From Wikipedia, the free encyclopedia
MacroModel
Developer(s) Schrödinger, LLC
Initial release1990; 34 years ago (1990)
Stable release
2021-3
Operating system Linux, Windows, macOS
Platform x64, GPGPU
Available inEnglish
Type Computational chemistry
License Proprietary, Commercial software
Website www.schrodinger.com/products/macromodel

MacroModel is a computer program for molecular modelling of organic compounds and biopolymers. It features various chemistry force fields, plus energy minimizing algorithms, to predict geometry and relative conformational energies of molecules. [1] MacroModel is maintained by Schrödinger, LLC.

It performs simulations in the framework of classical mechanics, also termed molecular mechanics, and can perform molecular dynamics simulations to model systems at finite temperatures using stochastic dynamics and mixed Monte Carlo algorithms. MacroModel supports Windows, Linux, macOS, Silicon Graphics (SGI) IRIX, and IBM AIX.

The Macromodel software package was first been described in the scientific literature in 1990, [2] and has been subsequently acquired by Schrödinger, Inc. in 2000. [3]

Key features

Known version history

  • 2013: version 10.0
  • 2012: version 9.9.2
  • 2011: version 9.9.1
  • 2010: version 9.8
  • 2009: version 9.7
  • 2008: version 9.6
  • 2007: version 9.5
  • 2006: version 9.1
  • 2005: version 9.0
  • 2004: version 8.5
  • 2003: version 8.1

See also

References

  1. ^ Mohamadi F, Richard NG, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (May 1990). "MacroModel - an Integrated Software System for Modeling Organic and Bioorganic Molecules Using Molecular Mechanics". J. Comput. Chem. 11 (4): 440–467. doi: 10.1002/jcc.540110405.
  2. ^ Mohamadi, Fariborz; Richards, Nigel G. J.; Guida, Wayne C.; Liskamp, Rob; Lipton, Mark; Caufield, Craig; Chang, George; Hendrickson, Thomas; Still, W. Clark (1990-05-01). "Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics". Journal of Computational Chemistry. 11 (4): 440–467. doi: 10.1002/jcc.540110405. ISSN  1096-987X.
  3. ^ "Overview | Schrödinger". www.schrodinger.com. Retrieved 2017-11-30.
  4. ^ Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990). "Semianalytical treatment of solvation for molecular mechanics and dynamics". J Am Chem Soc. 112 (16): 6127–6129. doi: 10.1021/ja00172a038.
  5. ^ Guimarães CR, Cardozo M (May 2008). "MM-GB/SA rescoring of docking poses in structure-based lead optimization". J Chem Inf Model. 48 (5): 958–70. doi: 10.1021/ci800004w. PMID  18422307.

External links

From Wikipedia, the free encyclopedia
MacroModel
Developer(s) Schrödinger, LLC
Initial release1990; 34 years ago (1990)
Stable release
2021-3
Operating system Linux, Windows, macOS
Platform x64, GPGPU
Available inEnglish
Type Computational chemistry
License Proprietary, Commercial software
Website www.schrodinger.com/products/macromodel

MacroModel is a computer program for molecular modelling of organic compounds and biopolymers. It features various chemistry force fields, plus energy minimizing algorithms, to predict geometry and relative conformational energies of molecules. [1] MacroModel is maintained by Schrödinger, LLC.

It performs simulations in the framework of classical mechanics, also termed molecular mechanics, and can perform molecular dynamics simulations to model systems at finite temperatures using stochastic dynamics and mixed Monte Carlo algorithms. MacroModel supports Windows, Linux, macOS, Silicon Graphics (SGI) IRIX, and IBM AIX.

The Macromodel software package was first been described in the scientific literature in 1990, [2] and has been subsequently acquired by Schrödinger, Inc. in 2000. [3]

Key features

Known version history

  • 2013: version 10.0
  • 2012: version 9.9.2
  • 2011: version 9.9.1
  • 2010: version 9.8
  • 2009: version 9.7
  • 2008: version 9.6
  • 2007: version 9.5
  • 2006: version 9.1
  • 2005: version 9.0
  • 2004: version 8.5
  • 2003: version 8.1

See also

References

  1. ^ Mohamadi F, Richard NG, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (May 1990). "MacroModel - an Integrated Software System for Modeling Organic and Bioorganic Molecules Using Molecular Mechanics". J. Comput. Chem. 11 (4): 440–467. doi: 10.1002/jcc.540110405.
  2. ^ Mohamadi, Fariborz; Richards, Nigel G. J.; Guida, Wayne C.; Liskamp, Rob; Lipton, Mark; Caufield, Craig; Chang, George; Hendrickson, Thomas; Still, W. Clark (1990-05-01). "Macromodel—an integrated software system for modeling organic and bioorganic molecules using molecular mechanics". Journal of Computational Chemistry. 11 (4): 440–467. doi: 10.1002/jcc.540110405. ISSN  1096-987X.
  3. ^ "Overview | Schrödinger". www.schrodinger.com. Retrieved 2017-11-30.
  4. ^ Still WC, Tempczyk A, Hawley RC, Hendrickson T (1990). "Semianalytical treatment of solvation for molecular mechanics and dynamics". J Am Chem Soc. 112 (16): 6127–6129. doi: 10.1021/ja00172a038.
  5. ^ Guimarães CR, Cardozo M (May 2008). "MM-GB/SA rescoring of docking poses in structure-based lead optimization". J Chem Inf Model. 48 (5): 958–70. doi: 10.1021/ci800004w. PMID  18422307.

External links


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook