From Wikipedia, the free encyclopedia
Out-of-plane spin texture of a skyrmion and skyrmionium. Green colour represents spins that point out of the screen and yellow colour represents spins that point into the screen.

In magnetic systems, excitations can be found that are characterized by the orientation of the local magnetic moments of atomic cores. A magnetic skyrmionium is a ring-shaped topological spin texture and is closely related to the magnetic skyrmion. [1] [2]

Topological charge

The topological charge can be defined as follows. [3]

With this definition, the topological charge of a skyrmion can be calculated to be ±1. A magnetic skyrmionium is a topological quasi particle that is composed of a superposition of two magnetic skyrmions of opposite topological charge adding up to zero total topological charge. [4] [5] On this basis one can view the core of a skyrmionium as a skyrmion (yellow central disk in figure) with opposite charge compared to a bigger skyrmion (green disk) in which it is situated.

Magnetic Particles and their topological charge
Spin-Texture Topological Charge
Skyrmion ±1
Skyrmionium 0
Skyrmion-bag with n Skyrmion ±n

Different to magnetic skyrmions, that experience a transverse deflection under current driven motion known as the skyrmion Hall effect [6] [7] (similar to the Hall effect), magnetic skyrmioniums are expected to move parallel to electrical-drive currents. [8] The current-driven motion of magnetic excitations is one example of the direct link between topological charge and a physical observable.

Theoretical predictions

Skyrmioniums have been the subject of numerous theoretical investigations. [9] [10] [11] Besides theoretical predictions concerning the existence of skyrmioniums such as in the 2D Janus mono layer CrGe(Se,Te)3, [12] a lot of research concentrated on their manipulation by electrical currents, [13] [14] [15] spin currents [16] or spin waves. [17] [18] So far, there is only little experimental evidence for the existence of magnetic skyrmioniums. One example is the observation of skyrmionium in a NiFe-CrSb2Te3 hetero-structure. [19]

Potential applications

Magnetic excitations such as skyrmions or skyrmioniums are potential building blocks of next generation spintronic devices, which enable for instance neuromorphic computing. [20] [21]

References

  1. ^ Ishida, Yuichi; Kondo, Kenji (2020-02-20). "Theoretical comparison between skyrmion and skyrmionium motions for spintronics applications". Japanese Journal of Applied Physics. 59 (SG): SGGI04. Bibcode: 2020JaJAP..59GGI04I. doi: 10.7567/1347-4065/ab5b6b. hdl: 2115/80479. ISSN  0021-4922. S2CID  213421496.
  2. ^ Ponsudana, M.; Amuda, R.; Madhumathi, R.; Brinda, A.; Kanimozhi, N. (2021-10-01). "Confinement of stable skyrmionium and skyrmion state in ultrathin nanoring". Physica B: Condensed Matter. 618: 413144. Bibcode: 2021PhyB..61813144P. doi: 10.1016/j.physb.2021.413144. ISSN  0921-4526.
  3. ^ Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Tretiakov, Oleg A.; Hou, Zhipeng; Wang, Wenhong; Zhao, Guoping; Liu, Xiaoxi; Diep, Hung T.; Zhou, Yan (2020-07-06). "Current-driven skyrmionium in a frustrated magnetic system". Applied Physics Letters. 117 (1): 012403. arXiv: 2005.01403. Bibcode: 2020ApPhL.117a2403X. doi: 10.1063/5.0012706. ISSN  0003-6951. S2CID  218487404.
  4. ^ Kolesnikov, Alexander G.; Stebliy, Maksim E.; Samardak, Alexander S.; Ognev, Alexey V. (2018-11-16). "Skyrmionium – high velocity without the skyrmion Hall effect". Scientific Reports. 8 (1): 16966. Bibcode: 2018NatSR...816966K. doi: 10.1038/s41598-018-34934-2. ISSN  2045-2322. PMC  6240074. PMID  30446670.
  5. ^ "skyrmionium", Wiktionary, 2019-09-29, retrieved 2022-01-02
  6. ^ Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang; Zhang, Wei; Wang, Xiao; Benjamin Jungfleisch, M.; Pearson, John E.; Cheng, Xuemei; Heinonen, Olle; Wang, Kang L.; Zhou, Yan (2017). "Direct observation of the skyrmion Hall effect". Nature Physics. 13 (2): 162–169. arXiv: 1603.07393. doi: 10.1038/nphys3883. ISSN  1745-2481. S2CID  119260600.
  7. ^ Chen, Gong (2017-01-23). "Skyrmion Hall effect". Nature Physics. 13 (2): 112–113. doi: 10.1038/nphys4030. ISSN  1745-2481.
  8. ^ Kolesnikov, Alexander G.; Stebliy, Maksim E.; Samardak, Alexander S.; Ognev, Alexey V. (2018-11-16). "Skyrmionium – high velocity without the skyrmion Hall effect". Scientific Reports. 8 (1): 16966. Bibcode: 2018NatSR...816966K. doi: 10.1038/s41598-018-34934-2. ISSN  2045-2322. PMC  6240074. PMID  30446670.
  9. ^ Bo, Lan; Zhao, Rongzhi; Hu, Chenglong; Shi, Zhen; Chen, Wenchao; Zhang, Xuefeng; Yan, Mi (2020-03-03). "Formation of skyrmion and skyrmionium in confined nanodisk with perpendicular magnetic anisotropy". Journal of Physics D: Applied Physics. 53 (19): 195001. Bibcode: 2020JPhD...53s5001B. doi: 10.1088/1361-6463/ab6d98. ISSN  0022-3727. S2CID  213028436.
  10. ^ Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Ma, Yunxu; Xia, Haiyan; Wang, Jianing; Wang, Jianbo; Liu, Qingfang (2019-07-23). "Dynamics of a magnetic skyrmionium in an anisotropy gradient". Applied Physics Express. 12 (8): 083003. arXiv: 1904.13332. Bibcode: 2019APExp..12h3003S. doi: 10.7567/1882-0786/ab30d8. ISSN  1882-0778. S2CID  140224028.
  11. ^ Yang, Jaehak; Park, Hyeon-Kyu; Park, Gyuyoung; Abert, Claas; Suess, Dieter; Kim, Sang-Koog (2021-10-25). "Robust formation of skyrmion and skyrmionium in magnetic hemispherical shells and their dynamic switching". Physical Review B. 104 (13): 134427. Bibcode: 2021PhRvB.104m4427Y. doi: 10.1103/PhysRevB.104.134427. S2CID  239980567.
  12. ^ Zhang, Yun; Xu, Changsong; Chen, Peng; Nahas, Yousra; Prokhorenko, Sergei; Bellaiche, Laurent (2020-12-10). "Emergence of skyrmionium in a two-dimensional ${\mathrm{CrGe}(\mathrm{Se},\mathrm{Te})}_{3}$ Janus monolayer". Physical Review B. 102 (24): 241107. doi: 10.1103/PhysRevB.102.241107. S2CID  230593844.
  13. ^ Göbel, Börge; Schäffer, Alexander F.; Berakdar, Jamal; Mertig, Ingrid; Parkin, Stuart S. P. (2019-08-20). "Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device". Scientific Reports. 9 (1): 12119. arXiv: 1902.06295. Bibcode: 2019NatSR...912119G. doi: 10.1038/s41598-019-48617-z. ISSN  2045-2322. PMC  6702348. PMID  31431688.
  14. ^ Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Tretiakov, Oleg A.; Hou, Zhipeng; Wang, Wenhong; Zhao, Guoping; Liu, Xiaoxi; Diep, Hung T.; Zhou, Yan (2020-07-06). "Current-driven skyrmionium in a frustrated magnetic system". Applied Physics Letters. 117 (1): 012403. arXiv: 2005.01403. Bibcode: 2020ApPhL.117a2403X. doi: 10.1063/5.0012706. ISSN  0003-6951. S2CID  218487404.
  15. ^ Obadero, S. A.; Yamane, Y.; Akosa, C. A.; Tatara, G. (2020-07-31). "Current-driven nucleation and propagation of antiferromagnetic skyrmionium". Physical Review B. 102 (1): 014458. arXiv: 1904.06870. Bibcode: 2020PhRvB.102a4458O. doi: 10.1103/PhysRevB.102.014458. S2CID  119308026.
  16. ^ Zhang, Xichao; Xia, Jing; Zhou, Yan; Wang, Daowei; Liu, Xiaoxi; Zhao, Weisheng; Ezawa, Motohiko (2016-09-19). "Control and manipulation of a magnetic skyrmionium in nanostructures". Physical Review B. 94 (9): 094420. arXiv: 1604.05909. Bibcode: 2016PhRvB..94i4420Z. doi: 10.1103/PhysRevB.94.094420. S2CID  119245310.
  17. ^ Li, Sai; Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Kang, Wang; Liu, Xiaoxi; Zhou, Yan; Zhao, Weisheng (2018-04-02). "Dynamics of a magnetic skyrmionium driven by spin waves". Applied Physics Letters. 112 (14): 142404. arXiv: 1802.03868. Bibcode: 2018ApPhL.112n2404L. doi: 10.1063/1.5026632. ISSN  0003-6951. S2CID  53082966.
  18. ^ Shen, Maokang; Zhang, Yue; Ou-Yang, Jun; Yang, Xiaofei; You, Long (2018-02-05). "Motion of a skyrmionium driven by spin wave". Applied Physics Letters. 112 (6): 062403. Bibcode: 2018ApPhL.112f2403S. doi: 10.1063/1.5010605. ISSN  0003-6951.
  19. ^ Zhang, Shilei; Kronast, Florian; van der Laan, Gerrit; Hesjedal, Thorsten (2018-02-14). "Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure". Nano Letters. 18 (2): 1057–1063. Bibcode: 2018NanoL..18.1057Z. doi: 10.1021/acs.nanolett.7b04537. ISSN  1530-6984. PMID  29363315. S2CID  206745536.
  20. ^ Wang, Junlin; Xia, Jing; Zhang, Xichao; Zheng, Xiangyu; Li, Guanqi; Chen, Li; Zhou, Yan; Wu, Jing; Yin, Haihong; Chantrell, Roy; Xu, Yongbing (2020-11-16). "Magnetic skyrmionium diode with a magnetic anisotropy voltage gating". Applied Physics Letters. 117 (20): 202401. Bibcode: 2020ApPhL.117t2401W. doi: 10.1063/5.0025124. ISSN  0003-6951. S2CID  228863124.
  21. ^ Grollier, J.; Querlioz, D.; Camsari, K. Y.; Everschor-Sitte, K.; Fukami, S.; Stiles, M. D. (2020-03-02). "Neuromorphic spintronics". Nature Electronics. 3 (7): 360–370. doi: 10.1038/s41928-019-0360-9. ISSN  2520-1131. PMC  7754689. PMID  33367204.
From Wikipedia, the free encyclopedia
Out-of-plane spin texture of a skyrmion and skyrmionium. Green colour represents spins that point out of the screen and yellow colour represents spins that point into the screen.

In magnetic systems, excitations can be found that are characterized by the orientation of the local magnetic moments of atomic cores. A magnetic skyrmionium is a ring-shaped topological spin texture and is closely related to the magnetic skyrmion. [1] [2]

Topological charge

The topological charge can be defined as follows. [3]

With this definition, the topological charge of a skyrmion can be calculated to be ±1. A magnetic skyrmionium is a topological quasi particle that is composed of a superposition of two magnetic skyrmions of opposite topological charge adding up to zero total topological charge. [4] [5] On this basis one can view the core of a skyrmionium as a skyrmion (yellow central disk in figure) with opposite charge compared to a bigger skyrmion (green disk) in which it is situated.

Magnetic Particles and their topological charge
Spin-Texture Topological Charge
Skyrmion ±1
Skyrmionium 0
Skyrmion-bag with n Skyrmion ±n

Different to magnetic skyrmions, that experience a transverse deflection under current driven motion known as the skyrmion Hall effect [6] [7] (similar to the Hall effect), magnetic skyrmioniums are expected to move parallel to electrical-drive currents. [8] The current-driven motion of magnetic excitations is one example of the direct link between topological charge and a physical observable.

Theoretical predictions

Skyrmioniums have been the subject of numerous theoretical investigations. [9] [10] [11] Besides theoretical predictions concerning the existence of skyrmioniums such as in the 2D Janus mono layer CrGe(Se,Te)3, [12] a lot of research concentrated on their manipulation by electrical currents, [13] [14] [15] spin currents [16] or spin waves. [17] [18] So far, there is only little experimental evidence for the existence of magnetic skyrmioniums. One example is the observation of skyrmionium in a NiFe-CrSb2Te3 hetero-structure. [19]

Potential applications

Magnetic excitations such as skyrmions or skyrmioniums are potential building blocks of next generation spintronic devices, which enable for instance neuromorphic computing. [20] [21]

References

  1. ^ Ishida, Yuichi; Kondo, Kenji (2020-02-20). "Theoretical comparison between skyrmion and skyrmionium motions for spintronics applications". Japanese Journal of Applied Physics. 59 (SG): SGGI04. Bibcode: 2020JaJAP..59GGI04I. doi: 10.7567/1347-4065/ab5b6b. hdl: 2115/80479. ISSN  0021-4922. S2CID  213421496.
  2. ^ Ponsudana, M.; Amuda, R.; Madhumathi, R.; Brinda, A.; Kanimozhi, N. (2021-10-01). "Confinement of stable skyrmionium and skyrmion state in ultrathin nanoring". Physica B: Condensed Matter. 618: 413144. Bibcode: 2021PhyB..61813144P. doi: 10.1016/j.physb.2021.413144. ISSN  0921-4526.
  3. ^ Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Tretiakov, Oleg A.; Hou, Zhipeng; Wang, Wenhong; Zhao, Guoping; Liu, Xiaoxi; Diep, Hung T.; Zhou, Yan (2020-07-06). "Current-driven skyrmionium in a frustrated magnetic system". Applied Physics Letters. 117 (1): 012403. arXiv: 2005.01403. Bibcode: 2020ApPhL.117a2403X. doi: 10.1063/5.0012706. ISSN  0003-6951. S2CID  218487404.
  4. ^ Kolesnikov, Alexander G.; Stebliy, Maksim E.; Samardak, Alexander S.; Ognev, Alexey V. (2018-11-16). "Skyrmionium – high velocity without the skyrmion Hall effect". Scientific Reports. 8 (1): 16966. Bibcode: 2018NatSR...816966K. doi: 10.1038/s41598-018-34934-2. ISSN  2045-2322. PMC  6240074. PMID  30446670.
  5. ^ "skyrmionium", Wiktionary, 2019-09-29, retrieved 2022-01-02
  6. ^ Jiang, Wanjun; Zhang, Xichao; Yu, Guoqiang; Zhang, Wei; Wang, Xiao; Benjamin Jungfleisch, M.; Pearson, John E.; Cheng, Xuemei; Heinonen, Olle; Wang, Kang L.; Zhou, Yan (2017). "Direct observation of the skyrmion Hall effect". Nature Physics. 13 (2): 162–169. arXiv: 1603.07393. doi: 10.1038/nphys3883. ISSN  1745-2481. S2CID  119260600.
  7. ^ Chen, Gong (2017-01-23). "Skyrmion Hall effect". Nature Physics. 13 (2): 112–113. doi: 10.1038/nphys4030. ISSN  1745-2481.
  8. ^ Kolesnikov, Alexander G.; Stebliy, Maksim E.; Samardak, Alexander S.; Ognev, Alexey V. (2018-11-16). "Skyrmionium – high velocity without the skyrmion Hall effect". Scientific Reports. 8 (1): 16966. Bibcode: 2018NatSR...816966K. doi: 10.1038/s41598-018-34934-2. ISSN  2045-2322. PMC  6240074. PMID  30446670.
  9. ^ Bo, Lan; Zhao, Rongzhi; Hu, Chenglong; Shi, Zhen; Chen, Wenchao; Zhang, Xuefeng; Yan, Mi (2020-03-03). "Formation of skyrmion and skyrmionium in confined nanodisk with perpendicular magnetic anisotropy". Journal of Physics D: Applied Physics. 53 (19): 195001. Bibcode: 2020JPhD...53s5001B. doi: 10.1088/1361-6463/ab6d98. ISSN  0022-3727. S2CID  213028436.
  10. ^ Song, Chengkun; Jin, Chendong; Wang, Jinshuai; Ma, Yunxu; Xia, Haiyan; Wang, Jianing; Wang, Jianbo; Liu, Qingfang (2019-07-23). "Dynamics of a magnetic skyrmionium in an anisotropy gradient". Applied Physics Express. 12 (8): 083003. arXiv: 1904.13332. Bibcode: 2019APExp..12h3003S. doi: 10.7567/1882-0786/ab30d8. ISSN  1882-0778. S2CID  140224028.
  11. ^ Yang, Jaehak; Park, Hyeon-Kyu; Park, Gyuyoung; Abert, Claas; Suess, Dieter; Kim, Sang-Koog (2021-10-25). "Robust formation of skyrmion and skyrmionium in magnetic hemispherical shells and their dynamic switching". Physical Review B. 104 (13): 134427. Bibcode: 2021PhRvB.104m4427Y. doi: 10.1103/PhysRevB.104.134427. S2CID  239980567.
  12. ^ Zhang, Yun; Xu, Changsong; Chen, Peng; Nahas, Yousra; Prokhorenko, Sergei; Bellaiche, Laurent (2020-12-10). "Emergence of skyrmionium in a two-dimensional ${\mathrm{CrGe}(\mathrm{Se},\mathrm{Te})}_{3}$ Janus monolayer". Physical Review B. 102 (24): 241107. doi: 10.1103/PhysRevB.102.241107. S2CID  230593844.
  13. ^ Göbel, Börge; Schäffer, Alexander F.; Berakdar, Jamal; Mertig, Ingrid; Parkin, Stuart S. P. (2019-08-20). "Electrical writing, deleting, reading, and moving of magnetic skyrmioniums in a racetrack device". Scientific Reports. 9 (1): 12119. arXiv: 1902.06295. Bibcode: 2019NatSR...912119G. doi: 10.1038/s41598-019-48617-z. ISSN  2045-2322. PMC  6702348. PMID  31431688.
  14. ^ Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Tretiakov, Oleg A.; Hou, Zhipeng; Wang, Wenhong; Zhao, Guoping; Liu, Xiaoxi; Diep, Hung T.; Zhou, Yan (2020-07-06). "Current-driven skyrmionium in a frustrated magnetic system". Applied Physics Letters. 117 (1): 012403. arXiv: 2005.01403. Bibcode: 2020ApPhL.117a2403X. doi: 10.1063/5.0012706. ISSN  0003-6951. S2CID  218487404.
  15. ^ Obadero, S. A.; Yamane, Y.; Akosa, C. A.; Tatara, G. (2020-07-31). "Current-driven nucleation and propagation of antiferromagnetic skyrmionium". Physical Review B. 102 (1): 014458. arXiv: 1904.06870. Bibcode: 2020PhRvB.102a4458O. doi: 10.1103/PhysRevB.102.014458. S2CID  119308026.
  16. ^ Zhang, Xichao; Xia, Jing; Zhou, Yan; Wang, Daowei; Liu, Xiaoxi; Zhao, Weisheng; Ezawa, Motohiko (2016-09-19). "Control and manipulation of a magnetic skyrmionium in nanostructures". Physical Review B. 94 (9): 094420. arXiv: 1604.05909. Bibcode: 2016PhRvB..94i4420Z. doi: 10.1103/PhysRevB.94.094420. S2CID  119245310.
  17. ^ Li, Sai; Xia, Jing; Zhang, Xichao; Ezawa, Motohiko; Kang, Wang; Liu, Xiaoxi; Zhou, Yan; Zhao, Weisheng (2018-04-02). "Dynamics of a magnetic skyrmionium driven by spin waves". Applied Physics Letters. 112 (14): 142404. arXiv: 1802.03868. Bibcode: 2018ApPhL.112n2404L. doi: 10.1063/1.5026632. ISSN  0003-6951. S2CID  53082966.
  18. ^ Shen, Maokang; Zhang, Yue; Ou-Yang, Jun; Yang, Xiaofei; You, Long (2018-02-05). "Motion of a skyrmionium driven by spin wave". Applied Physics Letters. 112 (6): 062403. Bibcode: 2018ApPhL.112f2403S. doi: 10.1063/1.5010605. ISSN  0003-6951.
  19. ^ Zhang, Shilei; Kronast, Florian; van der Laan, Gerrit; Hesjedal, Thorsten (2018-02-14). "Real-Space Observation of Skyrmionium in a Ferromagnet-Magnetic Topological Insulator Heterostructure". Nano Letters. 18 (2): 1057–1063. Bibcode: 2018NanoL..18.1057Z. doi: 10.1021/acs.nanolett.7b04537. ISSN  1530-6984. PMID  29363315. S2CID  206745536.
  20. ^ Wang, Junlin; Xia, Jing; Zhang, Xichao; Zheng, Xiangyu; Li, Guanqi; Chen, Li; Zhou, Yan; Wu, Jing; Yin, Haihong; Chantrell, Roy; Xu, Yongbing (2020-11-16). "Magnetic skyrmionium diode with a magnetic anisotropy voltage gating". Applied Physics Letters. 117 (20): 202401. Bibcode: 2020ApPhL.117t2401W. doi: 10.1063/5.0025124. ISSN  0003-6951. S2CID  228863124.
  21. ^ Grollier, J.; Querlioz, D.; Camsari, K. Y.; Everschor-Sitte, K.; Fukami, S.; Stiles, M. D. (2020-03-02). "Neuromorphic spintronics". Nature Electronics. 3 (7): 360–370. doi: 10.1038/s41928-019-0360-9. ISSN  2520-1131. PMC  7754689. PMID  33367204.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook