From Wikipedia, the free encyclopedia

Metallotolerants are extremophile organisms that are able to survive in environments with a high concentration of dissolved heavy metals. They can be found in environments containing arsenic, cadmium, copper, and zinc. Known metallotolerants include Ferroplasma sp. and Cupriavidus metallidurans.

Metallotolerants adapt to their environment by reducing energy loss by excreting less. Many metallotolerant microbes utilise strategies to perform bioremediation, which is seen as a productive way of survival. [1]

Sinorhizobium sp. M14 is a metallotolerant bacterium. [2] Plants can also survive in highly metallic conditions. [3] For example, Noccaea caerulescens is a metallotolerent plant. [4] [5]

References

  1. ^ Barman, Dina; Jha, Dhruva Kumar (2021), Singh, Raghvendra Pratap; Manchanda, Geetanjali; Bhattacharjee, Kaushik; Panosyan, Hovik (eds.), "Metallotolerant Microorganisms and Microbe-Assisted Phytoremediation for a Sustainable Clean Environment", Microbes in Microbial Communities: Ecological and Applied Perspectives, Singapore: Springer, pp. 307–336, doi: 10.1007/978-981-16-5617-0_15, ISBN  978-981-16-5617-0, retrieved 2024-03-30
  2. ^ Romaniuk, Krzysztof; Dziewit, Lukasz; Decewicz, Przemyslaw; Mielnicki, Sebastian; Radlinska, Monika; Drewniak, Lukasz (2017). "Molecular characterization of the pSinB plasmid of the arsenite oxidizing, metallotolerant Sinorhizobium sp. M14 – insight into the heavy metal resistome of sinorhizobial extrachromosomal replicons". FEMS Microbiology Ecology. 93 (1): fiw215. doi: 10.1093/femsec/fiw215. ISSN  0168-6496. PMID  27797963.
  3. ^ Singh, Samiksha; Parihar, Parul; Singh, Rachana; Singh, Vijay P.; Prasad, Sheo M. (2016-02-08). "Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics". Frontiers in Plant Science. 6: 1143. doi: 10.3389/fpls.2015.01143. ISSN  1664-462X. PMC  4744854. PMID  26904030.
  4. ^ Lin, Ya-Fen; Severing, Edouard I.; te Lintel Hekkert, Bas; Schijlen, Elio; Aarts, Mark G. M. (2014). "A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens". Frontiers in Plant Science. 5. doi: 10.3389/fpls.2014.00261. ISSN  1664-462X. PMC  4064536. PMID  24999345.
  5. ^ Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A. (September 2015). "Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils1[OPEN]". Plant Physiology. 169 (1): 674–689. doi: 10.1104/pp.15.00619. ISSN  0032-0889. PMC  4577401. PMID  26195571.
From Wikipedia, the free encyclopedia

Metallotolerants are extremophile organisms that are able to survive in environments with a high concentration of dissolved heavy metals. They can be found in environments containing arsenic, cadmium, copper, and zinc. Known metallotolerants include Ferroplasma sp. and Cupriavidus metallidurans.

Metallotolerants adapt to their environment by reducing energy loss by excreting less. Many metallotolerant microbes utilise strategies to perform bioremediation, which is seen as a productive way of survival. [1]

Sinorhizobium sp. M14 is a metallotolerant bacterium. [2] Plants can also survive in highly metallic conditions. [3] For example, Noccaea caerulescens is a metallotolerent plant. [4] [5]

References

  1. ^ Barman, Dina; Jha, Dhruva Kumar (2021), Singh, Raghvendra Pratap; Manchanda, Geetanjali; Bhattacharjee, Kaushik; Panosyan, Hovik (eds.), "Metallotolerant Microorganisms and Microbe-Assisted Phytoremediation for a Sustainable Clean Environment", Microbes in Microbial Communities: Ecological and Applied Perspectives, Singapore: Springer, pp. 307–336, doi: 10.1007/978-981-16-5617-0_15, ISBN  978-981-16-5617-0, retrieved 2024-03-30
  2. ^ Romaniuk, Krzysztof; Dziewit, Lukasz; Decewicz, Przemyslaw; Mielnicki, Sebastian; Radlinska, Monika; Drewniak, Lukasz (2017). "Molecular characterization of the pSinB plasmid of the arsenite oxidizing, metallotolerant Sinorhizobium sp. M14 – insight into the heavy metal resistome of sinorhizobial extrachromosomal replicons". FEMS Microbiology Ecology. 93 (1): fiw215. doi: 10.1093/femsec/fiw215. ISSN  0168-6496. PMID  27797963.
  3. ^ Singh, Samiksha; Parihar, Parul; Singh, Rachana; Singh, Vijay P.; Prasad, Sheo M. (2016-02-08). "Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics". Frontiers in Plant Science. 6: 1143. doi: 10.3389/fpls.2015.01143. ISSN  1664-462X. PMC  4744854. PMID  26904030.
  4. ^ Lin, Ya-Fen; Severing, Edouard I.; te Lintel Hekkert, Bas; Schijlen, Elio; Aarts, Mark G. M. (2014). "A comprehensive set of transcript sequences of the heavy metal hyperaccumulator Noccaea caerulescens". Frontiers in Plant Science. 5. doi: 10.3389/fpls.2014.00261. ISSN  1664-462X. PMC  4064536. PMID  24999345.
  5. ^ Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A. (September 2015). "Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils1[OPEN]". Plant Physiology. 169 (1): 674–689. doi: 10.1104/pp.15.00619. ISSN  0032-0889. PMC  4577401. PMID  26195571.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook