From Wikipedia, the free encyclopedia
Multicopper oxidase (type 1)
crystal structures of e. coli laccase cueo under different copper binding situations
Identifiers
SymbolCu-oxidase
Pfam PF00394
Pfam clan CL0026
InterPro IPR001117
PROSITE PDOC00076
SCOP2 1aoz / SCOPe / SUPFAM
Membranome 253
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Multicopper oxidase (type 2)
active laccase from trametes versicolor complexed with 2,5-xylidine
Identifiers
SymbolCu-oxidase_2
Pfam PF07731
Pfam clan CL0026
InterPro IPR011706
SCOP2 1aoz / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Multicopper oxidase (type 3)
crystal structures of e. coli laccase cueo under different copper binding situations
Identifiers
SymbolCu-oxidase_3
Pfam PF07732
Pfam clan CL0026
InterPro IPR011707
SCOP2 1aoz / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
CMulti-copper polyphenol oxidoreductase laccase
crystal structure of protein cc_0490 from caulobacter crescentus, pfam duf152
Identifiers
SymbolCu-oxidase_4
Pfam PF02578
InterPro IPR003730
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, multicopper oxidases are enzymes which oxidise their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre; dioxygen binds to the trinuclear centre and, following the transfer of four electrons, is reduced to two molecules of water. [1] There are three spectroscopically different copper centres found in multicopper oxidases: type 1 (or blue), type 2 (or normal) and type 3 (or coupled binuclear). [2] [3] Multicopper oxidases consist of 2, 3 or 6 of these homologous domains, which also share homology with the cupredoxins azurin and plastocyanin. Structurally, these domains consist of a cupredoxin-like fold, a beta-sandwich consisting of 7 strands in 2 beta-sheets, arranged in a Greek-key beta-barrel. [4]

The family of multicopper oxidases can be divided into three groups based on the electron-donating substrate. [5] Laccases oxidize a variety of organic substrates, metalloxidases accept metal substrates and a third group contains multicopper oxidases that are specific towards one single substrate. Multicopper oxidases include:

In addition to the above enzymes there are a number of other proteins that are similar to the multi-copper oxidases in terms of structure and sequence, some of which have lost the ability to bind copper. These include: copper resistance protein A (copA) from a plasmid in Pseudomonas syringae; domain A of (non-copper binding) blood coagulation factors V (Fa V) and VIII (Fa VIII); [8] yeast Fet3p (FET3) required for ferrous iron uptake; [9] yeast hypothetical protein YFL041w; and the fission yeast homologue SpAC1F7.08.

References

  1. ^ Bento I, Martins LO, Gato Lopes G, Arménia Carrondo M, Lindley PF (November 2005). "Dioxygen reduction by multi-copper oxidases; a structural perspective". Dalton Transactions (21): 3507–13. doi: 10.1039/b504806k. PMID  16234932.
  2. ^ Messerschmidt A, Huber R (January 1990). "The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships". Eur. J. Biochem. 187 (2): 341–52. doi: 10.1111/j.1432-1033.1990.tb15311.x. PMID  2404764.
  3. ^ Ouzounis C, Sander C (February 1991). "A structure-derived sequence pattern for the detection of type I copper binding domains in distantly related proteins". FEBS Lett. 279 (1): 73–8. doi: 10.1016/0014-5793(91)80254-Z. PMID  1995346. S2CID  10299194.
  4. ^ a b Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (March 2002). "Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli". Proc. Natl. Acad. Sci. U.S.A. 99 (5): 2766–71. doi: 10.1073/pnas.052710499. PMC  122422. PMID  11867755.
  5. ^ Mano, Nicolas; de Poulpiquet, Anne (2018-03-14). "O 2 Reduction in Enzymatic Biofuel Cells". Chemical Reviews. 118 (5): 2392–2468. doi: 10.1021/acs.chemrev.7b00220. ISSN  0009-2665.
  6. ^ Nakamura K, Kawabata T, Yura K, Go N (October 2003). "Novel types of two-domain multi-copper oxidases: possible missing links in the evolution". FEBS Lett. 553 (3): 239–44. doi: 10.1016/S0014-5793(03)01000-7. PMID  14572631. S2CID  85060706.
  7. ^ Suzuki S, Kataoka K, Yamaguchi K (October 2000). "Metal coordination and mechanism of multicopper nitrite reductase". Acc. Chem. Res. 33 (10): 728–35. doi: 10.1021/ar9900257. PMID  11041837.
  8. ^ Mann KG, Jenny RJ, Krishnaswamy S (1988). "Cofactor proteins in the assembly and expression of blood clotting enzyme complexes". Annu. Rev. Biochem. 57: 915–56. doi: 10.1146/annurev.bi.57.070188.004411. PMID  3052293.
  9. ^ Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (January 1994). "The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake". Cell. 76 (2): 403–10. doi: 10.1016/0092-8674(94)90346-8. PMID  8293473. S2CID  27473253.

[1]

This article incorporates text from the public domain Pfam and InterPro: IPR001117
This article incorporates text from the public domain Pfam and InterPro: IPR011706
This article incorporates text from the public domain Pfam and InterPro: IPR011707
This article incorporates text from the public domain Pfam and InterPro: IPR003730
  1. ^ Lawton, Thomas J.; Sayavedra-Soto, Luis A.; Arp, Daniel J.; Rosenzweig, Amy C. (2009-04-10). "Crystal Structure of a Two-domain Multicopper Oxidase *". Journal of Biological Chemistry. 284 (15): 10174–10180. doi: 10.1074/jbc.M900179200. ISSN  0021-9258. PMC  2665071. PMID  19224923.
From Wikipedia, the free encyclopedia
Multicopper oxidase (type 1)
crystal structures of e. coli laccase cueo under different copper binding situations
Identifiers
SymbolCu-oxidase
Pfam PF00394
Pfam clan CL0026
InterPro IPR001117
PROSITE PDOC00076
SCOP2 1aoz / SCOPe / SUPFAM
Membranome 253
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Multicopper oxidase (type 2)
active laccase from trametes versicolor complexed with 2,5-xylidine
Identifiers
SymbolCu-oxidase_2
Pfam PF07731
Pfam clan CL0026
InterPro IPR011706
SCOP2 1aoz / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Multicopper oxidase (type 3)
crystal structures of e. coli laccase cueo under different copper binding situations
Identifiers
SymbolCu-oxidase_3
Pfam PF07732
Pfam clan CL0026
InterPro IPR011707
SCOP2 1aoz / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
CMulti-copper polyphenol oxidoreductase laccase
crystal structure of protein cc_0490 from caulobacter crescentus, pfam duf152
Identifiers
SymbolCu-oxidase_4
Pfam PF02578
InterPro IPR003730
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, multicopper oxidases are enzymes which oxidise their substrate by accepting electrons at a mononuclear copper centre and transferring them to a trinuclear copper centre; dioxygen binds to the trinuclear centre and, following the transfer of four electrons, is reduced to two molecules of water. [1] There are three spectroscopically different copper centres found in multicopper oxidases: type 1 (or blue), type 2 (or normal) and type 3 (or coupled binuclear). [2] [3] Multicopper oxidases consist of 2, 3 or 6 of these homologous domains, which also share homology with the cupredoxins azurin and plastocyanin. Structurally, these domains consist of a cupredoxin-like fold, a beta-sandwich consisting of 7 strands in 2 beta-sheets, arranged in a Greek-key beta-barrel. [4]

The family of multicopper oxidases can be divided into three groups based on the electron-donating substrate. [5] Laccases oxidize a variety of organic substrates, metalloxidases accept metal substrates and a third group contains multicopper oxidases that are specific towards one single substrate. Multicopper oxidases include:

In addition to the above enzymes there are a number of other proteins that are similar to the multi-copper oxidases in terms of structure and sequence, some of which have lost the ability to bind copper. These include: copper resistance protein A (copA) from a plasmid in Pseudomonas syringae; domain A of (non-copper binding) blood coagulation factors V (Fa V) and VIII (Fa VIII); [8] yeast Fet3p (FET3) required for ferrous iron uptake; [9] yeast hypothetical protein YFL041w; and the fission yeast homologue SpAC1F7.08.

References

  1. ^ Bento I, Martins LO, Gato Lopes G, Arménia Carrondo M, Lindley PF (November 2005). "Dioxygen reduction by multi-copper oxidases; a structural perspective". Dalton Transactions (21): 3507–13. doi: 10.1039/b504806k. PMID  16234932.
  2. ^ Messerschmidt A, Huber R (January 1990). "The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships". Eur. J. Biochem. 187 (2): 341–52. doi: 10.1111/j.1432-1033.1990.tb15311.x. PMID  2404764.
  3. ^ Ouzounis C, Sander C (February 1991). "A structure-derived sequence pattern for the detection of type I copper binding domains in distantly related proteins". FEBS Lett. 279 (1): 73–8. doi: 10.1016/0014-5793(91)80254-Z. PMID  1995346. S2CID  10299194.
  4. ^ a b Roberts SA, Weichsel A, Grass G, Thakali K, Hazzard JT, Tollin G, Rensing C, Montfort WR (March 2002). "Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli". Proc. Natl. Acad. Sci. U.S.A. 99 (5): 2766–71. doi: 10.1073/pnas.052710499. PMC  122422. PMID  11867755.
  5. ^ Mano, Nicolas; de Poulpiquet, Anne (2018-03-14). "O 2 Reduction in Enzymatic Biofuel Cells". Chemical Reviews. 118 (5): 2392–2468. doi: 10.1021/acs.chemrev.7b00220. ISSN  0009-2665.
  6. ^ Nakamura K, Kawabata T, Yura K, Go N (October 2003). "Novel types of two-domain multi-copper oxidases: possible missing links in the evolution". FEBS Lett. 553 (3): 239–44. doi: 10.1016/S0014-5793(03)01000-7. PMID  14572631. S2CID  85060706.
  7. ^ Suzuki S, Kataoka K, Yamaguchi K (October 2000). "Metal coordination and mechanism of multicopper nitrite reductase". Acc. Chem. Res. 33 (10): 728–35. doi: 10.1021/ar9900257. PMID  11041837.
  8. ^ Mann KG, Jenny RJ, Krishnaswamy S (1988). "Cofactor proteins in the assembly and expression of blood clotting enzyme complexes". Annu. Rev. Biochem. 57: 915–56. doi: 10.1146/annurev.bi.57.070188.004411. PMID  3052293.
  9. ^ Askwith C, Eide D, Van Ho A, Bernard PS, Li L, Davis-Kaplan S, Sipe DM, Kaplan J (January 1994). "The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake". Cell. 76 (2): 403–10. doi: 10.1016/0092-8674(94)90346-8. PMID  8293473. S2CID  27473253.

[1]

This article incorporates text from the public domain Pfam and InterPro: IPR001117
This article incorporates text from the public domain Pfam and InterPro: IPR011706
This article incorporates text from the public domain Pfam and InterPro: IPR011707
This article incorporates text from the public domain Pfam and InterPro: IPR003730
  1. ^ Lawton, Thomas J.; Sayavedra-Soto, Luis A.; Arp, Daniel J.; Rosenzweig, Amy C. (2009-04-10). "Crystal Structure of a Two-domain Multicopper Oxidase *". Journal of Biological Chemistry. 284 (15): 10174–10180. doi: 10.1074/jbc.M900179200. ISSN  0021-9258. PMC  2665071. PMID  19224923.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook