba5Si11Al7N25 Pnnm a = 9.5923, b = 21.3991, c = 5.8889 Å Z = 2 with Eu yellow emission [32]
BaSi4Al3N9 P21/C a = 5.8465, b = 26.726, c = 5.8386 Å, β = 118.897° and Z = 4 with Eu blue emission [32]
BaScSi4N7 [5]
BaYSi4N7 [5]
LaSi3N5 [5]
La3Si6N11 [5]
La5Si3N9 [9]
La7Si6N15 [9]
Li5La5Si4N12 tetragonal P4b2 a = 11.043 c = 5.573 Z = 2 [33]
calcium lanthanum nitridosilicate CaLaSiN3 Ca can be substituted by Yb or Eu [34]
CaLaSi4N7 [5]
CeSi3N5 [9]
Ce3Si6N11 [9]
Ce3Si5N9 [9]
Ce7Si6N15 triclinic [9]
Ce7Si6N15 trigonal [9]
Li5Ce5Si4N12 tetragonal P4b2 a = 10.978 c = 5.514 Z = 2 [33]
Pr3Si6N11 [9]
Pr5Si3N9 [9]
Pr7Si6N15 [9]
Ba2Nd7Si11N23 dark blue [35]
Sm3Si6M11 [9]
Ca3Sm3[Si9N17] cubic P4_3m a=7.3950; Z=1 404.4 [36]
Eu2SiN3 Cmca a = 5.42, b = 10.610, c = 11.629, Z = 8 [9] [37]
dieuropium penta siliconoctanitride Eu2Si5N8 orthorhombic Pnm21 a=5.7094 b=6.8207 c=9.3291 Z=2 363.29 5.087 red [9] [38]
EuMg3SiN4 I41/a a = 11.511 c = 13.552 Z=16 [13]
Ca3Yb3[Si9N17] cubic P4_3m a=730.20 Z=1 389.3 [36]
BaYbSi4N7 includes NSi4 clusters [9] [39]
europium ytterbium tetrasiliconheptanitride EuYbSi4N7 hexagonal P63mc a=5.9822 c=9.7455 302.03 5.887 brown [9] [38]
SrYbSi4N7 [9]
EuYbSi4N7 [9]
CaLuSi4N7 [5]
SrLuSi4N7 [5]
BaLuSi4N7 [5]
Pb2Si5N8 666.90 orthorhombic Pmn21 a = 5.774 b = 6.837 c = 9.350 269.11 6.001 Pb-Pb dumbells [20]

References

  1. ^ a b c Philipp Bielec (27 July 2019). The Ion Exchange Approach - Expanding Elemental Variety in Nitridosilicate Chemistry (PDF) (Thesis).
  2. ^ Schubert, E. Fred (3 February 2018). Light-Emitting Diodes (3rd ed.). E. Fred Schubert. ISBN  978-0-9863826-6-6.
  3. ^ Schnick, Wolfgang; Huppertz, Hubert (May 1997). "Nitridosilicates-A Significant Extension of Silicate Chemistry". Chemistry - A European Journal. 3 (5): 679–683. doi: 10.1002/chem.19970030505.
  4. ^ a b c d e Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi (21 June 2010). "Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications". Materials. 3 (6): 3777–3793. Bibcode: 2010Mate....3.3777X. doi: 10.3390/ma3063777. PMC  5521753. S2CID  18883144. Open access icon
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ten Kate, Otmar M.; Zhang, Zhijun; van Ommen, J. Ruud; Hintzen, H. T. (Bert) (2018). "Dependence of the photoluminescence properties of Eu 2+ doped M–Si–N (M = alkali, alkaline earth or rare earth metal) nitridosilicates on their structure and composition". Journal of Materials Chemistry C. 6 (21): 5671–5683. doi: 10.1039/C8TC00885J. ISSN  2050-7526.
  6. ^ a b ten Kate, Otmar M.; Zhang, Zhijun; Hintzen, H. T. (Bert) (2017). "On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates". Journal of Materials Chemistry C. 5 (44): 11504–11514. doi: 10.1039/C7TC04259K. ISSN  2050-7526.
  7. ^ a b c d Casas-Cabanas, M.; Santner, H.; Palacín, M.R. (May 2014). "The Li–Si–(O)–N system revisited: Structural characterization of Li21Si3N11 and Li7SiN3O". Journal of Solid State Chemistry. 213: 152–157. Bibcode: 2014JSSCh.213..152C. doi: 10.1016/j.jssc.2014.02.022.
  8. ^ a b Esmaeilzadeh, Saeid; Hålenius, Ulf; Valldor, Martin (May 2006). "Crystal Growth, Magnetic, and Optical Properties of the Ternary Nitride MnSiN 2". Chemistry of Materials. 18 (11): 2713–2718. doi: 10.1021/cm060382t.
  9. ^ a b c d e f g h i j k l m n o p q r s t u v w x Kong, Yuwei; Song, Zhen; Wang, Shuxin; Xia, Zhiguo; Liu, Quanlin (2018-02-19). "The Inductive Effect in Nitridosilicates and Oxysilicates and Its Effects on 5d Energy Levels of Ce 3+". Inorganic Chemistry. 57 (4): 2320–2331. doi: 10.1021/acs.inorgchem.7b03253. ISSN  0020-1669. PMID  29394040.
  10. ^ a b Bielec, Philipp; Janka, Oliver; Block, Theresa; Pöttgen, Rainer; Schnick, Wolfgang (2018-02-23). "Fe 2 Si 5 N 8 : Access to Open-Shell Transition-Metal Nitridosilicates". Angewandte Chemie International Edition. 57 (9): 2409–2412. doi: 10.1002/anie.201713006. PMID  29336096.
  11. ^ a b Dickman, Matthew J.; Schwartz, Benjamin V. G.; Latturner, Susan E. (2017-08-07). "Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca 8 In 2 SiN 4 and Semiconductor Ca 3 SiN 3 H". Inorganic Chemistry. 56 (15): 9361–9368. doi: 10.1021/acs.inorgchem.7b01532. ISSN  0020-1669. PMID  28749660.
  12. ^ a b Link, Lukas; Niewa, Rainer (2022-05-25). "Diversity in Nitridosilicate Chemistry: The Nitridoalumosilicate Ca 4 (AlSiN 5 ) and the Nitridosilicate Silicide Ca 12 Si 4 [SiN 4 ]". Zeitschrift für anorganische und allgemeine Chemie. 648 (10). doi: 10.1002/zaac.202200004. ISSN  0044-2313.
  13. ^ a b c Schmiechen, Sebastian; Schneider, Hajnalka; Wagatha, Peter; Hecht, Cora; Schmidt, Peter J.; Schnick, Wolfgang (2014-04-22). "Toward New Phosphors for Application in Illumination-Grade White pc-LEDs: The Nitridomagnesosilicates Ca[Mg 3 SiN 4 ]:Ce 3+ , Sr[Mg 3 SiN 4 ]:Eu 2+ , and Eu[Mg 3 SiN 4 ]". Chemistry of Materials. 26 (8): 2712–2719. doi: 10.1021/cm500610v. ISSN  0897-4756.
  14. ^ Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]". Zeitschrift für anorganische und allgemeine Chemie. 636 (6): 1085–1089. doi: 10.1002/zaac.201000046. ISSN  0044-2313.
  15. ^ Lupart, Saskia; Schnick, Wolfgang (October 2012). "LiCa 3 Si 2 N 5 – A Lithium Nitridosilicate with a [Si 2 N 5 ] 7– Double-Chain". Zeitschrift für anorganische und allgemeine Chemie. 638 (12–13): 2015–2019. doi: 10.1002/zaac.201200106. ISSN  0044-2313.
  16. ^ a b Pagano, Sandro; Lupart, Saskia; Schmiechen, Sebastian; Schnick, Wolfgang (September 2010). "Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions". Zeitschrift für anorganische und allgemeine Chemie. 636 (11): 1907–1909. doi: 10.1002/zaac.201000163.
  17. ^ a b Watanabe, Hiromu; Wada, Hiroshi; Seki, Keiichi; Itou, Masumi; Kijima, Naoto (2008). "Synthetic Method and Luminescence Properties of Sr[sub x]Ca[sub 1−x]AlSiN[sub 3]:Eu[sup 2+] Mixed Nitride Phosphors". Journal of the Electrochemical Society. 155 (3): F31. doi: 10.1149/1.2829880.
  18. ^ a b c Yoshimura, Fumitaka; Yamane, Hisanori; Yamada, Takahiro (2020-01-06). "Synthesis, Crystal Structure, and Luminescence Properties of a White-Light-Emitting Nitride Phosphor, Ca 0.99 Eu 0.01 AlSi 4 N 7". Inorganic Chemistry. 59 (1): 367–375. doi: 10.1021/acs.inorgchem.9b02609. ISSN  0020-1669. PMID  31808685. S2CID  208744271.
  19. ^ Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]". Zeitschrift für anorganische und allgemeine Chemie. 636 (6): 1085–1089. doi: 10.1002/zaac.201000046. ISSN  0044-2313.
  20. ^ a b Bielec, Philipp; Nelson, Ryky; Stoffel, Ralf P.; Eisenburger, Lucien; Günther, Daniel; Henß, Ann-Kathrin; Wright, Jonathan P.; Oeckler, Oliver; Dronskowski, Richard; Schnick, Wolfgang (2019-01-28). "Cationic Pb 2 Dumbbells Stabilized in the Highly Covalent Lead Nitridosilicate Pb 2 Si 5 N 8". Angewandte Chemie International Edition. 58 (5): 1432–1436. doi: 10.1002/anie.201812457. ISSN  1433-7851. PMID  30536686. S2CID  54473446.
  21. ^ Dialer, Marwin; Pointner, Monika M.; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (2023-12-28). "(Dis)Order and Luminescence in Silicon-Rich (Si,P)–N Network Sr 5 Si 7 P 2 N 16 :Eu 2+". Inorganic Chemistry. doi: 10.1021/acs.inorgchem.3c04109. ISSN  0020-1669. PMID  38154029. S2CID  266597393.
  22. ^ Hecht, Cora; Stadler, Florian; Schmidt, Peter J.; auf der Günne, Jörn Schmedt; Baumann, Verena; Schnick, Wolfgang (2009-04-28). "SrAlSi 4 N 7 :Eu 2+ − A Nitridoalumosilicate Phosphor for Warm White Light (pc)LEDs with Edge-Sharing Tetrahedra". Chemistry of Materials. 21 (8): 1595–1601. doi: 10.1021/cm803231h. ISSN  0897-4756.
  23. ^ Ding, Jianyan; You, Hongpeng; Wang, Yichao; Ma, Bo; Zhou, Xufeng; Ding, Xin; Cao, Yaxin; Chen, Hang; Geng, Wanying; Wang, Yuhua (2018). "Site occupation and energy transfer of Ce 3+ -activated lithium nitridosilicate Li 2 SrSi 2 N 4 with broad-yellow-light-emitting property and excellent thermal stability". Journal of Materials Chemistry C. 6 (13): 3435–3444. doi: 10.1039/C7TC04397J. ISSN  2050-7526.
  24. ^ Strobel, Philipp; Weiler, Volker; Schmidt, Peter J.; Schnick, Wolfgang (2018-05-17). "Sr[BeSi 2 N 4 ]:Eu 2+ /Ce 3+ and Eu[BeSi 2 N 4 ]: Nontypical Luminescence in Highly Condensed Nitridoberyllosilicates". Chemistry – A European Journal. 24 (28): 7243–7249. doi: 10.1002/chem.201800912. ISSN  0947-6539. PMID  29575174.
  25. ^ Li, Chao; Zheng, Hong-Wei; Wei, Heng-Wei; Su, Jie; Liao, Fu-Hui; Zhang, Zhen-Yi; Xu, Ling; Yang, Zu-Pei; Wang, Xiao-Ming; Jiao, Huan (2018). "Narrow-band blue emitting nitridomagnesosilicate phosphor Sr 8 Mg 7 Si 9 N 22 :Eu 2+ for phosphor-converted LEDs". Chemical Communications. 54 (82): 11598–11601. doi: 10.1039/C8CC07218C. ISSN  1359-7345. PMID  30264071.
  26. ^ Yan, Chunpei; Liu, Zhanning; Zhuang, Weidong; Liu, Ronghui; Xing, Xianran; Liu, Yuanhong; Chen, Guantong; Li, Yanfeng; Ma, Xiaole (2017-09-18). "YScSi 4 N 6 C:Ce 3+ —A Broad Cyan-Emitting Phosphor To Weaken the Cyan Cavity in Full-Spectrum White Light-Emitting Diodes". Inorganic Chemistry. 56 (18): 11087–11095. doi: 10.1021/acs.inorgchem.7b01408. ISSN  0020-1669.
  27. ^ Stadler, Florian; Schnick, Wolfgang (April 2007). "Das reduzierte Nitridosilicat BaSi6N8". Zeitschrift für anorganische und allgemeine Chemie (in German). 633 (4): 589–592. doi: 10.1002/zaac.200600356.
  28. ^ Huppertz, Hubert; Schnick, Wolfgang (February 1997). "Edge-sharing SiN 4 Tetrahedra in the Highly Condensed Nitridosilicate BaSi 7 N 10". Chemistry - A European Journal. 3 (2): 249–252. doi: 10.1002/chem.19970030213. PMID  24022955.
  29. ^ Pagano, Sandro; Oeckler, Oliver; Schröder, Thorsten; Schnick, Wolfgang (June 2009). "Ba 6 Si 6 N 10 O 2 (CN 2 ) - A Nitridosilicate with a NPO-Zeolite Structure Type Containing Carbodiimide Ions". European Journal of Inorganic Chemistry. 2009 (18): 2678–2683. doi: 10.1002/ejic.200900157.
  30. ^ Schmiechen, Sebastian; Strobel, Philipp; Hecht, Cora; Reith, Thomas; Siegert, Markus; Schmidt, Peter J.; Huppertz, Petra; Wiechert, Detlef; Schnick, Wolfgang (10 March 2015). "Nitridomagnesosilicate Ba[Mg 3 SiN 4 ]:Eu 2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors". Chemistry of Materials. 27 (5): 1780–1785. doi: 10.1021/cm504604d.
  31. ^ Kechele, Juliane A.; Hecht, Cora; Oeckler, Oliver; Schmedt auf der Günne, Jörn; Schmidt, Peter J.; Schnick, Wolfgang (2009-04-14). "Ba 2 AlSi 5 N 9 —A New Host Lattice for Eu 2+ -Doped Luminescent Materials Comprising a Nitridoalumosilicate Framework with Corner- and Edge-Sharing Tetrahedra". Chemistry of Materials. 21 (7): 1288–1295. doi: 10.1021/cm803233d. ISSN  0897-4756.
  32. ^ a b Hirosaki, Naoto; Takeda, Takashi; Funahashi, Shiro; Xie, Rong-Jun (2014-07-22). "Discovery of New Nitridosilicate Phosphors for Solid State Lighting by the Single-Particle-Diagnosis Approach". Chemistry of Materials. 26 (14): 4280–4288. doi: 10.1021/cm501866x. ISSN  0897-4756.
  33. ^ a b Lupart, Saskia; Zeuner, Martin; Pagano, Sandro; Schnick, Wolfgang (June 2010). "Chain‐Type Lithium Rare‐Earth Nitridosilicates – Li 5 Ln 5 Si 4 N 12 with Ln = La, Ce". European Journal of Inorganic Chemistry. 2010 (18): 2636–2641. doi: 10.1002/ejic.201000245. ISSN  1434-1948.
  34. ^ ten Kate, O M; Hintzen, H T; van der Kolk, E (24 September 2014). "Low energy 4f-5d transitions in lanthanide doped CaLaSiN 3 with low degree of cross-linking between SiN 4 tetrahedra". Journal of Physics: Condensed Matter. 26 (38): 385502. Bibcode: 2014JPCM...26L5502T. doi: 10.1088/0953-8984/26/38/385502. PMID  25186054. S2CID  29879915.
  35. ^ Huppertz, Hubert; Schnick, Wolfgang (1997-12-15). "Ba2Nd7Si11N23—A Nitridosilicate with a Zeolite-Analogous Si–N Structure". Angewandte Chemie International Edition in English. 36 (23): 2651–2652. doi: 10.1002/anie.199726511. ISSN  0570-0833.
  36. ^ a b Huppertz, Hubert; Oeckler, Oliver; Lieb, Alexandra; Glaum, Robert; Johrendt, Dirk; Tegel, Marcus; Kaindl, Reinhard; Schnick, Wolfgang (2012-08-27). "Ca 3 Sm 3 [Si 9 N 17 ] and Ca 3 Yb 3 [Si 9 N 17 ] Nitridosilicates with Interpenetrating Nets that Consist of Star-Shaped [N [4] (SiN 3 ) 4 ] Units and [Si 5 N 16 ] Supertetrahedra". Chemistry - A European Journal. 18 (35): 10857–10864. doi: 10.1002/chem.201200813. PMID  22829445.
  37. ^ Zeuner, Martin; Pagano, Sandro; Matthes, Philipp; Bichler, Daniel; Johrendt, Dirk; Harmening, Thomas; Pöttgen, Rainer; Schnick, Wolfgang (2009-08-12). "Mixed Valence Europium Nitridosilicate Eu 2 SiN 3". Journal of the American Chemical Society. 131 (31): 11242–11248. doi: 10.1021/ja9040237. ISSN  0002-7863. PMID  19610643.
  38. ^ a b Huppertz, H.; Schnick, W. (1997-12-15). "Eu 2 Si 5 N 8 and EuYbSi 4 N 7 . The First Nitridosilicates with a Divalent Rare Earth Metal". Acta Crystallographica Section C Crystal Structure Communications. 53 (12): 1751–1753. Bibcode: 1997AcCrC..53.1751H. doi: 10.1107/S0108270197008767. ISSN  0108-2701.
  39. ^ Huppertz, Hubert; Schnick, Wolfgang (1996-09-20). "BaYbSi4N7—Unexpected Structural Possibilities in Nitridosilicates". Angewandte Chemie International Edition in English. 35 (17): 1983–1984. doi: 10.1002/anie.199619831. ISSN  0570-0833.
From Wikipedia, the free encyclopedia

The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement. [1]

Related compounds include pnictogenidosilicates : phosphidosilicates, arsenidosilicates and antimonosilicates; pnictogenidogernamates: phosphidogermanates. By replacing silicon, there are also nitridogermanates, nitridostannates, nitridotantalates and nitridotitanates.

Use

Nitridosilicates are used as host substances for europium in LED phosphors. Examples include CASN ( calcium aluminium silicide nitride) (CaAlSiN3), SCASN (SrCaAlSiN3) and SCSN (SrCaSiN3). These fluoresce red. [2]

Production

Nitridosilicates can be made in a solid state reaction by heating silicon nitride with metallic nitrides in a nitrogen atmosphere at over 1300°C. If the mixtures are exposed to oxygen or air, then oxides or oxynitridosilicates are produced instead. Instead of metal nitrides, ammine complexes, amides or imides can be used instead. In place of the highly stable silicon nitride, silicon diimide can be used. [3] Carbothermal reduction involves using a metal oxide or carbonate heated with carbon in a nitrogen atmosphere. [4]

Properties

The ratio of silicon to nitrogen varies from 1:4 to 7:10 (0.25 to 0.7) with increased condensation, and fewer sites for metals with high silicon content. At a ratio of 3:4 (0.75) there is no longer capacity for metal, as that is silicon nitride. [5] The more condensed substances, with lower nitrogen content, have greater number of silicon atoms surrounding the nitrogen. This coordination number can vary from one to four, with the most common being three. The silicon atom always is coordinated by four nitrogen atoms. In the silicates, silicon is surrounded by four oxygen atoms, but each oxygen is only connected to one or two silicon atoms, and only very rarely three. So nitridosilicates can form more diverse structures than the silicates. [6]

Nitridosilicates with higher proportion of silicon (more condensed) are more resistant to attack by water and oxygen, and so can be exposed to the atmosphere without decomposition. [6] These condensed nitridosilicates are mechanically strong, and resistant to heat, acids and alkalis. [1]

SiN4 tetrahedra can be connected to each other via vertices or edges. This differs from SiO4 which only connects via vertices. [1]

Use

Nitridosilicates have been used to make abrasives, turbine blades, cutting tools and phosphors. [4]

Nitridosilicates

name formula formula

weight

crystal

system

space

group

unit cell volume density comments ref
LiSi2N3 [5]
Li2SiN2 [7]
Li5SiN3 [7]
Li8SiN4 [8]
Li18Si3N10 [7]
Li21Si3N11 I4 a=9.4584 c=9.5194 antifluorite structure [7]
BeSiN2 [9]
MgSiN2 [5]
NaSi2N3 [9]
Ca2Si5N8 332.64 monoclinic Cc a = 14.3280 b = 5.61165 c = 9.69406 β = 112.1484 Z=4 721.92 3.06 Eu orange fluorescence [5] [10] [4]
CaSiN2 [5]
Ca3SiN3H monoclinic C2/c a = 5.236 b = 10.461 c = 16.389 β = 91.182° Z = 8 semiconductor: band gap 3.1 eV [11]
Ca4SiN4 [5]
Ca5Si2N6 [5]
Ca12Si4[SiN4] triclinic P1 a 9.0103 b 9.0218 c 13.8252 α 71.053° β 82.738° γ 69.763° black [12]
Ca16Si17N34 [5]
CaMg3SiN4 I41/a [13]
Ca5[Si2Al2N8] orthorhombic Pbcn a = 9.255 b = 6.140 c = 15.578 [14]
LiCa3Si2N5 monoclinic C2/c a = 5.145 b = 20.380 c = 10.357 β = 91.24° [15]
Li4Ca3Si2N6 288.24 monoclinic C2/m a=5.787 b=9.705 c=5.977 β=90.45 335.7 2.852 [5] [16]
Li2CaSi2N4 [5]
Li2Ca2Mg2Si2N6 [5]
Li2Ca3MgSi2N6 [5]
CaMg3SiN4 I41/a a = 11.424 c = 13.445 Z=16 [9]
CaAlSiN3 orthorhombic Cmc21 Eu yellow fluorescence [17]
CaAlSi4N7 orthorhombic Pna21 a = 11.6819, b = 21.0193, c = 4.9177 Å [18]
Ca4AlSiN5 orthorhombic Pna21 a 11.2058 b 9.0512 c 6.0203 faint red [12]
Ca5Al2Si2N8 orthorhombic Pbca a= 9.255 b = 6.140 c = 15.578 Z=4 885.2 3.171 yellow [9] [19]
CaScSi4N7 [5]
Manganese silicide dinitride MnSiN2 orthorhombic Pna21 a = 5.271, b = 6.521, and c = 5.0706 V=174.26 intense red [8]
Fe2Si5N8 364.23 monoclinic Cc a= 14.0408 b = 5.32635 c = 9.5913 β = 110.728 Z=4 decompose 1370K; brown [10]
ZnSiN2 [9]
SrSiN2 [5]
Sr2Si5N8 orthorhombic Pmn21 a = 5.71006 b = 6.81914 c = 9.33599 Z=2 363.52 3.908 Eu red fluorescence [5] [4] [20]
SrSi6N8 [5]
SrSi7N10 [18]
Sr5Si7P2N16 920.83 Pnma a=5.6748 b=28.0367 c=9.5280 Z=4 1522.1 4.018 [21]
SrAlSi4N7 orthorhombic Pna21 a = 11.742 b = 21.391 c = 4.966 Z = 8 1247.2 [22]
Li2SrSi2N4 cubic a=10.69 Z=12 1220 [5] [23]
Li4Sr3Si2N6 monoclinic C2/m a = 6.127, b = 9.687, c = 6.220, β = 90.24° Z=2 369.1 3.876 [16]
SrBeSi2N4 p62c a=4.86082 c=9.42264 Z=2 [24]
SrMg3SiN4 I41/a a = 11.495 c = 13.512 Z=16 [9] [13]
Sr8Mg7Si9N22 Cm a 15.280 b 7.4691 c 10.936 β 110.462° [25]
SrAlSiN3 Cmc21 [17]
SrAlSi4N7 Pna21 [18]
SrScSi4N7 [5]
YScSi4N6C hexagonal P63mc a=5.9109 c=9.677 [26]
CaYSi4N7 [5]
SrYSi4N7 [5]
Ca8In2SiN4 orthorhombic Ibam a = 12.904 b = 9.688 c = 10.899 Z = 4 metallic [11]
BaSiN2 [5]
Ba5Si2N6 [9]
Ba2Si5N8 orthorhombic Pmn21 Eu red fluorescence [5] [4]
BaSi6N8 Imm2 a = 7.9316, b = 9.3437, c = 4.8357, Z = 2 358.38 [5] [27]
BaSi7N10 monoclinic a = 6.8729, b = 6.7129, c = 9.6328, β = 106.269, Z = 2 most condensed [5] [28]
Ba6Si6N10O2(CN2) P6 a = 16.255, c = 5.469, Z = 3 yellow, grown in liquid sodium [29]
BaMg3SiN4 P1 a = 3.451 b = 6.069 c = 6.101 α = 85.200 β = 73.697 γ = 73.566° Z=1 [30]
Ba2AlSi5N9 triclinic P1 a = 9.860 b = 10.320 c = 10.346 α = 90.37° β = 118.43° γ = 103.69° Z = 4 [31]
Ba5Si11Al7N25 Pnnm a = 9.5923, b = 21.3991, c = 5.8889 Å Z = 2 with Eu yellow emission [32]
BaSi4Al3N9 P21/C a = 5.8465, b = 26.726, c = 5.8386 Å, β = 118.897° and Z = 4 with Eu blue emission [32]
BaScSi4N7 [5]
BaYSi4N7 [5]
LaSi3N5 [5]
La3Si6N11 [5]
La5Si3N9 [9]
La7Si6N15 [9]
Li5La5Si4N12 tetragonal P4b2 a = 11.043 c = 5.573 Z = 2 [33]
calcium lanthanum nitridosilicate CaLaSiN3 Ca can be substituted by Yb or Eu [34]
CaLaSi4N7 [5]
CeSi3N5 [9]
Ce3Si6N11 [9]
Ce3Si5N9 [9]
Ce7Si6N15 triclinic [9]
Ce7Si6N15 trigonal [9]
Li5Ce5Si4N12 tetragonal P4b2 a = 10.978 c = 5.514 Z = 2 [33]
Pr3Si6N11 [9]
Pr5Si3N9 [9]
Pr7Si6N15 [9]
Ba2Nd7Si11N23 dark blue [35]
Sm3Si6M11 [9]
Ca3Sm3[Si9N17] cubic P4_3m a=7.3950; Z=1 404.4 [36]
Eu2SiN3 Cmca a = 5.42, b = 10.610, c = 11.629, Z = 8 [9] [37]
dieuropium penta siliconoctanitride Eu2Si5N8 orthorhombic Pnm21 a=5.7094 b=6.8207 c=9.3291 Z=2 363.29 5.087 red [9] [38]
EuMg3SiN4 I41/a a = 11.511 c = 13.552 Z=16 [13]
Ca3Yb3[Si9N17] cubic P4_3m a=730.20 Z=1 389.3 [36]
BaYbSi4N7 includes NSi4 clusters [9] [39]
europium ytterbium tetrasiliconheptanitride EuYbSi4N7 hexagonal P63mc a=5.9822 c=9.7455 302.03 5.887 brown [9] [38]
SrYbSi4N7 [9]
EuYbSi4N7 [9]
CaLuSi4N7 [5]
SrLuSi4N7 [5]
BaLuSi4N7 [5]
Pb2Si5N8 666.90 orthorhombic Pmn21 a = 5.774 b = 6.837 c = 9.350 269.11 6.001 Pb-Pb dumbells [20]

References

  1. ^ a b c Philipp Bielec (27 July 2019). The Ion Exchange Approach - Expanding Elemental Variety in Nitridosilicate Chemistry (PDF) (Thesis).
  2. ^ Schubert, E. Fred (3 February 2018). Light-Emitting Diodes (3rd ed.). E. Fred Schubert. ISBN  978-0-9863826-6-6.
  3. ^ Schnick, Wolfgang; Huppertz, Hubert (May 1997). "Nitridosilicates-A Significant Extension of Silicate Chemistry". Chemistry - A European Journal. 3 (5): 679–683. doi: 10.1002/chem.19970030505.
  4. ^ a b c d e Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi (21 June 2010). "Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications". Materials. 3 (6): 3777–3793. Bibcode: 2010Mate....3.3777X. doi: 10.3390/ma3063777. PMC  5521753. S2CID  18883144. Open access icon
  5. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ten Kate, Otmar M.; Zhang, Zhijun; van Ommen, J. Ruud; Hintzen, H. T. (Bert) (2018). "Dependence of the photoluminescence properties of Eu 2+ doped M–Si–N (M = alkali, alkaline earth or rare earth metal) nitridosilicates on their structure and composition". Journal of Materials Chemistry C. 6 (21): 5671–5683. doi: 10.1039/C8TC00885J. ISSN  2050-7526.
  6. ^ a b ten Kate, Otmar M.; Zhang, Zhijun; Hintzen, H. T. (Bert) (2017). "On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates". Journal of Materials Chemistry C. 5 (44): 11504–11514. doi: 10.1039/C7TC04259K. ISSN  2050-7526.
  7. ^ a b c d Casas-Cabanas, M.; Santner, H.; Palacín, M.R. (May 2014). "The Li–Si–(O)–N system revisited: Structural characterization of Li21Si3N11 and Li7SiN3O". Journal of Solid State Chemistry. 213: 152–157. Bibcode: 2014JSSCh.213..152C. doi: 10.1016/j.jssc.2014.02.022.
  8. ^ a b Esmaeilzadeh, Saeid; Hålenius, Ulf; Valldor, Martin (May 2006). "Crystal Growth, Magnetic, and Optical Properties of the Ternary Nitride MnSiN 2". Chemistry of Materials. 18 (11): 2713–2718. doi: 10.1021/cm060382t.
  9. ^ a b c d e f g h i j k l m n o p q r s t u v w x Kong, Yuwei; Song, Zhen; Wang, Shuxin; Xia, Zhiguo; Liu, Quanlin (2018-02-19). "The Inductive Effect in Nitridosilicates and Oxysilicates and Its Effects on 5d Energy Levels of Ce 3+". Inorganic Chemistry. 57 (4): 2320–2331. doi: 10.1021/acs.inorgchem.7b03253. ISSN  0020-1669. PMID  29394040.
  10. ^ a b Bielec, Philipp; Janka, Oliver; Block, Theresa; Pöttgen, Rainer; Schnick, Wolfgang (2018-02-23). "Fe 2 Si 5 N 8 : Access to Open-Shell Transition-Metal Nitridosilicates". Angewandte Chemie International Edition. 57 (9): 2409–2412. doi: 10.1002/anie.201713006. PMID  29336096.
  11. ^ a b Dickman, Matthew J.; Schwartz, Benjamin V. G.; Latturner, Susan E. (2017-08-07). "Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca 8 In 2 SiN 4 and Semiconductor Ca 3 SiN 3 H". Inorganic Chemistry. 56 (15): 9361–9368. doi: 10.1021/acs.inorgchem.7b01532. ISSN  0020-1669. PMID  28749660.
  12. ^ a b Link, Lukas; Niewa, Rainer (2022-05-25). "Diversity in Nitridosilicate Chemistry: The Nitridoalumosilicate Ca 4 (AlSiN 5 ) and the Nitridosilicate Silicide Ca 12 Si 4 [SiN 4 ]". Zeitschrift für anorganische und allgemeine Chemie. 648 (10). doi: 10.1002/zaac.202200004. ISSN  0044-2313.
  13. ^ a b c Schmiechen, Sebastian; Schneider, Hajnalka; Wagatha, Peter; Hecht, Cora; Schmidt, Peter J.; Schnick, Wolfgang (2014-04-22). "Toward New Phosphors for Application in Illumination-Grade White pc-LEDs: The Nitridomagnesosilicates Ca[Mg 3 SiN 4 ]:Ce 3+ , Sr[Mg 3 SiN 4 ]:Eu 2+ , and Eu[Mg 3 SiN 4 ]". Chemistry of Materials. 26 (8): 2712–2719. doi: 10.1021/cm500610v. ISSN  0897-4756.
  14. ^ Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]". Zeitschrift für anorganische und allgemeine Chemie. 636 (6): 1085–1089. doi: 10.1002/zaac.201000046. ISSN  0044-2313.
  15. ^ Lupart, Saskia; Schnick, Wolfgang (October 2012). "LiCa 3 Si 2 N 5 – A Lithium Nitridosilicate with a [Si 2 N 5 ] 7– Double-Chain". Zeitschrift für anorganische und allgemeine Chemie. 638 (12–13): 2015–2019. doi: 10.1002/zaac.201200106. ISSN  0044-2313.
  16. ^ a b Pagano, Sandro; Lupart, Saskia; Schmiechen, Sebastian; Schnick, Wolfgang (September 2010). "Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions". Zeitschrift für anorganische und allgemeine Chemie. 636 (11): 1907–1909. doi: 10.1002/zaac.201000163.
  17. ^ a b Watanabe, Hiromu; Wada, Hiroshi; Seki, Keiichi; Itou, Masumi; Kijima, Naoto (2008). "Synthetic Method and Luminescence Properties of Sr[sub x]Ca[sub 1−x]AlSiN[sub 3]:Eu[sup 2+] Mixed Nitride Phosphors". Journal of the Electrochemical Society. 155 (3): F31. doi: 10.1149/1.2829880.
  18. ^ a b c Yoshimura, Fumitaka; Yamane, Hisanori; Yamada, Takahiro (2020-01-06). "Synthesis, Crystal Structure, and Luminescence Properties of a White-Light-Emitting Nitride Phosphor, Ca 0.99 Eu 0.01 AlSi 4 N 7". Inorganic Chemistry. 59 (1): 367–375. doi: 10.1021/acs.inorgchem.9b02609. ISSN  0020-1669. PMID  31808685. S2CID  208744271.
  19. ^ Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]". Zeitschrift für anorganische und allgemeine Chemie. 636 (6): 1085–1089. doi: 10.1002/zaac.201000046. ISSN  0044-2313.
  20. ^ a b Bielec, Philipp; Nelson, Ryky; Stoffel, Ralf P.; Eisenburger, Lucien; Günther, Daniel; Henß, Ann-Kathrin; Wright, Jonathan P.; Oeckler, Oliver; Dronskowski, Richard; Schnick, Wolfgang (2019-01-28). "Cationic Pb 2 Dumbbells Stabilized in the Highly Covalent Lead Nitridosilicate Pb 2 Si 5 N 8". Angewandte Chemie International Edition. 58 (5): 1432–1436. doi: 10.1002/anie.201812457. ISSN  1433-7851. PMID  30536686. S2CID  54473446.
  21. ^ Dialer, Marwin; Pointner, Monika M.; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (2023-12-28). "(Dis)Order and Luminescence in Silicon-Rich (Si,P)–N Network Sr 5 Si 7 P 2 N 16 :Eu 2+". Inorganic Chemistry. doi: 10.1021/acs.inorgchem.3c04109. ISSN  0020-1669. PMID  38154029. S2CID  266597393.
  22. ^ Hecht, Cora; Stadler, Florian; Schmidt, Peter J.; auf der Günne, Jörn Schmedt; Baumann, Verena; Schnick, Wolfgang (2009-04-28). "SrAlSi 4 N 7 :Eu 2+ − A Nitridoalumosilicate Phosphor for Warm White Light (pc)LEDs with Edge-Sharing Tetrahedra". Chemistry of Materials. 21 (8): 1595–1601. doi: 10.1021/cm803231h. ISSN  0897-4756.
  23. ^ Ding, Jianyan; You, Hongpeng; Wang, Yichao; Ma, Bo; Zhou, Xufeng; Ding, Xin; Cao, Yaxin; Chen, Hang; Geng, Wanying; Wang, Yuhua (2018). "Site occupation and energy transfer of Ce 3+ -activated lithium nitridosilicate Li 2 SrSi 2 N 4 with broad-yellow-light-emitting property and excellent thermal stability". Journal of Materials Chemistry C. 6 (13): 3435–3444. doi: 10.1039/C7TC04397J. ISSN  2050-7526.
  24. ^ Strobel, Philipp; Weiler, Volker; Schmidt, Peter J.; Schnick, Wolfgang (2018-05-17). "Sr[BeSi 2 N 4 ]:Eu 2+ /Ce 3+ and Eu[BeSi 2 N 4 ]: Nontypical Luminescence in Highly Condensed Nitridoberyllosilicates". Chemistry – A European Journal. 24 (28): 7243–7249. doi: 10.1002/chem.201800912. ISSN  0947-6539. PMID  29575174.
  25. ^ Li, Chao; Zheng, Hong-Wei; Wei, Heng-Wei; Su, Jie; Liao, Fu-Hui; Zhang, Zhen-Yi; Xu, Ling; Yang, Zu-Pei; Wang, Xiao-Ming; Jiao, Huan (2018). "Narrow-band blue emitting nitridomagnesosilicate phosphor Sr 8 Mg 7 Si 9 N 22 :Eu 2+ for phosphor-converted LEDs". Chemical Communications. 54 (82): 11598–11601. doi: 10.1039/C8CC07218C. ISSN  1359-7345. PMID  30264071.
  26. ^ Yan, Chunpei; Liu, Zhanning; Zhuang, Weidong; Liu, Ronghui; Xing, Xianran; Liu, Yuanhong; Chen, Guantong; Li, Yanfeng; Ma, Xiaole (2017-09-18). "YScSi 4 N 6 C:Ce 3+ —A Broad Cyan-Emitting Phosphor To Weaken the Cyan Cavity in Full-Spectrum White Light-Emitting Diodes". Inorganic Chemistry. 56 (18): 11087–11095. doi: 10.1021/acs.inorgchem.7b01408. ISSN  0020-1669.
  27. ^ Stadler, Florian; Schnick, Wolfgang (April 2007). "Das reduzierte Nitridosilicat BaSi6N8". Zeitschrift für anorganische und allgemeine Chemie (in German). 633 (4): 589–592. doi: 10.1002/zaac.200600356.
  28. ^ Huppertz, Hubert; Schnick, Wolfgang (February 1997). "Edge-sharing SiN 4 Tetrahedra in the Highly Condensed Nitridosilicate BaSi 7 N 10". Chemistry - A European Journal. 3 (2): 249–252. doi: 10.1002/chem.19970030213. PMID  24022955.
  29. ^ Pagano, Sandro; Oeckler, Oliver; Schröder, Thorsten; Schnick, Wolfgang (June 2009). "Ba 6 Si 6 N 10 O 2 (CN 2 ) - A Nitridosilicate with a NPO-Zeolite Structure Type Containing Carbodiimide Ions". European Journal of Inorganic Chemistry. 2009 (18): 2678–2683. doi: 10.1002/ejic.200900157.
  30. ^ Schmiechen, Sebastian; Strobel, Philipp; Hecht, Cora; Reith, Thomas; Siegert, Markus; Schmidt, Peter J.; Huppertz, Petra; Wiechert, Detlef; Schnick, Wolfgang (10 March 2015). "Nitridomagnesosilicate Ba[Mg 3 SiN 4 ]:Eu 2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors". Chemistry of Materials. 27 (5): 1780–1785. doi: 10.1021/cm504604d.
  31. ^ Kechele, Juliane A.; Hecht, Cora; Oeckler, Oliver; Schmedt auf der Günne, Jörn; Schmidt, Peter J.; Schnick, Wolfgang (2009-04-14). "Ba 2 AlSi 5 N 9 —A New Host Lattice for Eu 2+ -Doped Luminescent Materials Comprising a Nitridoalumosilicate Framework with Corner- and Edge-Sharing Tetrahedra". Chemistry of Materials. 21 (7): 1288–1295. doi: 10.1021/cm803233d. ISSN  0897-4756.
  32. ^ a b Hirosaki, Naoto; Takeda, Takashi; Funahashi, Shiro; Xie, Rong-Jun (2014-07-22). "Discovery of New Nitridosilicate Phosphors for Solid State Lighting by the Single-Particle-Diagnosis Approach". Chemistry of Materials. 26 (14): 4280–4288. doi: 10.1021/cm501866x. ISSN  0897-4756.
  33. ^ a b Lupart, Saskia; Zeuner, Martin; Pagano, Sandro; Schnick, Wolfgang (June 2010). "Chain‐Type Lithium Rare‐Earth Nitridosilicates – Li 5 Ln 5 Si 4 N 12 with Ln = La, Ce". European Journal of Inorganic Chemistry. 2010 (18): 2636–2641. doi: 10.1002/ejic.201000245. ISSN  1434-1948.
  34. ^ ten Kate, O M; Hintzen, H T; van der Kolk, E (24 September 2014). "Low energy 4f-5d transitions in lanthanide doped CaLaSiN 3 with low degree of cross-linking between SiN 4 tetrahedra". Journal of Physics: Condensed Matter. 26 (38): 385502. Bibcode: 2014JPCM...26L5502T. doi: 10.1088/0953-8984/26/38/385502. PMID  25186054. S2CID  29879915.
  35. ^ Huppertz, Hubert; Schnick, Wolfgang (1997-12-15). "Ba2Nd7Si11N23—A Nitridosilicate with a Zeolite-Analogous Si–N Structure". Angewandte Chemie International Edition in English. 36 (23): 2651–2652. doi: 10.1002/anie.199726511. ISSN  0570-0833.
  36. ^ a b Huppertz, Hubert; Oeckler, Oliver; Lieb, Alexandra; Glaum, Robert; Johrendt, Dirk; Tegel, Marcus; Kaindl, Reinhard; Schnick, Wolfgang (2012-08-27). "Ca 3 Sm 3 [Si 9 N 17 ] and Ca 3 Yb 3 [Si 9 N 17 ] Nitridosilicates with Interpenetrating Nets that Consist of Star-Shaped [N [4] (SiN 3 ) 4 ] Units and [Si 5 N 16 ] Supertetrahedra". Chemistry - A European Journal. 18 (35): 10857–10864. doi: 10.1002/chem.201200813. PMID  22829445.
  37. ^ Zeuner, Martin; Pagano, Sandro; Matthes, Philipp; Bichler, Daniel; Johrendt, Dirk; Harmening, Thomas; Pöttgen, Rainer; Schnick, Wolfgang (2009-08-12). "Mixed Valence Europium Nitridosilicate Eu 2 SiN 3". Journal of the American Chemical Society. 131 (31): 11242–11248. doi: 10.1021/ja9040237. ISSN  0002-7863. PMID  19610643.
  38. ^ a b Huppertz, H.; Schnick, W. (1997-12-15). "Eu 2 Si 5 N 8 and EuYbSi 4 N 7 . The First Nitridosilicates with a Divalent Rare Earth Metal". Acta Crystallographica Section C Crystal Structure Communications. 53 (12): 1751–1753. Bibcode: 1997AcCrC..53.1751H. doi: 10.1107/S0108270197008767. ISSN  0108-2701.
  39. ^ Huppertz, Hubert; Schnick, Wolfgang (1996-09-20). "BaYbSi4N7—Unexpected Structural Possibilities in Nitridosilicates". Angewandte Chemie International Edition in English. 35 (17): 1983–1984. doi: 10.1002/anie.199619831. ISSN  0570-0833.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook