From Wikipedia, the free encyclopedia
McGee graph
The McGee graph
Named afterW. F. McGee
Vertices24
Edges36
Radius4
Diameter4 [1]
Girth7 [1]
Automorphisms32 [1]
Chromatic number3 [1]
Chromatic index3 [1]
Book thickness3
Queue number2
Properties Cubic
Cage
Hamiltonian
Table of graphs and parameters

In the mathematical field of graph theory, the McGee graph or the (3-7)-cage is a 3- regular graph with 24 vertices and 36 edges. [1]

The McGee graph is the unique (3,7)- cage (the smallest cubic graph of girth 7). It is also the smallest cubic cage that is not a Moore graph.

First discovered by Sachs but unpublished, [2] the graph is named after McGee who published the result in 1960. [3] Then, the McGee graph was proven the unique (3,7)-cage by Tutte in 1966. [4] [5] [6]

The McGee graph requires at least eight crossings in any drawing of it in the plane. It is one of three non-isomorphic graphs tied for being the smallest cubic graph that requires eight crossings. Another of these three graphs is the generalized Petersen graph G(12,5), also known as the Nauru graph. [7] [8]

The McGee graph has radius 4, diameter 4, chromatic number 3 and chromatic index 3. It is also a 3- vertex-connected and a 3- edge-connected graph. It has book thickness 3 and queue number 2. [9]

Algebraic properties

The characteristic polynomial of the McGee graph is

.

The automorphism group of the McGee graph is of order 32 and doesn't act transitively upon its vertices: there are two vertex orbits, of lengths 8 and 16. The McGee graph is the smallest cubic cage that is not a vertex-transitive graph. [10]

References

  1. ^ a b c d e f Weisstein, Eric W. "McGee Graph". MathWorld.
  2. ^ Kárteszi, F. "Piani finit ciclici come risoluzioni di un certo problemo di minimo." Boll. Un. Mat. Ital. 15, 522-528, 1960
  3. ^ McGee, W. F. (1960). "A Minimal Cubic Graph of Girth Seven". Canadian Mathematical Bulletin. 3 (2): 149–152. doi: 10.4153/CMB-1960-018-1.
  4. ^ Tutte, W. T. Connectivity in Graphs. Toronto, Ontario: University of Toronto Press, 1966
  5. ^ Wong, Pak-Ken (1982). "Cages—A Survey". Journal of Graph Theory. 6: 1–22. doi: 10.1002/jgt.3190060103.
  6. ^ Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance Regular Graphs. New York: Springer-Verlag, p. 209, 1989
  7. ^ Sloane, N. J. A. (ed.). "Sequence A110507 (Number of nodes in the smallest cubic graph with crossing number n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Pegg, E. T.; Exoo, G. (2009). "Crossing number graphs". Mathematica Journal. 11 (2). doi: 10.3888/tmj.11.2-2..
  9. ^ Jessica Wolz, Engineering Linear Layouts with SAT. Master Thesis, University of Tübingen, 2018
  10. ^ Jajcay, Robert; Širáň, Jozef (2011). "Small vertex-transitive graphs of given degree and girth". Ars Mathematica Contemporanea. 4 (2): 375–384. doi: 10.26493/1855-3974.124.06d.
From Wikipedia, the free encyclopedia
McGee graph
The McGee graph
Named afterW. F. McGee
Vertices24
Edges36
Radius4
Diameter4 [1]
Girth7 [1]
Automorphisms32 [1]
Chromatic number3 [1]
Chromatic index3 [1]
Book thickness3
Queue number2
Properties Cubic
Cage
Hamiltonian
Table of graphs and parameters

In the mathematical field of graph theory, the McGee graph or the (3-7)-cage is a 3- regular graph with 24 vertices and 36 edges. [1]

The McGee graph is the unique (3,7)- cage (the smallest cubic graph of girth 7). It is also the smallest cubic cage that is not a Moore graph.

First discovered by Sachs but unpublished, [2] the graph is named after McGee who published the result in 1960. [3] Then, the McGee graph was proven the unique (3,7)-cage by Tutte in 1966. [4] [5] [6]

The McGee graph requires at least eight crossings in any drawing of it in the plane. It is one of three non-isomorphic graphs tied for being the smallest cubic graph that requires eight crossings. Another of these three graphs is the generalized Petersen graph G(12,5), also known as the Nauru graph. [7] [8]

The McGee graph has radius 4, diameter 4, chromatic number 3 and chromatic index 3. It is also a 3- vertex-connected and a 3- edge-connected graph. It has book thickness 3 and queue number 2. [9]

Algebraic properties

The characteristic polynomial of the McGee graph is

.

The automorphism group of the McGee graph is of order 32 and doesn't act transitively upon its vertices: there are two vertex orbits, of lengths 8 and 16. The McGee graph is the smallest cubic cage that is not a vertex-transitive graph. [10]

References

  1. ^ a b c d e f Weisstein, Eric W. "McGee Graph". MathWorld.
  2. ^ Kárteszi, F. "Piani finit ciclici come risoluzioni di un certo problemo di minimo." Boll. Un. Mat. Ital. 15, 522-528, 1960
  3. ^ McGee, W. F. (1960). "A Minimal Cubic Graph of Girth Seven". Canadian Mathematical Bulletin. 3 (2): 149–152. doi: 10.4153/CMB-1960-018-1.
  4. ^ Tutte, W. T. Connectivity in Graphs. Toronto, Ontario: University of Toronto Press, 1966
  5. ^ Wong, Pak-Ken (1982). "Cages—A Survey". Journal of Graph Theory. 6: 1–22. doi: 10.1002/jgt.3190060103.
  6. ^ Brouwer, A. E.; Cohen, A. M.; and Neumaier, A. Distance Regular Graphs. New York: Springer-Verlag, p. 209, 1989
  7. ^ Sloane, N. J. A. (ed.). "Sequence A110507 (Number of nodes in the smallest cubic graph with crossing number n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  8. ^ Pegg, E. T.; Exoo, G. (2009). "Crossing number graphs". Mathematica Journal. 11 (2). doi: 10.3888/tmj.11.2-2..
  9. ^ Jessica Wolz, Engineering Linear Layouts with SAT. Master Thesis, University of Tübingen, 2018
  10. ^ Jajcay, Robert; Širáň, Jozef (2011). "Small vertex-transitive graphs of given degree and girth". Ars Mathematica Contemporanea. 4 (2): 375–384. doi: 10.26493/1855-3974.124.06d.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook