From Wikipedia, the free encyclopedia

Mechanochemistry (or mechanical chemistry) is the initiation of chemical reactions by mechanical phenomena. Mechanochemistry thus represents a fourth way to cause chemical reactions, complementing thermal reactions in fluids, photochemistry, and electrochemistry. Conventionally mechanochemistry focuses on the transformations of covalent bonds by mechanical force. Not covered by the topic are many phenomena: phase transitions, dynamics of biomolecules (docking, folding), and sonochemistry. [1]

Mechanochemistry is not the same as mechanosynthesis, which refers specifically to the machine-controlled construction of complex molecular products. [2] [3]

In natural environments, mechanochemical reactions are frequently induced by physical processes such as earthquakes, [4] glacier movement [5] or hydraulic action of rivers or waves. In extreme environments such as subglacial lakes, hydrogen generated by mechnochemical reactions involving crushed silicate rocks and water can support methanogenic microbial communities. And mechanochemistry may have generated oxygen in the ancient Earth by water splitting on fractured mineral surfaces at high temperatures, potentially influencing life's origin or early evolution. [6]

History

The primal mechanochemical project was to make fire by rubbing pieces of wood against each other, creating friction and hence heat, triggering combustion at the elevated temperature. Another method involves the use of flint and steel, during which a spark (a small particle of pyrophoric metal) spontaneously combusts in air, starting fire instantaneously.

Industrial mechanochemistry began with the grinding of two solid reactants. Mercuric sulfide (the mineral cinnabar) and copper metal thereby react to produce mercury and copper sulfide: [7]

HgS + 2Cu → Hg + Cu2S

A special issue of Chemical Society Review was dedicated to mechanochemistry. [8]

Scientists recognized that mechanochemical reactions occur in environments naturally due to various processes, and the reaction products have the potential to influence microbial communities in tectonically active regions. [4] The field has garnered increasing attention recently as mechanochemistry has the potential to generate diverse molecules capable of supporting extremophilic microbes, [5] influencing the early evolution of life, [6] developing the systems necessary for the origin of life, [6] or supporting alien life forms. [9] The field has now inspired the initiation of a special research topic in the journal Frontiers in Geochemistry. [10]

Mechanical Processes

Natural

Earthquakes crush rocks across Earth's subsurface and on other tectonically active planets. Rivers also frequently abrade rocks, revealing fresh mineral surfaces and waves at a shore erode cliffs fracture rocks and abrade sediments. [11]

Similarly to rivers and oceans, the mechanical power of glaciers is evidenced by their impact on landscapes. As glaciers move downslope, they abrade rocks, generating fractured mineral surfaces that can partake in mechanochemical reactions.

Unnatural

In laboratories, planetary ball mills are typically used to induce crushing [5] [6] to investigate natural processes.

Mechanochemical transformations are often complex and different from thermal or photochemical mechanisms. [12] [13] Ball milling is a widely used process in which mechanical force is used to achieve chemical transformations. [14] [15]

It eliminates the need for many solvents, offering the possibility that mechanochemistry could help make many industries more environmentally friendly. [16] [17] For example, the mechanochemical process has been used to synthesize pharmaceutically-attractive phenol hydrazones. [18]

Chemical Reactions

Mechanochemical reactions encompass reactions between mechanically fractured solid materials and any other reactants present in the environment. However, natural mechanochemical reactions frequently involve the reaction of water with crushed rock, so called water-rock reactions. [6] [5] [4] Mechanochemistry is typically initiated by the breakage of bonds between atoms within many different mineral types.

Silicates

Silicates are the most common minerals in the Earth's crust, and thus comprise the mineral type most commonly involved in natural mechanochemical reactions. Silicates are made up of silicon and oxygen atoms, typically arranged in silicon tetrahedra. Mechanical processes break the bonds between the silicon and oxygen atoms. If the bonds are broken by a homolytic cleavage, unpaired electrons are generated:

≡Si–O–Si≡ → ≡Si–O• + ≡Si•

≡Si–O–O–Si≡ → ≡Si–O• + ≡Si–O•

≡Si–O–O–Si≡ → ≡Si–O–O• + ≡Si•

Hydrogen Generation

The reaction of water with silicon radicals can generate hydrogen radicals: [5]

2≡Si• + 2H2O → 2≡Si–O–H + 2H•

2H• → H2

This mechanism can generate H2 to support methanogens in environments with few other energy sources. However, at higher temperatures (~>80 °C [6]), hydrogen radicals react with siloxyl radicals, preventing the generation of H2 by this mechanism: [4]

≡Si–O• + H• → ≡Si–O–H

2H• → H2

Oxidant Generation

When oxygen reacts with silicon or oxygen radicals at the surface of crushed rocks, it can chemically adsorb to the surface:

≡Si• + O2 → ≡Si–O–O•

≡Si–O• + O2 → ≡Si–O–O–O•

These oxygen radicals can then generate oxidants such as hydroxyl radicals and hydrogen peroxide: [19]

≡Si–O–O• + H2O → ≡Si–O–O–H + •OH

2•OH → H2O2

Additionally, oxidants may be generated in the absence of oxygen at high temperatures: [6]

≡Si–O• + H2O → ≡Si–O–H + •OH

2•OH → H2O2

H2O2 breaks down naturally in environments to form water and Oxygen gas:

2H2O2 → 2H2O + O2

Industry applications

Fundamentals and applications ranging from nano materials to technology have been reviewed. [20] The approach has been used to synthesize metallic nanoparticles, catalysts, magnets, γ‐graphyne, metal iodates, nickel–vanadium carbide and molybdenum–vanadium carbide nanocomposite powders. [21]

Ball milling has been used to separate hydrocarbon gases from crude oil. The process used 1-10% of the energy of conventional cryogenics. Differential absorption is affected by milling intensity, pressure and duration. The gases are recovered by heating, at a specific temperature for each gas type. The process has successfully processed alkyne, olefin and paraffin gases using boron nitride powder.

Storage

Mechanochemistry has potential for energy-efficient solid-state storage of hydrogen, ammonia and other fuel gases. The resulting powder is safer than conventional methods of compression and liquefaction. [22]

See also

Further reading

  • Boulatov, Roman, ed. (2015). Polymer Mechanochemistry. Springer. ISBN  978-3-319-22824-2.
  • Lenhardt, J. M.; Ong, M. T.; Choe, R.; Evenhuis, C. R.; Martinez, T. J.; Craig, S. L., Trapping a Diradical Transition State by Mechanochemical Polymer Extension. Science 2010, 329 (5995), 1057-1060

References

  1. ^ Beyer, Martin K.; Clausen-Schaumann, Hauke (2005). "Mechanochemistry: The Mechanical Activation of Covalent Bonds". Chemical Reviews. 105 (8): 2921–2948. doi: 10.1021/cr030697h. PMID  16092823.
  2. ^ Drexler, K. Eric (1992). Nanosystems: Molecular Machinery, Manufacturing, and Computation. New York: John Wiley & Sons. ISBN  978-0-471-57547-4.
  3. ^ Batelle Memorial Institute and Foresight Nanotech Institute. "Technology Roadmap for Productive Nanosystems" (PDF). Retrieved 23 February 2013.
  4. ^ a b c d Kita, Itsuro; Matsuo, Sadao; Wakita, Hiroshi (1982-12-10). "H 2 generation by reaction between H 2 O and crushed rock: An experimental study on H 2 degassing from the active fault zone". Journal of Geophysical Research: Solid Earth. 87 (B13): 10789–10795. Bibcode: 1982JGR....8710789K. doi: 10.1029/JB087iB13p10789.
  5. ^ a b c d e Telling, J.; Boyd, E. S.; Bone, N.; Jones, E. L.; Tranter, M.; MacFarlane, J. W.; Martin, P. G.; Wadham, J. L.; Lamarche-Gagnon, G.; Skidmore, M. L.; Hamilton, T. L.; Hill, E.; Jackson, M.; Hodgson, D. A. (November 2015). "Rock comminution as a source of hydrogen for subglacial ecosystems". Nature Geoscience. 8 (11): 851–855. Bibcode: 2015NatGe...8..851T. doi: 10.1038/ngeo2533. hdl: 1983/826fdf87-589b-4a98-9325-54cc25bdb23d. ISSN  1752-0908.
  6. ^ a b c d e f g Stone, Jordan; Edgar, John O.; Gould, Jamie A.; Telling, Jon (2022-08-08). "Tectonically-driven oxidant production in the hot biosphere". Nature Communications. 13 (1): 4529. Bibcode: 2022NatCo..13.4529S. doi: 10.1038/s41467-022-32129-y. ISSN  2041-1723. PMC  9360021. PMID  35941147.
  7. ^ Marchini, Marianna; Gandolfi, Massimo; Maini, Lucia; Raggetti, Lucia; Martelli, Matteo (2022). "Exploring the ancient chemistry of mercury". Proceedings of the National Academy of Sciences. 119 (24): e2123171119. Bibcode: 2022PNAS..11923171M. doi: 10.1073/pnas.2123171119. PMC  9214491. PMID  35671430. S2CID  249464844.
  8. ^ "Front cover". Chemical Society Reviews. 42 (18): 7487. 2013. doi: 10.1039/c3cs90071a. ISSN  0306-0012.
  9. ^ McMahon, Sean; Parnell, John; Blamey, Nigel J.F. (September 2016). "Evidence for Seismogenic Hydrogen Gas, a Potential Microbial Energy Source on Earth and Mars". Astrobiology. 16 (9): 690–702. Bibcode: 2016AsBio..16..690M. doi: 10.1089/ast.2015.1405. hdl: 2164/9255. ISSN  1531-1074. PMID  27623198.
  10. ^ "Mineral defects: a driving force for (bio)geochemical reactions? | Frontiers Research Topic". www.frontiersin.org. Retrieved 2022-12-09.
  11. ^ He, Hongping; Wu, Xiao; Xian, Haiyang; Zhu, Jianxi; Yang, Yiping; Lv, Ying; Li, Yiliang; Konhauser, Kurt O. (2021-11-16). "An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis". Nature Communications. 12 (1): 6611. Bibcode: 2021NatCo..12.6611H. doi: 10.1038/s41467-021-26916-2. ISSN  2041-1723. PMC  8595356. PMID  34785682. S2CID  240601612.
  12. ^ Hickenboth, Charles R.; Moore, Jeffrey S.; White, Scott R.; Sottos, Nancy R.; Baudry1, Jerome; Wilson, Scott R. (2007). "Biasing Reaction Pathways with Mechanical Force". Nature. 446 (7134): 423–427. Bibcode: 2007Natur.446..423H. doi: 10.1038/nature05681. PMID  17377579. S2CID  4427747.{{ cite journal}}: CS1 maint: numeric names: authors list ( link)(subscription required)
  13. ^ Carlier, Leslie; Baron, Michel; Chamayou, Alain; Couarraze, Guy (May 2013). "Greener pharmacy using solvent-free synthesis: Investigation of the mechanism in the case of dibenzophenazine". Powder Technology. 240: 41–47. doi: 10.1016/j.powtec.2012.07.009. ISSN  0032-5910. S2CID  97605147.
  14. ^ Carlier, Leslie; Baron, Michel; Chamayou, Alain; Couarraze, Guy (2011-10-27). "ChemInform Abstract: Use of Co-Grinding as a Solvent-Free Solid State Method to Synthesize Dibenzophenazines". ChemInform. 42 (47): no. doi: 10.1002/chin.201147164. ISSN  0931-7597.
  15. ^ Salmatonidis, A.; Hesselbach, J.; Lilienkamp, G.; Graumann, T.; Daum, W.; Kwade, A.; Garnweitner, G. (2018-05-29). "Chemical Cross-Linking of Anatase Nanoparticle Thin Films for Enhanced Mechanical Properties". Langmuir. 34 (21): 6109–6116. doi: 10.1021/acs.langmuir.8b00479. ISSN  0743-7463. PMID  29722536.
  16. ^ Chaudhary, V., et al., ChemPhysChem (2018) 19 (18), 2370, https://onlinelibrary.wiley.com/doi/abs/10.1002/cphc.201800318
  17. ^ Lim, Xiaozhi (July 18, 2016). "Grinding Chemicals Together in an Effort to be Greener". The New York Times. ISSN  0362-4331. Retrieved August 6, 2016.
  18. ^ Oliveira, P. F. M.; Baron, M.; Chamayou, A.; André-Barrès, C.; Guidetti, B.; Baltas, M. (2014-10-17). "Solvent-free mechanochemical route for green synthesis of pharmaceutically attractive phenol-hydrazones". RSC Adv. 4 (100): 56736–56742. Bibcode: 2014RSCAd...456736O. doi: 10.1039/c4ra10489g. ISSN  2046-2069. S2CID  98039624.
  19. ^ Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai (2017-09-01). "Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil". Earth and Planetary Science Letters. 473: 113–121. Bibcode: 2017E&PSL.473..113B. doi: 10.1016/j.epsl.2017.06.008. ISSN  0012-821X.
  20. ^ Baláž, Peter; Achimovičová, Marcela; Baláž, Matej; Billik, Peter; Cherkezova-Zheleva, Zara; Criado, José Manuel; Delogu, Francesco; Dutková, Erika; Gaffet, Eric; Gotor, Francisco José; Kumar, Rakesh (2013-08-19). "Hallmarks of mechanochemistry: from nanoparticles to technology". Chemical Society Reviews. 42 (18): 7571–7637. doi: 10.1039/C3CS35468G. hdl: 10261/96958. ISSN  1460-4744. PMID  23558752.
  21. ^ Chaudhary, Varun; Zhong, Yaoying; Parmar, Harshida; Sharma, Vinay; Tan, Xiao; Ramanujan, Raju V. (August 2018). "Mechanochemical Synthesis of Iron and Cobalt Magnetic Metal Nanoparticles and Iron/Calcium Oxide and Cobalt/Calcium Oxide Nanocomposites". ChemistryOpen. 7 (8): 590–598. doi: 10.1002/open.201800091. PMC  6080568. PMID  30094125.
  22. ^ "Mechanochemical breakthrough unlocks cheap, safe, powdered hydrogen". New Atlas. 2022-07-19. Retrieved 2022-07-19.
From Wikipedia, the free encyclopedia

Mechanochemistry (or mechanical chemistry) is the initiation of chemical reactions by mechanical phenomena. Mechanochemistry thus represents a fourth way to cause chemical reactions, complementing thermal reactions in fluids, photochemistry, and electrochemistry. Conventionally mechanochemistry focuses on the transformations of covalent bonds by mechanical force. Not covered by the topic are many phenomena: phase transitions, dynamics of biomolecules (docking, folding), and sonochemistry. [1]

Mechanochemistry is not the same as mechanosynthesis, which refers specifically to the machine-controlled construction of complex molecular products. [2] [3]

In natural environments, mechanochemical reactions are frequently induced by physical processes such as earthquakes, [4] glacier movement [5] or hydraulic action of rivers or waves. In extreme environments such as subglacial lakes, hydrogen generated by mechnochemical reactions involving crushed silicate rocks and water can support methanogenic microbial communities. And mechanochemistry may have generated oxygen in the ancient Earth by water splitting on fractured mineral surfaces at high temperatures, potentially influencing life's origin or early evolution. [6]

History

The primal mechanochemical project was to make fire by rubbing pieces of wood against each other, creating friction and hence heat, triggering combustion at the elevated temperature. Another method involves the use of flint and steel, during which a spark (a small particle of pyrophoric metal) spontaneously combusts in air, starting fire instantaneously.

Industrial mechanochemistry began with the grinding of two solid reactants. Mercuric sulfide (the mineral cinnabar) and copper metal thereby react to produce mercury and copper sulfide: [7]

HgS + 2Cu → Hg + Cu2S

A special issue of Chemical Society Review was dedicated to mechanochemistry. [8]

Scientists recognized that mechanochemical reactions occur in environments naturally due to various processes, and the reaction products have the potential to influence microbial communities in tectonically active regions. [4] The field has garnered increasing attention recently as mechanochemistry has the potential to generate diverse molecules capable of supporting extremophilic microbes, [5] influencing the early evolution of life, [6] developing the systems necessary for the origin of life, [6] or supporting alien life forms. [9] The field has now inspired the initiation of a special research topic in the journal Frontiers in Geochemistry. [10]

Mechanical Processes

Natural

Earthquakes crush rocks across Earth's subsurface and on other tectonically active planets. Rivers also frequently abrade rocks, revealing fresh mineral surfaces and waves at a shore erode cliffs fracture rocks and abrade sediments. [11]

Similarly to rivers and oceans, the mechanical power of glaciers is evidenced by their impact on landscapes. As glaciers move downslope, they abrade rocks, generating fractured mineral surfaces that can partake in mechanochemical reactions.

Unnatural

In laboratories, planetary ball mills are typically used to induce crushing [5] [6] to investigate natural processes.

Mechanochemical transformations are often complex and different from thermal or photochemical mechanisms. [12] [13] Ball milling is a widely used process in which mechanical force is used to achieve chemical transformations. [14] [15]

It eliminates the need for many solvents, offering the possibility that mechanochemistry could help make many industries more environmentally friendly. [16] [17] For example, the mechanochemical process has been used to synthesize pharmaceutically-attractive phenol hydrazones. [18]

Chemical Reactions

Mechanochemical reactions encompass reactions between mechanically fractured solid materials and any other reactants present in the environment. However, natural mechanochemical reactions frequently involve the reaction of water with crushed rock, so called water-rock reactions. [6] [5] [4] Mechanochemistry is typically initiated by the breakage of bonds between atoms within many different mineral types.

Silicates

Silicates are the most common minerals in the Earth's crust, and thus comprise the mineral type most commonly involved in natural mechanochemical reactions. Silicates are made up of silicon and oxygen atoms, typically arranged in silicon tetrahedra. Mechanical processes break the bonds between the silicon and oxygen atoms. If the bonds are broken by a homolytic cleavage, unpaired electrons are generated:

≡Si–O–Si≡ → ≡Si–O• + ≡Si•

≡Si–O–O–Si≡ → ≡Si–O• + ≡Si–O•

≡Si–O–O–Si≡ → ≡Si–O–O• + ≡Si•

Hydrogen Generation

The reaction of water with silicon radicals can generate hydrogen radicals: [5]

2≡Si• + 2H2O → 2≡Si–O–H + 2H•

2H• → H2

This mechanism can generate H2 to support methanogens in environments with few other energy sources. However, at higher temperatures (~>80 °C [6]), hydrogen radicals react with siloxyl radicals, preventing the generation of H2 by this mechanism: [4]

≡Si–O• + H• → ≡Si–O–H

2H• → H2

Oxidant Generation

When oxygen reacts with silicon or oxygen radicals at the surface of crushed rocks, it can chemically adsorb to the surface:

≡Si• + O2 → ≡Si–O–O•

≡Si–O• + O2 → ≡Si–O–O–O•

These oxygen radicals can then generate oxidants such as hydroxyl radicals and hydrogen peroxide: [19]

≡Si–O–O• + H2O → ≡Si–O–O–H + •OH

2•OH → H2O2

Additionally, oxidants may be generated in the absence of oxygen at high temperatures: [6]

≡Si–O• + H2O → ≡Si–O–H + •OH

2•OH → H2O2

H2O2 breaks down naturally in environments to form water and Oxygen gas:

2H2O2 → 2H2O + O2

Industry applications

Fundamentals and applications ranging from nano materials to technology have been reviewed. [20] The approach has been used to synthesize metallic nanoparticles, catalysts, magnets, γ‐graphyne, metal iodates, nickel–vanadium carbide and molybdenum–vanadium carbide nanocomposite powders. [21]

Ball milling has been used to separate hydrocarbon gases from crude oil. The process used 1-10% of the energy of conventional cryogenics. Differential absorption is affected by milling intensity, pressure and duration. The gases are recovered by heating, at a specific temperature for each gas type. The process has successfully processed alkyne, olefin and paraffin gases using boron nitride powder.

Storage

Mechanochemistry has potential for energy-efficient solid-state storage of hydrogen, ammonia and other fuel gases. The resulting powder is safer than conventional methods of compression and liquefaction. [22]

See also

Further reading

  • Boulatov, Roman, ed. (2015). Polymer Mechanochemistry. Springer. ISBN  978-3-319-22824-2.
  • Lenhardt, J. M.; Ong, M. T.; Choe, R.; Evenhuis, C. R.; Martinez, T. J.; Craig, S. L., Trapping a Diradical Transition State by Mechanochemical Polymer Extension. Science 2010, 329 (5995), 1057-1060

References

  1. ^ Beyer, Martin K.; Clausen-Schaumann, Hauke (2005). "Mechanochemistry: The Mechanical Activation of Covalent Bonds". Chemical Reviews. 105 (8): 2921–2948. doi: 10.1021/cr030697h. PMID  16092823.
  2. ^ Drexler, K. Eric (1992). Nanosystems: Molecular Machinery, Manufacturing, and Computation. New York: John Wiley & Sons. ISBN  978-0-471-57547-4.
  3. ^ Batelle Memorial Institute and Foresight Nanotech Institute. "Technology Roadmap for Productive Nanosystems" (PDF). Retrieved 23 February 2013.
  4. ^ a b c d Kita, Itsuro; Matsuo, Sadao; Wakita, Hiroshi (1982-12-10). "H 2 generation by reaction between H 2 O and crushed rock: An experimental study on H 2 degassing from the active fault zone". Journal of Geophysical Research: Solid Earth. 87 (B13): 10789–10795. Bibcode: 1982JGR....8710789K. doi: 10.1029/JB087iB13p10789.
  5. ^ a b c d e Telling, J.; Boyd, E. S.; Bone, N.; Jones, E. L.; Tranter, M.; MacFarlane, J. W.; Martin, P. G.; Wadham, J. L.; Lamarche-Gagnon, G.; Skidmore, M. L.; Hamilton, T. L.; Hill, E.; Jackson, M.; Hodgson, D. A. (November 2015). "Rock comminution as a source of hydrogen for subglacial ecosystems". Nature Geoscience. 8 (11): 851–855. Bibcode: 2015NatGe...8..851T. doi: 10.1038/ngeo2533. hdl: 1983/826fdf87-589b-4a98-9325-54cc25bdb23d. ISSN  1752-0908.
  6. ^ a b c d e f g Stone, Jordan; Edgar, John O.; Gould, Jamie A.; Telling, Jon (2022-08-08). "Tectonically-driven oxidant production in the hot biosphere". Nature Communications. 13 (1): 4529. Bibcode: 2022NatCo..13.4529S. doi: 10.1038/s41467-022-32129-y. ISSN  2041-1723. PMC  9360021. PMID  35941147.
  7. ^ Marchini, Marianna; Gandolfi, Massimo; Maini, Lucia; Raggetti, Lucia; Martelli, Matteo (2022). "Exploring the ancient chemistry of mercury". Proceedings of the National Academy of Sciences. 119 (24): e2123171119. Bibcode: 2022PNAS..11923171M. doi: 10.1073/pnas.2123171119. PMC  9214491. PMID  35671430. S2CID  249464844.
  8. ^ "Front cover". Chemical Society Reviews. 42 (18): 7487. 2013. doi: 10.1039/c3cs90071a. ISSN  0306-0012.
  9. ^ McMahon, Sean; Parnell, John; Blamey, Nigel J.F. (September 2016). "Evidence for Seismogenic Hydrogen Gas, a Potential Microbial Energy Source on Earth and Mars". Astrobiology. 16 (9): 690–702. Bibcode: 2016AsBio..16..690M. doi: 10.1089/ast.2015.1405. hdl: 2164/9255. ISSN  1531-1074. PMID  27623198.
  10. ^ "Mineral defects: a driving force for (bio)geochemical reactions? | Frontiers Research Topic". www.frontiersin.org. Retrieved 2022-12-09.
  11. ^ He, Hongping; Wu, Xiao; Xian, Haiyang; Zhu, Jianxi; Yang, Yiping; Lv, Ying; Li, Yiliang; Konhauser, Kurt O. (2021-11-16). "An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis". Nature Communications. 12 (1): 6611. Bibcode: 2021NatCo..12.6611H. doi: 10.1038/s41467-021-26916-2. ISSN  2041-1723. PMC  8595356. PMID  34785682. S2CID  240601612.
  12. ^ Hickenboth, Charles R.; Moore, Jeffrey S.; White, Scott R.; Sottos, Nancy R.; Baudry1, Jerome; Wilson, Scott R. (2007). "Biasing Reaction Pathways with Mechanical Force". Nature. 446 (7134): 423–427. Bibcode: 2007Natur.446..423H. doi: 10.1038/nature05681. PMID  17377579. S2CID  4427747.{{ cite journal}}: CS1 maint: numeric names: authors list ( link)(subscription required)
  13. ^ Carlier, Leslie; Baron, Michel; Chamayou, Alain; Couarraze, Guy (May 2013). "Greener pharmacy using solvent-free synthesis: Investigation of the mechanism in the case of dibenzophenazine". Powder Technology. 240: 41–47. doi: 10.1016/j.powtec.2012.07.009. ISSN  0032-5910. S2CID  97605147.
  14. ^ Carlier, Leslie; Baron, Michel; Chamayou, Alain; Couarraze, Guy (2011-10-27). "ChemInform Abstract: Use of Co-Grinding as a Solvent-Free Solid State Method to Synthesize Dibenzophenazines". ChemInform. 42 (47): no. doi: 10.1002/chin.201147164. ISSN  0931-7597.
  15. ^ Salmatonidis, A.; Hesselbach, J.; Lilienkamp, G.; Graumann, T.; Daum, W.; Kwade, A.; Garnweitner, G. (2018-05-29). "Chemical Cross-Linking of Anatase Nanoparticle Thin Films for Enhanced Mechanical Properties". Langmuir. 34 (21): 6109–6116. doi: 10.1021/acs.langmuir.8b00479. ISSN  0743-7463. PMID  29722536.
  16. ^ Chaudhary, V., et al., ChemPhysChem (2018) 19 (18), 2370, https://onlinelibrary.wiley.com/doi/abs/10.1002/cphc.201800318
  17. ^ Lim, Xiaozhi (July 18, 2016). "Grinding Chemicals Together in an Effort to be Greener". The New York Times. ISSN  0362-4331. Retrieved August 6, 2016.
  18. ^ Oliveira, P. F. M.; Baron, M.; Chamayou, A.; André-Barrès, C.; Guidetti, B.; Baltas, M. (2014-10-17). "Solvent-free mechanochemical route for green synthesis of pharmaceutically attractive phenol-hydrazones". RSC Adv. 4 (100): 56736–56742. Bibcode: 2014RSCAd...456736O. doi: 10.1039/c4ra10489g. ISSN  2046-2069. S2CID  98039624.
  19. ^ Bak, Ebbe N.; Zafirov, Kaloyan; Merrison, Jonathan P.; Jensen, Svend J. Knak; Nørnberg, Per; Gunnlaugsson, Haraldur P.; Finster, Kai (2017-09-01). "Production of reactive oxygen species from abraded silicates. Implications for the reactivity of the Martian soil". Earth and Planetary Science Letters. 473: 113–121. Bibcode: 2017E&PSL.473..113B. doi: 10.1016/j.epsl.2017.06.008. ISSN  0012-821X.
  20. ^ Baláž, Peter; Achimovičová, Marcela; Baláž, Matej; Billik, Peter; Cherkezova-Zheleva, Zara; Criado, José Manuel; Delogu, Francesco; Dutková, Erika; Gaffet, Eric; Gotor, Francisco José; Kumar, Rakesh (2013-08-19). "Hallmarks of mechanochemistry: from nanoparticles to technology". Chemical Society Reviews. 42 (18): 7571–7637. doi: 10.1039/C3CS35468G. hdl: 10261/96958. ISSN  1460-4744. PMID  23558752.
  21. ^ Chaudhary, Varun; Zhong, Yaoying; Parmar, Harshida; Sharma, Vinay; Tan, Xiao; Ramanujan, Raju V. (August 2018). "Mechanochemical Synthesis of Iron and Cobalt Magnetic Metal Nanoparticles and Iron/Calcium Oxide and Cobalt/Calcium Oxide Nanocomposites". ChemistryOpen. 7 (8): 590–598. doi: 10.1002/open.201800091. PMC  6080568. PMID  30094125.
  22. ^ "Mechanochemical breakthrough unlocks cheap, safe, powdered hydrogen". New Atlas. 2022-07-19. Retrieved 2022-07-19.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook