From Wikipedia, the free encyclopedia

A magnetic alloy is a combination of various metals from the periodic table such as ferrite that contains at least one of the three main magnetic elements: iron (Fe), nickel (Ni), or cobalt (Co) etc.. Such an alloy must contain but is not limited to one or more of these metals. Magnetic alloys have become common, especially in the form of steel (iron and carbon), alnico (iron, nickel, cobalt, and aluminum), and permalloy (iron and nickel). So-called "neodymium magnets" are actually alloys of neodymium, iron and boron forming the crystal structure Nd2Fe14B. After magnetization, items made out of these alloys make attractable to iron, the strongest magnetic element. [1] [2]

See also

References

  1. ^ "Cobalt Facts" (PDF). Cobalt Development Institute. 2006. pp. 23–28. Archived from the original (PDF) on 1 March 2012. Retrieved 3 July 2013.
  2. ^ Kondo, Jun (July 1964). "Resistance Minimum in Dilute Magnetic Alloys" (PDF). Progress of Theoretical Physics. 32 (1): 37–49. Bibcode: 1964PThPh..32...37K. doi: 10.1143/PTP.32.37.

External links


From Wikipedia, the free encyclopedia

A magnetic alloy is a combination of various metals from the periodic table such as ferrite that contains at least one of the three main magnetic elements: iron (Fe), nickel (Ni), or cobalt (Co) etc.. Such an alloy must contain but is not limited to one or more of these metals. Magnetic alloys have become common, especially in the form of steel (iron and carbon), alnico (iron, nickel, cobalt, and aluminum), and permalloy (iron and nickel). So-called "neodymium magnets" are actually alloys of neodymium, iron and boron forming the crystal structure Nd2Fe14B. After magnetization, items made out of these alloys make attractable to iron, the strongest magnetic element. [1] [2]

See also

References

  1. ^ "Cobalt Facts" (PDF). Cobalt Development Institute. 2006. pp. 23–28. Archived from the original (PDF) on 1 March 2012. Retrieved 3 July 2013.
  2. ^ Kondo, Jun (July 1964). "Resistance Minimum in Dilute Magnetic Alloys" (PDF). Progress of Theoretical Physics. 32 (1): 37–49. Bibcode: 1964PThPh..32...37K. doi: 10.1143/PTP.32.37.

External links



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook