From Wikipedia, the free encyclopedia
Number of citations of the terms "Multiomics" and "Multi-omics" in PubMed until the 31st December 2021.

Multiomics, multi-omics, integrative omics, "panomics" or "pan-omics" is a biological analysis approach in which the data sets are multiple " omes", such as the genome, proteome, transcriptome, epigenome, metabolome, and microbiome (i.e., a meta-genome and/or meta-transcriptome, depending upon how it is sequenced); [1] [2] [3] in other words, the use of multiple omics technologies to study life in a concerted way. By combining these "omes", scientists can analyze complex biological big data to find novel associations between biological entities, pinpoint relevant biomarkers and build elaborate markers of disease and physiology. In doing so, multiomics integrates diverse omics data to find a coherently matching geno-pheno-envirotype relationship or association. [4] The OmicTools service lists more than 99 softwares related to multiomic data analysis, as well as more than 99 databases on the topic.

Systems biology approaches are often based upon the use of panomic analysis data. [5] [6] The American Society of Clinical Oncology (ASCO) defines panomics as referring to "the interaction of all biological functions within a cell and with other body functions, combining data collected by targeted tests ... and global assays (such as genome sequencing) with other patient-specific information." [7]

Single-cell multiomics

A branch of the field of multiomics is the analysis of multilevel single-cell data, called single-cell multiomics. [8] [9] This approach gives us an unprecedent resolution to look at multilevel transitions in health and disease at the single cell level. An advantage in relation to bulk analysis is to mitigate confounding factors derived from cell to cell variation, allowing the uncovering of heterogeneous tissue architectures. [8]

Methods for parallel single-cell genomic and transcriptomic analysis can be based on simultaneous amplification [10] or physical separation of RNA and genomic DNA. [11] They allow insights that cannot be gathered solely from transcriptomic analysis, as RNA data do not contain non-coding genomic regions and information regarding copy-number variation, for example. An extension of this methodology is the integration of single-cell transcriptomes to single-cell methylomes, combining single-cell bisulfite sequencing [12] [13] to single cell RNA-Seq. [14] Other techniques to query the epigenome, as single-cell ATAC-Seq [15] and single-cell Hi-C [16] also exist.

A different, but related, challenge is the integration of proteomic and transcriptomic data. [17] [18] One approach to perform such measurement is to physically separate single-cell lysates in two, processing half for RNA, and half for proteins. [17] The protein content of lysates can be measured by proximity extension assays (PEA), for example, which use DNA-barcoded antibodies. [19] A different approach uses a combination of heavy-metal RNA probes and protein antibodies to adapt mass cytometry for multiomic analysis. [18]

Multiomics and machine learning

In parallel to the advances in highthroughput biology, machine learning applications to biomedical data analysis are flourishing. The integration of multi-omics data analysis and machine learning has led to the discovery of new biomarkers. [20] [21] [22] For example, one of the methods of the mixOmics project implements a method based on sparse Partial Least Squares regression for selection of features (putative biomarkers). [23] A unified and flexible statistical framewok for heterogeneous data integration called "Regularized Generalized Canonical Correlation Analysis" (RGCCA [24] [25] [26] [27]) enables identifying such putative biomarkers. This framework is implemented and made freely avalaible within the RGCCA R package .

Multiomics in health and disease

Overview of phases 1 and 2 of the human microbiome project.

Multiomics currently holds a promise to fill gaps in the understanding of human health and disease, and many researchers are working on ways to generate and analyze disease-related data. [28] The applications range from understanding host-pathogen interactions and infectious diseases, [29] [30] cancer, [31] to understanding better chronic and complex non-communicable diseases [32] and improving personalized medicine. [33]

Integrated Human Microbiome Project

The second phase of the $170 million Human Microbiome Project was focused on integrating patient data to different omic datasets, considering host genetics, clinical information and microbiome composition. [34] [35] The phase one focused on characterization of communities in different body sites. Phase 2 focused in the integration of multiomic data from host & microbiome to human diseases. Specifically, the project used multiomics to improve the understanding of the interplay of gut and nasal microbiomes with type 2 diabetes, [36] gut microbiomes and inflammatory bowel disease [37] and vaginal microbiomes and pre-term birth. [38]

Systems Immunology

The complexity of interactions in the human immune system has prompted the generation of a wealth of immunology-related multi-scale omic data. [39] Multi-omic data analysis has been employed to gather novel insights about the immune response to infectious diseases, such as pediatric chikungunya, [40] as well as noncommunicable autoimmune diseases. [41] Integrative omics has also been employed strongly to understand effectiveness and side effects of vaccines, a field called systems vaccinology. [42] For example, multiomics was essential to uncover the association of changes in plasma metabolites and immune system transcriptome on response to vaccination against herpes zoster. [43]

List of softwares for multi-omic analysis

The Bioconductor project curates a variety of R packages aimed at integrating omic data:

The RGCCA package implements a versatile framework for data integration. This package is freely available on the Comprehensive R Archive Network (CRAN).

The OmicTools [49] database further highlights R packages and othertools for multi omic data analysis:

  • PaintOmics, a web resource for visualization of multi-omics datasets [50] [51]
  • SIGMA, a Java program focused on integrated analysis of cancer datasets [52]
  • iOmicsPASS, a tool in C++ for multiomic-based phenotype prediction [53]
  • Grimon, an R graphical interface for visualization of multiomic data [54]
  • Omics Pipe, a framework in Python for reproducibly automating multiomic data analysis [55]

Multiomic Databases

A major limitation of classical omic studies is the isolation of only one level of biological complexity. For example, transcriptomic studies may provide information at the transcript level, but many different entities contribute to the biological state of the sample ( genomic variants, post-translational modifications, metabolic products, interacting organisms, among others). With the advent of high-throughput biology, it is becoming increasingly affordable to make multiple measurements, allowing transdomain (e.g. RNA and protein levels) correlations and inferences. These correlations aid the construction or more complete biological networks, filling gaps in our knowledge.

Integration of data, however, is not an easy task. To facilitate the process, groups have curated database and pipelines to systematically explore multiomic data:

See also

References

  1. ^ Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Giampieri, Enrico; Sala, Claudia; Castellani, Gastone; Milanesi, Luciano (1 January 2016). "Methods for the integration of multi-omics data: mathematical aspects". BMC Bioinformatics. 17 (2): S15. doi: 10.1186/s12859-015-0857-9. ISSN  1471-2105. PMC  4959355. PMID  26821531.
  2. ^ Bock, Christoph; Farlik, Matthias; Sheffield, Nathan C. (August 2016). "Multi-Omics of Single Cells: Strategies and Applications". Trends in Biotechnology. 34 (8): 605–608. doi: 10.1016/j.tibtech.2016.04.004. PMC  4959511. PMID  27212022.
  3. ^ Vilanova, Cristina; Porcar, Manuel (26 July 2016). "Are multi-omics enough?". Nature Microbiology. 1 (8): 16101. doi: 10.1038/nmicrobiol.2016.101. PMID  27573112. S2CID  3835720.
  4. ^ Tarazona, S., Balzano-Nogueira, L., & Conesa, A. (2018). Multiomics Data Integration in Time Series Experiments. doi: 10.1016/bs.coac.2018.06.005
  5. ^ PSB'14 Cancer Panomics Session Archived 2013-09-23 at the Wayback Machine
  6. ^ The Molecular Landscape of Cancer: Using Panomics to Drive Change Archived 2013-11-09 at the Wayback Machine
  7. ^ "Glossary". Accelerating Progress Against Cancer: ASCO's blueprint for transforming clinical and translational cancer research (PDF). American Society of Clinical Oncology. 2011. p. 28. Retrieved 13 September 2013.
  8. ^ a b MacAulay, Iain C.; Ponting, Chris P.; Voet, Thierry (2017). "Single-Cell Multiomics: Multiple Measurements from Single Cells". Trends in Genetics. 33 (2): 155–168. doi: 10.1016/j.tig.2016.12.003. PMC  5303816. PMID  28089370.
  9. ^ Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying (2018-04-20). "Single Cell Multi-Omics Technology: Methodology and Application". Frontiers in Cell and Developmental Biology. 6: 28. doi: 10.3389/fcell.2018.00028. ISSN  2296-634X. PMC  5919954. PMID  29732369.
  10. ^ Kester, Lennart Spanjaard, Bastiaan Bienko, Magda van Oudenaarden, Alexander Dey, Siddharth S (2015). "Integrated genome and transcriptome sequencing of the same cell". Nature Biotechnology. 33 (3): 285–289. doi: 10.1038/nbt.3129. OCLC  931063996. PMC  4374170. PMID  25599178.{{ cite journal}}: CS1 maint: multiple names: authors list ( link)
  11. ^ Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry (2016-09-29). "Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq". Nature Protocols. 11 (11): 2081–2103. doi: 10.1038/nprot.2016.138. hdl: 20.500.11820/015ce29d-7e2d-42c8-82fa-cb1290b761c0. ISSN  1754-2189. PMID  27685099. S2CID  24351548.
  12. ^ Tang, Fuchou; Wen, Lu; Li, Xianlong; Wu, Xinglong; Zhu, Ping; Guo, Hongshan (2013-12-01). "Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing". Genome Research. 23 (12): 2126–2135. doi: 10.1101/gr.161679.113. ISSN  1088-9051. PMC  3847781. PMID  24179143.
  13. ^ Kelsey, Gavin; Reik, Wolf; Stegle, Oliver; Andrews, Simon R.; Julian Peat; Saadeh, Heba; Krueger, Felix; Angermueller, Christof; Lee, Heather J. (August 2014). "Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity". Nature Methods. 11 (8): 817–820. doi: 10.1038/nmeth.3035. ISSN  1548-7105. PMC  4117646. PMID  25042786.
  14. ^ Angermueller, Christof; Clark, Stephen J; Lee, Heather J; Macaulay, Iain C; Teng, Mabel J; Hu, Tim Xiaoming; Krueger, Felix; Smallwood, Sébastien A; Ponting, Chris P (2016-01-11). "Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity". Nature Methods. 13 (3): 229–232. doi: 10.1038/nmeth.3728. ISSN  1548-7091. PMC  4770512. PMID  26752769.
  15. ^ Greenleaf, William J.; Chang, Howard Y.; Snyder, Michael P.; Michael L. Gonzales; Ruff, Dave; Litzenburger, Ulrike M.; Wu, Beijing; Buenrostro, Jason D. (July 2015). "Single-cell chromatin accessibility reveals principles of regulatory variation". Nature. 523 (7561): 486–490. Bibcode: 2015Natur.523..486B. doi: 10.1038/nature14590. ISSN  1476-4687. PMC  4685948. PMID  26083756.
  16. ^ Fraser, Peter; Tanay, Amos; Laue, Ernest D.; Dean, Wendy; Yaffe, Eitan; Schoenfelder, Stefan; Stevens, Tim J.; Lubling, Yaniv; Nagano, Takashi (October 2013). "Single-cell Hi-C reveals cell-to-cell variability in chromosome structure". Nature. 502 (7469): 59–64. Bibcode: 2013Natur.502...59N. doi: 10.1038/nature12593. ISSN  1476-4687. PMC  3869051. PMID  24067610.
  17. ^ a b Darmanis, Spyros; Gallant, Caroline Julie; Marinescu, Voichita Dana; Niklasson, Mia; Segerman, Anna; Flamourakis, Georgios; Fredriksson, Simon; Assarsson, Erika; Lundberg, Martin (2016-01-12). "Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells". Cell Reports. 14 (2): 380–389. doi: 10.1016/j.celrep.2015.12.021. ISSN  2211-1247. PMC  4713867. PMID  26748716.
  18. ^ a b Gherardini, Pier Federico; Nolan, Garry P.; Chen, Shih-Yu; Hsieh, Elena W. Y.; Zunder, Eli R.; Bava, Felice-Alessio; Frei, Andreas P. (March 2016). "Highly multiplexed simultaneous detection of RNAs and proteins in single cells". Nature Methods. 13 (3): 269–275. doi: 10.1038/nmeth.3742. ISSN  1548-7105. PMC  4767631. PMID  26808670.
  19. ^ Assarsson, Erika; Lundberg, Martin; Holmquist, Göran; Björkesten, Johan; Bucht Thorsen, Stine; Ekman, Daniel; Eriksson, Anna; Rennel Dickens, Emma; Ohlsson, Sandra (2014-04-22). "Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability". PLOS ONE. 9 (4): e95192. Bibcode: 2014PLoSO...995192A. doi: 10.1371/journal.pone.0095192. ISSN  1932-6203. PMC  3995906. PMID  24755770.
  20. ^ Garmire, Lana X.; Chaudhary, Kumardeep; Huang, Sijia (2017). "More Is Better: Recent Progress in Multi-Omics Data Integration Methods". Frontiers in Genetics. 8: 84. doi: 10.3389/fgene.2017.00084. ISSN  1664-8021. PMC  5472696. PMID  28670325.
  21. ^ Tagkopoulos, Ilias; Kim, Minseung (2018). "Data integration and predictive modeling methods for multi-omics datasets". Molecular Omics. 14 (1): 8–25. doi: 10.1039/C7MO00051K. PMID  29725673.
  22. ^ Lin, Eugene; Lane, Hsien-Yuan (2017-01-20). "Machine learning and systems genomics approaches for multi-omics data". Biomarker Research. 5 (1): 2. doi: 10.1186/s40364-017-0082-y. ISSN  2050-7771. PMC  5251341. PMID  28127429.
  23. ^ a b Rohart, Florian; Gautier, Benoît; Singh, Amrit; Lê Cao, Kim-Anh (2017-02-14). "mixOmics: an R package for 'omics feature selection and multiple data integration". PLOS Computational Biology. 13 (11): e1005752. Bibcode: 2017PLSCB..13E5752R. bioRxiv  10.1101/108597. doi: 10.1371/journal.pcbi.1005752. PMC  5687754. PMID  29099853.
  24. ^ Tenenhaus, Arthur; Tenenhaus, Michel (2011-03-17). "Regularized Generalized Canonical Correlation Analysis". Psychometrika. 76 (2): 257–284. doi: 10.1007/s11336-011-9206-8. ISSN  0033-3123.
  25. ^ Tenenhaus, A.; Philippe, C.; Guillemot, V.; Le Cao, K.-A.; Grill, J.; Frouin, V. (2014-02-17). "Variable selection for generalized canonical correlation analysis". Biostatistics. 15 (3): 569–583. doi: 10.1093/biostatistics/kxu001. ISSN  1465-4644.
  26. ^ Tenenhaus, Arthur; Philippe, Cathy; Frouin, Vincent (October 2015). "Kernel Generalized Canonical Correlation Analysis". Computational Statistics & Data Analysis. 90: 114–131. doi: 10.1016/j.csda.2015.04.004. ISSN  0167-9473.
  27. ^ Tenenhaus, Michel; Tenenhaus, Arthur; Groenen, Patrick J. F. (2017-05-23). "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods". Psychometrika. 82 (3): 737–777. doi: 10.1007/s11336-017-9573-x. ISSN  0033-3123.
  28. ^ Hasin, Yehudit; Seldin, Marcus; Lusis, Aldons (2017-05-05). "Multi-omics approaches to disease". Genome Biology. 18 (1): 83. doi: 10.1186/s13059-017-1215-1. ISSN  1474-760X. PMC  5418815. PMID  28476144.
  29. ^ Khan, Mohd M.; Ernst, Orna; Manes, Nathan P.; Oyler, Benjamin L.; Fraser, Iain D. C.; Goodlett, David R.; Nita-Lazar, Aleksandra (2019-03-11). "Multi-Omics Strategies Uncover Host–Pathogen Interactions". ACS Infectious Diseases. 5 (4): 493–505. doi: 10.1021/acsinfecdis.9b00080. ISSN  2373-8227. PMID  30857388. S2CID  75137107.
  30. ^ Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. Lynn; McDermott, Jason G.; Proll, Sean C. (2011-02-01). "A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm". mBio. 2 (1): e00325-10. doi: 10.1128/mbio.00325-10. ISSN  2150-7511. PMC  3034460. PMID  21285433.
  31. ^ Mouchtouris, N; Smit, RD; Piper, K; Prashant, G; Evans, JJ; Karsy, M (4 March 2022). "A review of multiomics platforms in pituitary adenoma pathogenesis". Frontiers in Bioscience (Landmark Edition). 27 (3): 77. doi: 10.31083/j.fbl2703077. PMID  35345309. S2CID  247560386.
  32. ^ Yan, Jingwen; Risacher, Shannon L; Shen, Li; Saykin, Andrew J. (2017-06-30). "Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data". Briefings in Bioinformatics. 19 (6): 1370–1381. doi: 10.1093/bib/bbx066. ISSN  1467-5463. PMC  6454489. PMID  28679163.
  33. ^ He, Feng Q.; Ollert, Markus; Balling, Rudi; Bode, Sebastian F. N.; Delhalle, Sylvie (2018-02-06). "A roadmap towards personalized immunology". npj Systems Biology and Applications. 4 (1): 9. doi: 10.1038/s41540-017-0045-9. ISSN  2056-7189. PMC  5802799. PMID  29423275.
  34. ^ Proctor, Lita M.; Creasy, Heather H.; Fettweis, Jennifer M.; Lloyd-Price, Jason; Mahurkar, Anup; Zhou, Wenyu; Buck, Gregory A.; Snyder, Michael P.; Strauss, Jerome F. (May 2019). "The Integrative Human Microbiome Project". Nature. 569 (7758): 641–648. Bibcode: 2019Natur.569..641I. doi: 10.1038/s41586-019-1238-8. ISSN  1476-4687. PMC  6784865. PMID  31142853.
  35. ^ "After the Integrative Human Microbiome Project, what's next for the microbiome community?". Nature. 569 (7758): 599. 2019-05-29. Bibcode: 2019Natur.569Q.599.. doi: 10.1038/d41586-019-01674-w. PMID  31142868. S2CID  169035865.
  36. ^ Snyder, Michael; Weinstock, George M.; Sodergren, Erica; McLaughlin, Tracey; Tse, David; Rost, Hannes; Piening, Brian; Kukurba, Kim; Rose, Sophia Miryam Schüssler-Fiorenza (May 2019). "Longitudinal multi-omics of host–microbe dynamics in prediabetes". Nature. 569 (7758): 663–671. Bibcode: 2019Natur.569..663Z. doi: 10.1038/s41586-019-1236-x. ISSN  1476-4687. PMC  6666404. PMID  31142858.
  37. ^ Huttenhower, Curtis; Xavier, Ramnik J.; Vlamakis, Hera; Franzosa, Eric A.; Clish, Clary B.; Winter, Harland S.; Stappenbeck, Thaddeus S.; Petrosino, Joseph F.; McGovern, Dermot P. B. (May 2019). "Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases". Nature. 569 (7758): 655–662. Bibcode: 2019Natur.569..655L. doi: 10.1038/s41586-019-1237-9. ISSN  1476-4687. PMC  6650278. PMID  31142855.
  38. ^ Buck, Gregory A.; Strauss, Jerome F.; Jefferson, Kimberly K.; Hendricks-Muñoz, Karen D.; Wijesooriya, N. Romesh; Rubens, Craig E.; Gravett, Michael G.; Sexton, Amber L.; Chaffin, Donald O. (June 2019). "The vaginal microbiome and preterm birth". Nature Medicine. 25 (6): 1012–1021. doi: 10.1038/s41591-019-0450-2. ISSN  1546-170X. PMC  6750801. PMID  31142849.
  39. ^ Kidd, Brian A; Peters, Lauren A; Schadt, Eric E; Dudley, Joel T (2014-01-21). "Unifying immunology with informatics and multiscale biology". Nature Immunology. 15 (2): 118–127. doi: 10.1038/ni.2787. ISSN  1529-2908. PMC  4345400. PMID  24448569.
  40. ^ Harris, Eva; Kasarskis, Andrew; Wolinsky, Steven M.; Suaréz-Fariñas, Mayte; Zhu, Jun; Wang, Li; Balmaseda, Angel; Thomas, Guajira P.; Stewart, Michael G. (2018-08-01). "Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases". Molecular Systems Biology. 14 (8): e7862. doi: 10.15252/msb.20177862. ISSN  1744-4292. PMC  6110311. PMID  30150281.
  41. ^ Firestein, Gary S.; Wang, Wei; Gay, Steffen; Ball, Scott T.; Bartok, Beatrix; Boyle, David L.; Whitaker, John W. (2015-04-22). "Integrative Omics Analysis of Rheumatoid Arthritis Identifies Non-Obvious Therapeutic Targets". PLOS ONE. 10 (4): e0124254. Bibcode: 2015PLoSO..1024254W. doi: 10.1371/journal.pone.0124254. ISSN  1932-6203. PMC  4406750. PMID  25901943.
  42. ^ Pulendran, Bali; Li, Shuzhao; Nakaya, Helder I. (2010-10-29). "Systems Vaccinology". Immunity. 33 (4): 516–529. doi: 10.1016/j.immuni.2010.10.006. ISSN  1074-7613. PMC  3001343. PMID  21029962.
  43. ^ Li, Shuzhao; Sullivan, Nicole L.; Rouphael, Nadine; Yu, Tianwei; Banton, Sophia; Maddur, Mohan S.; McCausland, Megan; Chiu, Christopher; Canniff, Jennifer (2017-05-18). "Metabolic Phenotypes of Response to Vaccination in Humans". Cell. 169 (5): 862–877.e17. doi: 10.1016/j.cell.2017.04.026. ISSN  0092-8674. PMC  5711477. PMID  28502771.
  44. ^ Meng, Chen; Kuster, Bernhard; Culhane, Aedín C; Gholami, Amin (2014). "A multivariate approach to the integration of multi-omics datasets". BMC Bioinformatics. 15 (1): 162. doi: 10.1186/1471-2105-15-162. ISSN  1471-2105. PMC  4053266. PMID  24884486.
  45. ^ Ramos, Marcel; Schiffer, Lucas; Re, Angela; Azhar, Rimsha; Basunia, Azfar; Rodriguez, Carmen; Chan, Tiffany; Chapman, Phil; Davis, Sean R.; Gomez-Cabrero, David; Culhane, Aedin C.; Haibe-Kains, Benjamin; Hansen, Kasper D.; Kodali, Hanish; Louis, Marie S.; Mer, Arvind S.; Riester, Markus; Morgan, Martin; Carey, Vince; Waldron, Levi (1 November 2017). "Software for the Integration of Multiomics Experiments in Bioconductor". Cancer Research. 77 (21): e39–e42. doi: 10.1158/0008-5472.CAN-17-0344. PMC  5679241. PMID  29092936.
  46. ^ Seonggyun Han, Younghee Lee (2017), IMAS, Bioconductor, doi: 10.18129/b9.bioc.imas, retrieved 2019-06-28
  47. ^ Karim Mezhoud [Aut, Cre] (2017), bioCancer, Bioconductor, doi: 10.18129/b9.bioc.biocancer, retrieved 2019-06-28
  48. ^ Hernandez-Ferrer, Carles; Ruiz-Arenas, Carlos; Beltran-Gomila, Alba; González, Juan R. (2017-01-17). "MultiDataSet: an R package for encapsulating multiple data sets with application to omic data integration". BMC Bioinformatics. 18 (1): 36. doi: 10.1186/s12859-016-1455-1. ISSN  1471-2105. PMC  5240259. PMID  28095799.
  49. ^ "Reap the rewards of a biological insight engine". omicX. Retrieved 2019-06-26.
  50. ^ Conesa, Ana; Dopazo, Joaquín; García-López, Federico; García-Alcalde, Fernando (2011-01-01). "Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data". Bioinformatics. 27 (1): 137–139. doi: 10.1093/bioinformatics/btq594. ISSN  1367-4803. PMC  3008637. PMID  21098431.
  51. ^ Conesa, Ana; Pappas, Georgios J.; Furió-Tarí, Pedro; Balzano-Nogueira, Leandro; Martínez-Mira, Carlos; Tarazona, Sonia; Hernández-de-Diego, Rafael (2018-07-02). "PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data". Nucleic Acids Research. 46 (W1): W503–W509. doi: 10.1093/nar/gky466. ISSN  0305-1048. PMC  6030972. PMID  29800320.
  52. ^ Chari, Raj; Coe, Bradley P.; Wedseltoft, Craig; Benetti, Marie; Wilson, Ian M.; Vucic, Emily A.; MacAulay, Calum; Ng, Raymond T.; Lam, Wan L. (2008-10-07). "SIGMA2: A system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes". BMC Bioinformatics. 9 (1): 422. doi: 10.1186/1471-2105-9-422. ISSN  1471-2105. PMC  2571113. PMID  18840289.
  53. ^ Choi, Hyungwon; Ewing, Rob; Choi, Kwok Pui; Fermin, Damian; Koh, Hiromi W. L. (2018-07-23). "iOmicsPASS: a novel method for integration of multi-omics data over biological networks and discovery of predictive subnetworks". bioRxiv: 374520. doi: 10.1101/374520. S2CID  92157115.
  54. ^ Kanai, Masahiro; Maeda, Yuichi; Okada, Yukinori (2018-06-19). "Grimon: graphical interface to visualize multi-omics networks". Bioinformatics. 34 (22): 3934–3936. doi: 10.1093/bioinformatics/bty488. ISSN  1367-4803. PMC  6223372. PMID  29931190.
  55. ^ Su, Andrew I.; Loguercio, Salvatore; Carland, Tristan M.; Ducom, Jean-Christophe; Gioia, Louis; Meißner, Tobias; Fisch, Kathleen M. (2015-06-01). "Omics Pipe: a community-based framework for reproducible multi-omics data analysis". Bioinformatics. 31 (11): 1724–1728. doi: 10.1093/bioinformatics/btv061. ISSN  1367-4803. PMC  4443682. PMID  25637560.
  56. ^ Montague, Elizabeth; Stanberry, Larissa; Higdon, Roger; Janko, Imre; Lee, Elaine; Anderson, Nathaniel; Choiniere, John; Stewart, Elizabeth; Yandl, Gregory (June 2014). "MOPED 2.5—An Integrated Multi-Omics Resource: Multi-Omics Profiling Expression Database Now Includes Transcriptomics Data". OMICS: A Journal of Integrative Biology. 18 (6): 335–343. doi: 10.1089/omi.2014.0061. ISSN  1536-2310. PMC  4048574. PMID  24910945.
  57. ^ Zhang, Bing; Wang, Jing; Straub, Peter; Vasaikar, Suhas V. (2018-01-04). "LinkedOmics: analyzing multi-omics data within and across 32 cancer types". Nucleic Acids Research. 46 (D1): D956–D963. doi: 10.1093/nar/gkx1090. ISSN  0305-1048. PMC  5753188. PMID  29136207.
  58. ^ "LinkedOmics :: Login". www.linkedomics.org. Retrieved 2019-06-26.
  59. ^ Kan, Zhengyan; Rejto, Paul A.; Roberts, Peter; Ding, Ying; AChing, Keith; Wang, Kai; Deng, Shibing; Schefzick, Sabine; Estrella, Heather (January 2016). "OASIS: web-based platform for exploring cancer multi-omics data". Nature Methods. 13 (1): 9–10. doi: 10.1038/nmeth.3692. ISSN  1548-7105. PMID  26716558. S2CID  38621277.
  60. ^ Wu, Jiaqi; Hu, Shuofeng; Chen, Yaowen; Li, Zongcheng; Zhang, Jian; Yuan, Hanyu; Shi, Qiang; Shao, Ningsheng; Ying, Xiaomin (May 2017). "BCIP: a gene-centered platform for identifying potential regulatory genes in breast cancer". Scientific Reports. 7 (1): 45235. Bibcode: 2017NatSR...745235W. doi: 10.1038/srep45235. ISSN  2045-2322. PMC  5361122. PMID  28327601.
  61. ^ Husi, Holger; Patel, Alisha; Fernandes, Marco (2018-11-12). "C/VDdb: A multi-omics expression profiling database for a knowledge-driven approach in cardiovascular disease (CVD)". PLOS ONE. 13 (11): e0207371. Bibcode: 2018PLoSO..1307371F. doi: 10.1371/journal.pone.0207371. ISSN  1932-6203. PMC  6231654. PMID  30419069.
  62. ^ Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep (2016-09-16). "ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis". Scientific Reports. 6 (1): 32713. Bibcode: 2016NatSR...632713G. doi: 10.1038/srep32713. ISSN  2045-2322. PMC  5025660. PMID  27633273.
  63. ^ Tagkopoulos, Ilias; Violeta Zorraquino; Rai, Navneet; Kim, Minseung (2016-10-07). "Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli". Nature Communications. 7: 13090. Bibcode: 2016NatCo...713090K. doi: 10.1038/ncomms13090. ISSN  2041-1723. PMC  5059772. PMID  27713404.
  64. ^ Li, Guojing; Lu, Zhongfu; Lin, Jiandong; Hu, Yaowen; Yunping Huang; Wang, Baogen; Wu, Xinyi; Wu, Xiaohua; Xu, Pei (2018-02-26). "GourdBase: a genome-centered multi-omics database for the bottle gourd ( Lagenaria siceraria ), an economically important cucurbit crop". Scientific Reports. 8 (1): 3604. Bibcode: 2018NatSR...8.3604W. doi: 10.1038/s41598-018-22007-3. ISSN  2045-2322. PMC  5827520. PMID  29483591.
  65. ^ Liu, Haijun; Wang, Fan; Xiao, Yingjie; Tian, Zonglin; Wen, Weiwei; Zhang, Xuehai; Chen, Xi; Liu, Nannan; Li, Wenqiang (2016). "MODEM: multi-omics data envelopment and mining in maize". Database. 2016: baw117. doi: 10.1093/database/baw117. ISSN  1758-0463. PMC  4976297. PMID  27504011.
  66. ^ Xu, Dong; Nguyen, Henry T.; Stacey, Gary; Gaudiello, Eric C.; Endacott, Ryan Z.; Zhang, Hongxin; Liu, Yang; Chen, Shiyuan; Fitzpatrick, Michael R. (2014-01-01). "Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding". Nucleic Acids Research. 42 (D1): D1245–D1252. doi: 10.1093/nar/gkt905. ISSN  0305-1048. PMC  3965117. PMID  24136998.
  67. ^ Samaras, Patroklos; Schmidt, Tobias; Frejno, Martin; Gessulat, Siegfried; Reinecke, Maria; Jarzab, Anna; Zecha, Jana; Mergner, Julia; Giansanti, Piero; Ehrlich, Hans-Christian; Aiche, Stephan (2020-01-08). "ProteomicsDB: a multi-omics and multi-organism resource for life science research". Nucleic Acids Research. 48 (D1): D1153–D1163. doi: 10.1093/nar/gkz974. ISSN  0305-1048. PMC  7145565. PMID  31665479.
From Wikipedia, the free encyclopedia
Number of citations of the terms "Multiomics" and "Multi-omics" in PubMed until the 31st December 2021.

Multiomics, multi-omics, integrative omics, "panomics" or "pan-omics" is a biological analysis approach in which the data sets are multiple " omes", such as the genome, proteome, transcriptome, epigenome, metabolome, and microbiome (i.e., a meta-genome and/or meta-transcriptome, depending upon how it is sequenced); [1] [2] [3] in other words, the use of multiple omics technologies to study life in a concerted way. By combining these "omes", scientists can analyze complex biological big data to find novel associations between biological entities, pinpoint relevant biomarkers and build elaborate markers of disease and physiology. In doing so, multiomics integrates diverse omics data to find a coherently matching geno-pheno-envirotype relationship or association. [4] The OmicTools service lists more than 99 softwares related to multiomic data analysis, as well as more than 99 databases on the topic.

Systems biology approaches are often based upon the use of panomic analysis data. [5] [6] The American Society of Clinical Oncology (ASCO) defines panomics as referring to "the interaction of all biological functions within a cell and with other body functions, combining data collected by targeted tests ... and global assays (such as genome sequencing) with other patient-specific information." [7]

Single-cell multiomics

A branch of the field of multiomics is the analysis of multilevel single-cell data, called single-cell multiomics. [8] [9] This approach gives us an unprecedent resolution to look at multilevel transitions in health and disease at the single cell level. An advantage in relation to bulk analysis is to mitigate confounding factors derived from cell to cell variation, allowing the uncovering of heterogeneous tissue architectures. [8]

Methods for parallel single-cell genomic and transcriptomic analysis can be based on simultaneous amplification [10] or physical separation of RNA and genomic DNA. [11] They allow insights that cannot be gathered solely from transcriptomic analysis, as RNA data do not contain non-coding genomic regions and information regarding copy-number variation, for example. An extension of this methodology is the integration of single-cell transcriptomes to single-cell methylomes, combining single-cell bisulfite sequencing [12] [13] to single cell RNA-Seq. [14] Other techniques to query the epigenome, as single-cell ATAC-Seq [15] and single-cell Hi-C [16] also exist.

A different, but related, challenge is the integration of proteomic and transcriptomic data. [17] [18] One approach to perform such measurement is to physically separate single-cell lysates in two, processing half for RNA, and half for proteins. [17] The protein content of lysates can be measured by proximity extension assays (PEA), for example, which use DNA-barcoded antibodies. [19] A different approach uses a combination of heavy-metal RNA probes and protein antibodies to adapt mass cytometry for multiomic analysis. [18]

Multiomics and machine learning

In parallel to the advances in highthroughput biology, machine learning applications to biomedical data analysis are flourishing. The integration of multi-omics data analysis and machine learning has led to the discovery of new biomarkers. [20] [21] [22] For example, one of the methods of the mixOmics project implements a method based on sparse Partial Least Squares regression for selection of features (putative biomarkers). [23] A unified and flexible statistical framewok for heterogeneous data integration called "Regularized Generalized Canonical Correlation Analysis" (RGCCA [24] [25] [26] [27]) enables identifying such putative biomarkers. This framework is implemented and made freely avalaible within the RGCCA R package .

Multiomics in health and disease

Overview of phases 1 and 2 of the human microbiome project.

Multiomics currently holds a promise to fill gaps in the understanding of human health and disease, and many researchers are working on ways to generate and analyze disease-related data. [28] The applications range from understanding host-pathogen interactions and infectious diseases, [29] [30] cancer, [31] to understanding better chronic and complex non-communicable diseases [32] and improving personalized medicine. [33]

Integrated Human Microbiome Project

The second phase of the $170 million Human Microbiome Project was focused on integrating patient data to different omic datasets, considering host genetics, clinical information and microbiome composition. [34] [35] The phase one focused on characterization of communities in different body sites. Phase 2 focused in the integration of multiomic data from host & microbiome to human diseases. Specifically, the project used multiomics to improve the understanding of the interplay of gut and nasal microbiomes with type 2 diabetes, [36] gut microbiomes and inflammatory bowel disease [37] and vaginal microbiomes and pre-term birth. [38]

Systems Immunology

The complexity of interactions in the human immune system has prompted the generation of a wealth of immunology-related multi-scale omic data. [39] Multi-omic data analysis has been employed to gather novel insights about the immune response to infectious diseases, such as pediatric chikungunya, [40] as well as noncommunicable autoimmune diseases. [41] Integrative omics has also been employed strongly to understand effectiveness and side effects of vaccines, a field called systems vaccinology. [42] For example, multiomics was essential to uncover the association of changes in plasma metabolites and immune system transcriptome on response to vaccination against herpes zoster. [43]

List of softwares for multi-omic analysis

The Bioconductor project curates a variety of R packages aimed at integrating omic data:

The RGCCA package implements a versatile framework for data integration. This package is freely available on the Comprehensive R Archive Network (CRAN).

The OmicTools [49] database further highlights R packages and othertools for multi omic data analysis:

  • PaintOmics, a web resource for visualization of multi-omics datasets [50] [51]
  • SIGMA, a Java program focused on integrated analysis of cancer datasets [52]
  • iOmicsPASS, a tool in C++ for multiomic-based phenotype prediction [53]
  • Grimon, an R graphical interface for visualization of multiomic data [54]
  • Omics Pipe, a framework in Python for reproducibly automating multiomic data analysis [55]

Multiomic Databases

A major limitation of classical omic studies is the isolation of only one level of biological complexity. For example, transcriptomic studies may provide information at the transcript level, but many different entities contribute to the biological state of the sample ( genomic variants, post-translational modifications, metabolic products, interacting organisms, among others). With the advent of high-throughput biology, it is becoming increasingly affordable to make multiple measurements, allowing transdomain (e.g. RNA and protein levels) correlations and inferences. These correlations aid the construction or more complete biological networks, filling gaps in our knowledge.

Integration of data, however, is not an easy task. To facilitate the process, groups have curated database and pipelines to systematically explore multiomic data:

See also

References

  1. ^ Bersanelli, Matteo; Mosca, Ettore; Remondini, Daniel; Giampieri, Enrico; Sala, Claudia; Castellani, Gastone; Milanesi, Luciano (1 January 2016). "Methods for the integration of multi-omics data: mathematical aspects". BMC Bioinformatics. 17 (2): S15. doi: 10.1186/s12859-015-0857-9. ISSN  1471-2105. PMC  4959355. PMID  26821531.
  2. ^ Bock, Christoph; Farlik, Matthias; Sheffield, Nathan C. (August 2016). "Multi-Omics of Single Cells: Strategies and Applications". Trends in Biotechnology. 34 (8): 605–608. doi: 10.1016/j.tibtech.2016.04.004. PMC  4959511. PMID  27212022.
  3. ^ Vilanova, Cristina; Porcar, Manuel (26 July 2016). "Are multi-omics enough?". Nature Microbiology. 1 (8): 16101. doi: 10.1038/nmicrobiol.2016.101. PMID  27573112. S2CID  3835720.
  4. ^ Tarazona, S., Balzano-Nogueira, L., & Conesa, A. (2018). Multiomics Data Integration in Time Series Experiments. doi: 10.1016/bs.coac.2018.06.005
  5. ^ PSB'14 Cancer Panomics Session Archived 2013-09-23 at the Wayback Machine
  6. ^ The Molecular Landscape of Cancer: Using Panomics to Drive Change Archived 2013-11-09 at the Wayback Machine
  7. ^ "Glossary". Accelerating Progress Against Cancer: ASCO's blueprint for transforming clinical and translational cancer research (PDF). American Society of Clinical Oncology. 2011. p. 28. Retrieved 13 September 2013.
  8. ^ a b MacAulay, Iain C.; Ponting, Chris P.; Voet, Thierry (2017). "Single-Cell Multiomics: Multiple Measurements from Single Cells". Trends in Genetics. 33 (2): 155–168. doi: 10.1016/j.tig.2016.12.003. PMC  5303816. PMID  28089370.
  9. ^ Hu, Youjin; An, Qin; Sheu, Katherine; Trejo, Brandon; Fan, Shuxin; Guo, Ying (2018-04-20). "Single Cell Multi-Omics Technology: Methodology and Application". Frontiers in Cell and Developmental Biology. 6: 28. doi: 10.3389/fcell.2018.00028. ISSN  2296-634X. PMC  5919954. PMID  29732369.
  10. ^ Kester, Lennart Spanjaard, Bastiaan Bienko, Magda van Oudenaarden, Alexander Dey, Siddharth S (2015). "Integrated genome and transcriptome sequencing of the same cell". Nature Biotechnology. 33 (3): 285–289. doi: 10.1038/nbt.3129. OCLC  931063996. PMC  4374170. PMID  25599178.{{ cite journal}}: CS1 maint: multiple names: authors list ( link)
  11. ^ Macaulay, Iain C; Teng, Mabel J; Haerty, Wilfried; Kumar, Parveen; Ponting, Chris P; Voet, Thierry (2016-09-29). "Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T-seq". Nature Protocols. 11 (11): 2081–2103. doi: 10.1038/nprot.2016.138. hdl: 20.500.11820/015ce29d-7e2d-42c8-82fa-cb1290b761c0. ISSN  1754-2189. PMID  27685099. S2CID  24351548.
  12. ^ Tang, Fuchou; Wen, Lu; Li, Xianlong; Wu, Xinglong; Zhu, Ping; Guo, Hongshan (2013-12-01). "Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing". Genome Research. 23 (12): 2126–2135. doi: 10.1101/gr.161679.113. ISSN  1088-9051. PMC  3847781. PMID  24179143.
  13. ^ Kelsey, Gavin; Reik, Wolf; Stegle, Oliver; Andrews, Simon R.; Julian Peat; Saadeh, Heba; Krueger, Felix; Angermueller, Christof; Lee, Heather J. (August 2014). "Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity". Nature Methods. 11 (8): 817–820. doi: 10.1038/nmeth.3035. ISSN  1548-7105. PMC  4117646. PMID  25042786.
  14. ^ Angermueller, Christof; Clark, Stephen J; Lee, Heather J; Macaulay, Iain C; Teng, Mabel J; Hu, Tim Xiaoming; Krueger, Felix; Smallwood, Sébastien A; Ponting, Chris P (2016-01-11). "Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity". Nature Methods. 13 (3): 229–232. doi: 10.1038/nmeth.3728. ISSN  1548-7091. PMC  4770512. PMID  26752769.
  15. ^ Greenleaf, William J.; Chang, Howard Y.; Snyder, Michael P.; Michael L. Gonzales; Ruff, Dave; Litzenburger, Ulrike M.; Wu, Beijing; Buenrostro, Jason D. (July 2015). "Single-cell chromatin accessibility reveals principles of regulatory variation". Nature. 523 (7561): 486–490. Bibcode: 2015Natur.523..486B. doi: 10.1038/nature14590. ISSN  1476-4687. PMC  4685948. PMID  26083756.
  16. ^ Fraser, Peter; Tanay, Amos; Laue, Ernest D.; Dean, Wendy; Yaffe, Eitan; Schoenfelder, Stefan; Stevens, Tim J.; Lubling, Yaniv; Nagano, Takashi (October 2013). "Single-cell Hi-C reveals cell-to-cell variability in chromosome structure". Nature. 502 (7469): 59–64. Bibcode: 2013Natur.502...59N. doi: 10.1038/nature12593. ISSN  1476-4687. PMC  3869051. PMID  24067610.
  17. ^ a b Darmanis, Spyros; Gallant, Caroline Julie; Marinescu, Voichita Dana; Niklasson, Mia; Segerman, Anna; Flamourakis, Georgios; Fredriksson, Simon; Assarsson, Erika; Lundberg, Martin (2016-01-12). "Simultaneous Multiplexed Measurement of RNA and Proteins in Single Cells". Cell Reports. 14 (2): 380–389. doi: 10.1016/j.celrep.2015.12.021. ISSN  2211-1247. PMC  4713867. PMID  26748716.
  18. ^ a b Gherardini, Pier Federico; Nolan, Garry P.; Chen, Shih-Yu; Hsieh, Elena W. Y.; Zunder, Eli R.; Bava, Felice-Alessio; Frei, Andreas P. (March 2016). "Highly multiplexed simultaneous detection of RNAs and proteins in single cells". Nature Methods. 13 (3): 269–275. doi: 10.1038/nmeth.3742. ISSN  1548-7105. PMC  4767631. PMID  26808670.
  19. ^ Assarsson, Erika; Lundberg, Martin; Holmquist, Göran; Björkesten, Johan; Bucht Thorsen, Stine; Ekman, Daniel; Eriksson, Anna; Rennel Dickens, Emma; Ohlsson, Sandra (2014-04-22). "Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability". PLOS ONE. 9 (4): e95192. Bibcode: 2014PLoSO...995192A. doi: 10.1371/journal.pone.0095192. ISSN  1932-6203. PMC  3995906. PMID  24755770.
  20. ^ Garmire, Lana X.; Chaudhary, Kumardeep; Huang, Sijia (2017). "More Is Better: Recent Progress in Multi-Omics Data Integration Methods". Frontiers in Genetics. 8: 84. doi: 10.3389/fgene.2017.00084. ISSN  1664-8021. PMC  5472696. PMID  28670325.
  21. ^ Tagkopoulos, Ilias; Kim, Minseung (2018). "Data integration and predictive modeling methods for multi-omics datasets". Molecular Omics. 14 (1): 8–25. doi: 10.1039/C7MO00051K. PMID  29725673.
  22. ^ Lin, Eugene; Lane, Hsien-Yuan (2017-01-20). "Machine learning and systems genomics approaches for multi-omics data". Biomarker Research. 5 (1): 2. doi: 10.1186/s40364-017-0082-y. ISSN  2050-7771. PMC  5251341. PMID  28127429.
  23. ^ a b Rohart, Florian; Gautier, Benoît; Singh, Amrit; Lê Cao, Kim-Anh (2017-02-14). "mixOmics: an R package for 'omics feature selection and multiple data integration". PLOS Computational Biology. 13 (11): e1005752. Bibcode: 2017PLSCB..13E5752R. bioRxiv  10.1101/108597. doi: 10.1371/journal.pcbi.1005752. PMC  5687754. PMID  29099853.
  24. ^ Tenenhaus, Arthur; Tenenhaus, Michel (2011-03-17). "Regularized Generalized Canonical Correlation Analysis". Psychometrika. 76 (2): 257–284. doi: 10.1007/s11336-011-9206-8. ISSN  0033-3123.
  25. ^ Tenenhaus, A.; Philippe, C.; Guillemot, V.; Le Cao, K.-A.; Grill, J.; Frouin, V. (2014-02-17). "Variable selection for generalized canonical correlation analysis". Biostatistics. 15 (3): 569–583. doi: 10.1093/biostatistics/kxu001. ISSN  1465-4644.
  26. ^ Tenenhaus, Arthur; Philippe, Cathy; Frouin, Vincent (October 2015). "Kernel Generalized Canonical Correlation Analysis". Computational Statistics & Data Analysis. 90: 114–131. doi: 10.1016/j.csda.2015.04.004. ISSN  0167-9473.
  27. ^ Tenenhaus, Michel; Tenenhaus, Arthur; Groenen, Patrick J. F. (2017-05-23). "Regularized Generalized Canonical Correlation Analysis: A Framework for Sequential Multiblock Component Methods". Psychometrika. 82 (3): 737–777. doi: 10.1007/s11336-017-9573-x. ISSN  0033-3123.
  28. ^ Hasin, Yehudit; Seldin, Marcus; Lusis, Aldons (2017-05-05). "Multi-omics approaches to disease". Genome Biology. 18 (1): 83. doi: 10.1186/s13059-017-1215-1. ISSN  1474-760X. PMC  5418815. PMID  28476144.
  29. ^ Khan, Mohd M.; Ernst, Orna; Manes, Nathan P.; Oyler, Benjamin L.; Fraser, Iain D. C.; Goodlett, David R.; Nita-Lazar, Aleksandra (2019-03-11). "Multi-Omics Strategies Uncover Host–Pathogen Interactions". ACS Infectious Diseases. 5 (4): 493–505. doi: 10.1021/acsinfecdis.9b00080. ISSN  2373-8227. PMID  30857388. S2CID  75137107.
  30. ^ Aderem, Alan; Adkins, Joshua N.; Ansong, Charles; Galagan, James; Kaiser, Shari; Korth, Marcus J.; Law, G. Lynn; McDermott, Jason G.; Proll, Sean C. (2011-02-01). "A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm". mBio. 2 (1): e00325-10. doi: 10.1128/mbio.00325-10. ISSN  2150-7511. PMC  3034460. PMID  21285433.
  31. ^ Mouchtouris, N; Smit, RD; Piper, K; Prashant, G; Evans, JJ; Karsy, M (4 March 2022). "A review of multiomics platforms in pituitary adenoma pathogenesis". Frontiers in Bioscience (Landmark Edition). 27 (3): 77. doi: 10.31083/j.fbl2703077. PMID  35345309. S2CID  247560386.
  32. ^ Yan, Jingwen; Risacher, Shannon L; Shen, Li; Saykin, Andrew J. (2017-06-30). "Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data". Briefings in Bioinformatics. 19 (6): 1370–1381. doi: 10.1093/bib/bbx066. ISSN  1467-5463. PMC  6454489. PMID  28679163.
  33. ^ He, Feng Q.; Ollert, Markus; Balling, Rudi; Bode, Sebastian F. N.; Delhalle, Sylvie (2018-02-06). "A roadmap towards personalized immunology". npj Systems Biology and Applications. 4 (1): 9. doi: 10.1038/s41540-017-0045-9. ISSN  2056-7189. PMC  5802799. PMID  29423275.
  34. ^ Proctor, Lita M.; Creasy, Heather H.; Fettweis, Jennifer M.; Lloyd-Price, Jason; Mahurkar, Anup; Zhou, Wenyu; Buck, Gregory A.; Snyder, Michael P.; Strauss, Jerome F. (May 2019). "The Integrative Human Microbiome Project". Nature. 569 (7758): 641–648. Bibcode: 2019Natur.569..641I. doi: 10.1038/s41586-019-1238-8. ISSN  1476-4687. PMC  6784865. PMID  31142853.
  35. ^ "After the Integrative Human Microbiome Project, what's next for the microbiome community?". Nature. 569 (7758): 599. 2019-05-29. Bibcode: 2019Natur.569Q.599.. doi: 10.1038/d41586-019-01674-w. PMID  31142868. S2CID  169035865.
  36. ^ Snyder, Michael; Weinstock, George M.; Sodergren, Erica; McLaughlin, Tracey; Tse, David; Rost, Hannes; Piening, Brian; Kukurba, Kim; Rose, Sophia Miryam Schüssler-Fiorenza (May 2019). "Longitudinal multi-omics of host–microbe dynamics in prediabetes". Nature. 569 (7758): 663–671. Bibcode: 2019Natur.569..663Z. doi: 10.1038/s41586-019-1236-x. ISSN  1476-4687. PMC  6666404. PMID  31142858.
  37. ^ Huttenhower, Curtis; Xavier, Ramnik J.; Vlamakis, Hera; Franzosa, Eric A.; Clish, Clary B.; Winter, Harland S.; Stappenbeck, Thaddeus S.; Petrosino, Joseph F.; McGovern, Dermot P. B. (May 2019). "Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases". Nature. 569 (7758): 655–662. Bibcode: 2019Natur.569..655L. doi: 10.1038/s41586-019-1237-9. ISSN  1476-4687. PMC  6650278. PMID  31142855.
  38. ^ Buck, Gregory A.; Strauss, Jerome F.; Jefferson, Kimberly K.; Hendricks-Muñoz, Karen D.; Wijesooriya, N. Romesh; Rubens, Craig E.; Gravett, Michael G.; Sexton, Amber L.; Chaffin, Donald O. (June 2019). "The vaginal microbiome and preterm birth". Nature Medicine. 25 (6): 1012–1021. doi: 10.1038/s41591-019-0450-2. ISSN  1546-170X. PMC  6750801. PMID  31142849.
  39. ^ Kidd, Brian A; Peters, Lauren A; Schadt, Eric E; Dudley, Joel T (2014-01-21). "Unifying immunology with informatics and multiscale biology". Nature Immunology. 15 (2): 118–127. doi: 10.1038/ni.2787. ISSN  1529-2908. PMC  4345400. PMID  24448569.
  40. ^ Harris, Eva; Kasarskis, Andrew; Wolinsky, Steven M.; Suaréz-Fariñas, Mayte; Zhu, Jun; Wang, Li; Balmaseda, Angel; Thomas, Guajira P.; Stewart, Michael G. (2018-08-01). "Comprehensive innate immune profiling of chikungunya virus infection in pediatric cases". Molecular Systems Biology. 14 (8): e7862. doi: 10.15252/msb.20177862. ISSN  1744-4292. PMC  6110311. PMID  30150281.
  41. ^ Firestein, Gary S.; Wang, Wei; Gay, Steffen; Ball, Scott T.; Bartok, Beatrix; Boyle, David L.; Whitaker, John W. (2015-04-22). "Integrative Omics Analysis of Rheumatoid Arthritis Identifies Non-Obvious Therapeutic Targets". PLOS ONE. 10 (4): e0124254. Bibcode: 2015PLoSO..1024254W. doi: 10.1371/journal.pone.0124254. ISSN  1932-6203. PMC  4406750. PMID  25901943.
  42. ^ Pulendran, Bali; Li, Shuzhao; Nakaya, Helder I. (2010-10-29). "Systems Vaccinology". Immunity. 33 (4): 516–529. doi: 10.1016/j.immuni.2010.10.006. ISSN  1074-7613. PMC  3001343. PMID  21029962.
  43. ^ Li, Shuzhao; Sullivan, Nicole L.; Rouphael, Nadine; Yu, Tianwei; Banton, Sophia; Maddur, Mohan S.; McCausland, Megan; Chiu, Christopher; Canniff, Jennifer (2017-05-18). "Metabolic Phenotypes of Response to Vaccination in Humans". Cell. 169 (5): 862–877.e17. doi: 10.1016/j.cell.2017.04.026. ISSN  0092-8674. PMC  5711477. PMID  28502771.
  44. ^ Meng, Chen; Kuster, Bernhard; Culhane, Aedín C; Gholami, Amin (2014). "A multivariate approach to the integration of multi-omics datasets". BMC Bioinformatics. 15 (1): 162. doi: 10.1186/1471-2105-15-162. ISSN  1471-2105. PMC  4053266. PMID  24884486.
  45. ^ Ramos, Marcel; Schiffer, Lucas; Re, Angela; Azhar, Rimsha; Basunia, Azfar; Rodriguez, Carmen; Chan, Tiffany; Chapman, Phil; Davis, Sean R.; Gomez-Cabrero, David; Culhane, Aedin C.; Haibe-Kains, Benjamin; Hansen, Kasper D.; Kodali, Hanish; Louis, Marie S.; Mer, Arvind S.; Riester, Markus; Morgan, Martin; Carey, Vince; Waldron, Levi (1 November 2017). "Software for the Integration of Multiomics Experiments in Bioconductor". Cancer Research. 77 (21): e39–e42. doi: 10.1158/0008-5472.CAN-17-0344. PMC  5679241. PMID  29092936.
  46. ^ Seonggyun Han, Younghee Lee (2017), IMAS, Bioconductor, doi: 10.18129/b9.bioc.imas, retrieved 2019-06-28
  47. ^ Karim Mezhoud [Aut, Cre] (2017), bioCancer, Bioconductor, doi: 10.18129/b9.bioc.biocancer, retrieved 2019-06-28
  48. ^ Hernandez-Ferrer, Carles; Ruiz-Arenas, Carlos; Beltran-Gomila, Alba; González, Juan R. (2017-01-17). "MultiDataSet: an R package for encapsulating multiple data sets with application to omic data integration". BMC Bioinformatics. 18 (1): 36. doi: 10.1186/s12859-016-1455-1. ISSN  1471-2105. PMC  5240259. PMID  28095799.
  49. ^ "Reap the rewards of a biological insight engine". omicX. Retrieved 2019-06-26.
  50. ^ Conesa, Ana; Dopazo, Joaquín; García-López, Federico; García-Alcalde, Fernando (2011-01-01). "Paintomics: a web based tool for the joint visualization of transcriptomics and metabolomics data". Bioinformatics. 27 (1): 137–139. doi: 10.1093/bioinformatics/btq594. ISSN  1367-4803. PMC  3008637. PMID  21098431.
  51. ^ Conesa, Ana; Pappas, Georgios J.; Furió-Tarí, Pedro; Balzano-Nogueira, Leandro; Martínez-Mira, Carlos; Tarazona, Sonia; Hernández-de-Diego, Rafael (2018-07-02). "PaintOmics 3: a web resource for the pathway analysis and visualization of multi-omics data". Nucleic Acids Research. 46 (W1): W503–W509. doi: 10.1093/nar/gky466. ISSN  0305-1048. PMC  6030972. PMID  29800320.
  52. ^ Chari, Raj; Coe, Bradley P.; Wedseltoft, Craig; Benetti, Marie; Wilson, Ian M.; Vucic, Emily A.; MacAulay, Calum; Ng, Raymond T.; Lam, Wan L. (2008-10-07). "SIGMA2: A system for the integrative genomic multi-dimensional analysis of cancer genomes, epigenomes, and transcriptomes". BMC Bioinformatics. 9 (1): 422. doi: 10.1186/1471-2105-9-422. ISSN  1471-2105. PMC  2571113. PMID  18840289.
  53. ^ Choi, Hyungwon; Ewing, Rob; Choi, Kwok Pui; Fermin, Damian; Koh, Hiromi W. L. (2018-07-23). "iOmicsPASS: a novel method for integration of multi-omics data over biological networks and discovery of predictive subnetworks". bioRxiv: 374520. doi: 10.1101/374520. S2CID  92157115.
  54. ^ Kanai, Masahiro; Maeda, Yuichi; Okada, Yukinori (2018-06-19). "Grimon: graphical interface to visualize multi-omics networks". Bioinformatics. 34 (22): 3934–3936. doi: 10.1093/bioinformatics/bty488. ISSN  1367-4803. PMC  6223372. PMID  29931190.
  55. ^ Su, Andrew I.; Loguercio, Salvatore; Carland, Tristan M.; Ducom, Jean-Christophe; Gioia, Louis; Meißner, Tobias; Fisch, Kathleen M. (2015-06-01). "Omics Pipe: a community-based framework for reproducible multi-omics data analysis". Bioinformatics. 31 (11): 1724–1728. doi: 10.1093/bioinformatics/btv061. ISSN  1367-4803. PMC  4443682. PMID  25637560.
  56. ^ Montague, Elizabeth; Stanberry, Larissa; Higdon, Roger; Janko, Imre; Lee, Elaine; Anderson, Nathaniel; Choiniere, John; Stewart, Elizabeth; Yandl, Gregory (June 2014). "MOPED 2.5—An Integrated Multi-Omics Resource: Multi-Omics Profiling Expression Database Now Includes Transcriptomics Data". OMICS: A Journal of Integrative Biology. 18 (6): 335–343. doi: 10.1089/omi.2014.0061. ISSN  1536-2310. PMC  4048574. PMID  24910945.
  57. ^ Zhang, Bing; Wang, Jing; Straub, Peter; Vasaikar, Suhas V. (2018-01-04). "LinkedOmics: analyzing multi-omics data within and across 32 cancer types". Nucleic Acids Research. 46 (D1): D956–D963. doi: 10.1093/nar/gkx1090. ISSN  0305-1048. PMC  5753188. PMID  29136207.
  58. ^ "LinkedOmics :: Login". www.linkedomics.org. Retrieved 2019-06-26.
  59. ^ Kan, Zhengyan; Rejto, Paul A.; Roberts, Peter; Ding, Ying; AChing, Keith; Wang, Kai; Deng, Shibing; Schefzick, Sabine; Estrella, Heather (January 2016). "OASIS: web-based platform for exploring cancer multi-omics data". Nature Methods. 13 (1): 9–10. doi: 10.1038/nmeth.3692. ISSN  1548-7105. PMID  26716558. S2CID  38621277.
  60. ^ Wu, Jiaqi; Hu, Shuofeng; Chen, Yaowen; Li, Zongcheng; Zhang, Jian; Yuan, Hanyu; Shi, Qiang; Shao, Ningsheng; Ying, Xiaomin (May 2017). "BCIP: a gene-centered platform for identifying potential regulatory genes in breast cancer". Scientific Reports. 7 (1): 45235. Bibcode: 2017NatSR...745235W. doi: 10.1038/srep45235. ISSN  2045-2322. PMC  5361122. PMID  28327601.
  61. ^ Husi, Holger; Patel, Alisha; Fernandes, Marco (2018-11-12). "C/VDdb: A multi-omics expression profiling database for a knowledge-driven approach in cardiovascular disease (CVD)". PLOS ONE. 13 (11): e0207371. Bibcode: 2018PLoSO..1307371F. doi: 10.1371/journal.pone.0207371. ISSN  1932-6203. PMC  6231654. PMID  30419069.
  62. ^ Gupta, Amit Kumar; Kaur, Karambir; Rajput, Akanksha; Dhanda, Sandeep Kumar; Sehgal, Manika; Khan, Md. Shoaib; Monga, Isha; Dar, Showkat Ahmad; Singh, Sandeep (2016-09-16). "ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis". Scientific Reports. 6 (1): 32713. Bibcode: 2016NatSR...632713G. doi: 10.1038/srep32713. ISSN  2045-2322. PMC  5025660. PMID  27633273.
  63. ^ Tagkopoulos, Ilias; Violeta Zorraquino; Rai, Navneet; Kim, Minseung (2016-10-07). "Multi-omics integration accurately predicts cellular state in unexplored conditions for Escherichia coli". Nature Communications. 7: 13090. Bibcode: 2016NatCo...713090K. doi: 10.1038/ncomms13090. ISSN  2041-1723. PMC  5059772. PMID  27713404.
  64. ^ Li, Guojing; Lu, Zhongfu; Lin, Jiandong; Hu, Yaowen; Yunping Huang; Wang, Baogen; Wu, Xinyi; Wu, Xiaohua; Xu, Pei (2018-02-26). "GourdBase: a genome-centered multi-omics database for the bottle gourd ( Lagenaria siceraria ), an economically important cucurbit crop". Scientific Reports. 8 (1): 3604. Bibcode: 2018NatSR...8.3604W. doi: 10.1038/s41598-018-22007-3. ISSN  2045-2322. PMC  5827520. PMID  29483591.
  65. ^ Liu, Haijun; Wang, Fan; Xiao, Yingjie; Tian, Zonglin; Wen, Weiwei; Zhang, Xuehai; Chen, Xi; Liu, Nannan; Li, Wenqiang (2016). "MODEM: multi-omics data envelopment and mining in maize". Database. 2016: baw117. doi: 10.1093/database/baw117. ISSN  1758-0463. PMC  4976297. PMID  27504011.
  66. ^ Xu, Dong; Nguyen, Henry T.; Stacey, Gary; Gaudiello, Eric C.; Endacott, Ryan Z.; Zhang, Hongxin; Liu, Yang; Chen, Shiyuan; Fitzpatrick, Michael R. (2014-01-01). "Soybean knowledge base (SoyKB): a web resource for integration of soybean translational genomics and molecular breeding". Nucleic Acids Research. 42 (D1): D1245–D1252. doi: 10.1093/nar/gkt905. ISSN  0305-1048. PMC  3965117. PMID  24136998.
  67. ^ Samaras, Patroklos; Schmidt, Tobias; Frejno, Martin; Gessulat, Siegfried; Reinecke, Maria; Jarzab, Anna; Zecha, Jana; Mergner, Julia; Giansanti, Piero; Ehrlich, Hans-Christian; Aiche, Stephan (2020-01-08). "ProteomicsDB: a multi-omics and multi-organism resource for life science research". Nucleic Acids Research. 48 (D1): D1153–D1163. doi: 10.1093/nar/gkz974. ISSN  0305-1048. PMC  7145565. PMID  31665479.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook