From Wikipedia, the free encyclopedia

This list of sequenced animal genomes contains animal species for which complete genome sequences have been assembled, annotated and published. Substantially complete draft genomes are included, but not partial genome sequences or organelle-only sequences.

Porifera

Ctenophora

Placozoa

Cnidaria

Deuterostomia

Hemichordates

Echinoderms

Tunicates

Cephalochordates

Cyclostomes

Cartilaginous fish

Bony fish

Amphibians

Reptiles

Birds

Mammals

Protostomia

Insects

Crustaceans

Chelicerates

Of which Arachnids:

Myriapoda

Tardigrades

Molluscs

Platyhelminthes

Nematodes

Annelids

Bryozoa

Brachiopoda

Rotifera

See also

References

  1. ^ Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. (August 2010). "The Amphimedon queenslandica genome and the evolution of animal complexity". Nature. 466 (7307): 720–6. Bibcode: 2010Natur.466..720S. doi: 10.1038/nature09201. PMC  3130542. PMID  20686567.
  2. ^ a b Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, et al. (February 2016). "Hologenome analysis of two marine sponges with different microbiomes". BMC Genomics. 17 (1): 158. doi: 10.1186/s12864-016-2501-0. PMC  4772301. PMID  26926518.
  3. ^ Kenny N, Francis, W, et al. (July 2020). "Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri". Nature Communications. 11 (1): 720–6. Bibcode: 2020NatCo..11.3676K. doi: 10.1038/s41467-020-17397-w. PMC  7385117. PMID  32719321.
  4. ^ National Human Genome Research Institute (2012). "NHGRI Mnemiopsis Genome Project". Retrieved 2013-02-05.
  5. ^ Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, et al. (December 2013). "The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution". Science. 342 (6164): 1242592. doi: 10.1126/science.1242592. PMC  3920664. PMID  24337300.
  6. ^ Schultz DT, Francis WR, McBroome JD, Christianson LM, Haddock SH, Green RE (October 2021). "A chromosome-scale genome assembly and karyotype of the ctenophore Hormiphora californensis". G3: Genes, Genomes, Genetics. 11 (11). doi: 10.1093/g3journal/jkab302. PMC  8527503. PMID  34545398.
  7. ^ Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. (June 2014). "The ctenophore genome and the evolutionary origins of neural systems". Nature. 510 (7503): 109–14. Bibcode: 2014Natur.510..109M. doi: 10.1038/nature13400. PMC  4337882. PMID  24847885.
  8. ^ Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, et al. (August 2008). "The Trichoplax genome and the nature of placozoans". Nature. 454 (7207): 955–60. Bibcode: 2008Natur.454..955S. doi: 10.1038/nature07191. PMID  18719581. S2CID  4415492.
  9. ^ Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, et al. (July 2018). "Comparative genomics and the nature of placozoan species". PLOS Biology. 16 (7): e2005359. doi: 10.1371/journal.pbio.2005359. PMC  6067683. PMID  30063702.
  10. ^ Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, et al. (March 2010). "The dynamic genome of Hydra". Nature. 464 (7288): 592–6. Bibcode: 2010Natur.464..592C. doi: 10.1038/nature08830. PMC  4479502. PMID  20228792.
  11. ^ Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. (July 2007). "Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization". Science. 317 (5834): 86–94. Bibcode: 2007Sci...317...86P. doi: 10.1126/science.1139158. PMID  17615350. S2CID  9868191.
  12. ^ Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, et al. (September 2015). "The genome of Aiptasia, a sea anemone model for coral symbiosis". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): 11893–8. Bibcode: 2015PNAS..11211893B. doi: 10.1073/pnas.1513318112. PMC  4586855. PMID  26324906.
  13. ^ Jiang J (2017). "Renilla muelleri genome". reefgenomics.
  14. ^ Jiang JB, Quattrini AM, Francis WR, Ryan JF, Rodríguez E, McFadden CS (April 2019). "A hybrid de novo assembly of the sea pansy (Renilla muelleri) genome". GigaScience. 8 (4). doi: 10.1093/gigascience/giz026. PMC  6446218. PMID  30942866.
  15. ^ Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot JF, et al. (December 2017). "Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals". Scientific Reports. 7 (1): 17583. Bibcode: 2017NatSR...717583V. doi: 10.1038/s41598-017-17484-x. PMC  5730576. PMID  29242500.
  16. ^ Gold DA, Katsuki T, Li Y, Yan X, Regulski M, Ibberson D, et al. (January 2019). "The genome of the jellyfish Aurelia and the evolution of animal complexity" (PDF). Nature Ecology & Evolution. 3 (1): 96–104. doi: 10.1038/s41559-018-0719-8. PMID  30510179. S2CID  54437176.
  17. ^ Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, et al. (May 2019). "The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle". Nature Ecology & Evolution. 3 (5): 801–810. Bibcode: 2019NatEE...3..801L. doi: 10.1038/s41559-019-0833-2. PMID  30858591. S2CID  73728941.
  18. ^ Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z (February 2022). "A myxozoan genome reveals mosaic evolution in a parasitic cnidarian". BMC Biology. 20 (1): 51. doi: 10.1186/s12915-022-01249-8. PMC  8855578. PMID  35177085.
  19. ^ Kim HM, Weber JA, Lee N, Park SG, Cho YS, Bhak Y, et al. (March 2019). "The genome of the giant Nomura's jellyfish sheds light on the early evolution of active predation". BMC Biology. 17 (1): 28. doi: 10.1186/s12915-019-0643-7. PMC  6441219. PMID  30925871.
  20. ^ Li Y, Gao L, Pan Y, Tian M, Li Y, He C, et al. (April 2020). "Chromosome-level reference genome of the jellyfish Rhopilema esculentum". GigaScience. 9 (4). doi: 10.1093/gigascience/giaa036. PMC  7172023. PMID  32315029.
  21. ^ a b c Ohdera A, Ames CL, Dikow RB, Kayal E, Chiodin M, Busby B, et al. (July 2019). "Box, stalked, and upside-down? Draft genomes from diverse jellyfish (Cnidaria, Acraspeda) lineages: Alatina alata (Cubozoa), Calvadosia cruxmelitensis (Staurozoa), and Cassiopea xamachana (Scyphozoa)". GigaScience. 8 (7). doi: 10.1093/gigascience/giz069. PMC  6599738. PMID  31257419.
  22. ^ Jeon Y, Park SG, Lee N, Weber JA, Kim HS, Hwang SJ, et al. (March 2019). "The Draft Genome of an Octocoral, Dendronephthya gigantea". Genome Biology and Evolution. 11 (3): 949–953. doi: 10.1093/gbe/evz043. PMC  6447388. PMID  30825304.
  23. ^ a b c d e f g h i j k l m n o p q r Shinzato C, Khalturin K, Inoue J, Zayasu Y, Kanda M, Kawamitsu M, et al. (January 2021). "Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes". Molecular Biology and Evolution. 38 (1): 16–30. doi: 10.1093/molbev/msaa216. PMC  7783167. PMID  32877528.
  24. ^ Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. (July 2011). "Using the Acropora digitifera genome to understand coral responses to environmental change". Nature. 476 (7360): 320–3. Bibcode: 2011Natur.476..320S. doi: 10.1038/nature10249. PMID  21785439. S2CID  4364757.
  25. ^ Cooke I, Ying H, Forêt S, Bongaerts P, Strugnell JM, Simakov O, et al. (November 2020). "Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts". Science Advances. 6 (48): eabc6318. Bibcode: 2020SciA....6.6318C. doi: 10.1126/sciadv.abc6318. PMC  7695477. PMID  33246955. S2CID  227179581.
  26. ^ Herrera S, Cordes EE (2023-03-16). "Genome assembly of the deep-sea coral Lophelia pertusa". GigaByte. 2023: 1–12. doi: 10.46471/gigabyte.78. PMC  10022433. PMID  36935863.
  27. ^ a b c d Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D (November 2022). "High-quality genome assembles from key Hawaiian coral species". GigaScience. 11. doi: 10.1093/gigascience/giac098. PMC  9646523. PMID  36352542.
  28. ^ Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D (2022). "GigaDB Dataset – DOI 10.5524/102268 – Chromosome-level genome assembly of Montipora capitata". GigaScience. GigaScience Database. doi: 10.5524/102268.
  29. ^ Prada C, Hanna B, Budd AF, Woodley CM, Schmutz J, Grimwood J, et al. (2016). "2016 Empty Niches after Extinctions Increase Population Sizes of Modern Corals". Current Biology. 1 (26): 3190–3194. doi: 10.1016/j.cub.2016.09.039. PMID  27866895. S2CID  188206.
  30. ^ Timothy SG, JunMo L, YuJin J, Hwan YS, Hollie PM, Eva M, Debashish B (2022). "GigaDB Dataset – DOI 10.5524/102269 – Genome assembly of a triploid Pocillopora acuta". GigaDB. GigaScience Database. doi: 10.5524/102269.
  31. ^ Cunning R, Bay RA, Gillette P, Baker AC, Traylor-Knowles N (October 2018). "Comparative analysis of the Pocillopora damicornis genome highlights role of immune system in coral evolution". Scientific Reports. 8 (1): 16134. Bibcode: 2018NatSR...816134C. doi: 10.1038/s41598-018-34459-8. PMC  6208414. PMID  30382153.
  32. ^ Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D (2022). "GigaDB Dataset – DOI 10.5524/102270 – Genome assembly of Pocillopora meandrina". GigaScience. GigaScience Database. doi: 10.5524/102270.
  33. ^ Wong KH, Putnam HM (2022-07-29). "The genome of the mustard hill coral, Porites astreoides". GigaByte. 2022: 1–12. doi: 10.46471/gigabyte.65. PMC  9693771. PMID  36824531.
  34. ^ Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D (2022). "GigaDB Dataset – DOI 10.5524/102271 – Genome assembly of Porites compressa". GigaScience. GigaScience Database. doi: 10.5524/102271.
  35. ^ a b Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, et al. (November 2015). "Hemichordate genomes and deuterostome origins". Nature. 527 (7579): 459–65. Bibcode: 2015Natur.527..459S. doi: 10.1038/nature16150. PMC  4729200. PMID  26580012.
  36. ^ Baughman KW, McDougall C, Cummins SF, Hall M, Degnan BM, Satoh N, Shoguchi E (December 2014). "Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci". Genesis. 52 (12): 952–8. doi: 10.1002/dvg.22840. PMID  25394327. S2CID  32809575.
  37. ^ Jo J, Oh J, Lee HG, Hong HH, Lee SG, Cheon S, et al. (January 2017). "Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants". GigaScience. 6 (1): 1–6. doi: 10.1093/gigascience/giw006. PMC  5437941. PMID  28369350.
  38. ^ Lee Y, Kim B, Jung J, Koh B, Jhang SY, Ban C, et al. (July 2022). "Chromosome-level genome assembly of Plazaster borealis sheds light on the morphogenesis of multiarmed starfish and its regenerative capacity". GigaScience. 11. doi: 10.1093/gigascience/giac063. PMC  9270726. PMID  35809048.
  39. ^ Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, et al. (November 2006). "The genome of the sea urchin Strongylocentrotus purpuratus". Science. 314 (5801): 941–52. Bibcode: 2006Sci...314..941S. doi: 10.1126/science.1133609. PMC  3159423. PMID  17095691.
  40. ^ Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, et al. (December 2002). "The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins". Science. 298 (5601): 2157–67. Bibcode: 2002Sci...298.2157D. doi: 10.1126/science.1080049. PMID  12481130. S2CID  15987281.
  41. ^ Small KS, Brudno M, Hill MM, Sidow A (2007). "A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome". Genome Biology. 8 (3): R41. doi: 10.1186/gb-2007-8-3-r41. PMC  1868934. PMID  17374142.
  42. ^ Seo HC, Kube M, Edvardsen RB, Jensen MF, Beck A, Spriet E, et al. (December 2001). "Miniature genome in the marine chordate Oikopleura dioica". Science. 294 (5551): 2506. doi: 10.1126/science.294.5551.2506. PMID  11752568.
  43. ^ Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. (June 2008). "The amphioxus genome and the evolution of the chordate karyotype". Nature. 453 (7198): 1064–71. Bibcode: 2008Natur.453.1064P. doi: 10.1038/nature06967. PMID  18563158. S2CID  4418548.
  44. ^ Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW, Zhang Z, Wilkerson C, Li W (July 2009). "The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage". BMC Evolutionary Biology. 9 (1): 180. Bibcode: 2009BMCEE...9..180L. doi: 10.1186/1471-2148-9-180. PMC  2728731. PMID  19646260.
  45. ^ Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, et al. (April 2013). "Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution". Nature Genetics. 45 (4): 415–21, 421e1-2. doi: 10.1038/ng.2568. PMC  3709584. PMID  23435085.
  46. ^ Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, et al. (April 2007). "Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome". PLOS Biology. 5 (4): e101. doi: 10.1371/journal.pbio.0050101. PMC  1845163. PMID  17407382.
  47. ^ Marra NJ, Stanhope MJ, Jue NK, Wang M, Sun Q, Pavinski Bitar P, et al. (February 2019). "White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability". Proceedings of the National Academy of Sciences of the United States of America. 116 (10): 4446–4455. Bibcode: 2019PNAS..116.4446M. doi: 10.1073/pnas.1819778116. PMC  6410855. PMID  30782839.
  48. ^ Zhang Y, Gao H, Li H, Guo J, Ouyang B, Wang M, et al. (November 2020). "The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish". iScience. 23 (11): 101754. Bibcode: 2020iSci...23j1754Z. doi: 10.1016/j.isci.2020.101754. PMC  7677710. PMID  33251490.
  49. ^ a b Hara Y, Yamaguchi K, Onimaru K, Kadota M, Koyanagi M, Keeley SD, et al. (November 2018). "Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates". Nature Ecology & Evolution. 2 (11): 1761–1771. Bibcode: 2018NatEE...2.1761H. doi: 10.1038/s41559-018-0673-5. PMID  30297745. S2CID  52944566.
  50. ^ Read TD, Petit RA, Joseph SJ, Alam MT, Weil MR, Ahmad M, et al. (July 2017). "Draft sequencing and assembly of the genome of the world's largest fish, the whale shark: Rhincodon typus Smith 1828". BMC Genomics. 18 (1): 532. doi: 10.1186/s12864-017-3926-9. PMC  5513125. PMID  28709399.
  51. ^ Fan G, Chan J, Ma K, Yang B, Zhang H, Yang X, et al. (November 2018). "Chromosome-level reference genome of the Siamese fighting fish Betta splendens, a model species for the study of aggression". GigaScience. 7 (11). doi: 10.1093/gigascience/giy087. PMC  6251983. PMID  30010754.
  52. ^ a b c d e f g h i j Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (August 2020). "Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K)". GigaScience. 9 (8). doi: 10.1093/gigascience/giaa080. PMC  7433795. PMID  32810278.
  53. ^ Guangyi S, Yue S, Liandong Y, Xiaoyun H, Suyu Z, Mengqi Z, Xianwei Y, Yue C, He Z (2020). "Genomic data of the kissing gourami, Helostoma temminkii". GigaScience Database. doi: 10.5524/102190. Retrieved 2020-08-19.
  54. ^ Henkel CV, Burgerhout E, de Wijze DL, Dirks RP, Minegishi Y, Jansen HJ, et al. (2012-02-24). "Primitive duplicate Hox clusters in the European eel's genome". PLOS ONE. 7 (2): e32231. Bibcode: 2012PLoSO...732231H. doi: 10.1371/journal.pone.0032231. PMC  3286462. PMID  22384188.
  55. ^ Wang H, Wan HT, Wu B, Jian J, Ng AH, Chung CY, et al. (December 2022). "A Chromosome-level assembly of the Japanese eel genome, insights into gene duplication and chromosomal reorganization". GigaScience. 11. doi: 10.1093/gigascience/giac120. PMC  9730501. PMID  36480030.
  56. ^ Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, et al. (June 2007). "The medaka draft genome and insights into vertebrate genome evolution". Nature. 447 (7145): 714–9. Bibcode: 2007Natur.447..714K. doi: 10.1038/nature05846. PMID  17554307. S2CID  4419559.
  57. ^ Winter S, Prost S, De Raad J, Coimbra R, Wolf M, Nebenfuehr M, et al. (20 October 2020). "Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra". Gigabyte. 2020: 1–10. doi: 10.46471/gigabyte.6. PMC  9631949. PMID  36824592. S2CID  228961387.
  58. ^ Pickett BD, Glass JR, Johnson TP, Ridge PG, Kauwe JS (2022). "The genome of a giant (trevally): Caranx ignobilis". GigaByte. 2022: 1–16. doi: 10.46471/gigabyte.67. PMC  9694125. PMID  36824527.
  59. ^ Pickett BD, Glass JR, Ridge PG, Kauwe JS (September 2021). "De novo genome assembly of the marine teleost, bluefin trevally (Caranx melampygus)". G3: Genes, Genomes, Genetics. 11 (10). doi: 10.1093/g3journal/jkab229. PMC  8473972. PMID  34568914.
  60. ^ Catanach A, Ruigrok M, Bowatte D, Davy M, Storey R, Valenza-Troubat N, et al. (November 2021). "The genome of New Zealand trevally (Carangidae: Pseudocaranx georgianus) uncovers a XY sex determination locus". BMC Genomics. 22 (1): 785. doi: 10.1186/s12864-021-08102-2. PMC  8561880. PMID  34727894.
  61. ^ Xiao Y, Xiao Z, Ma D, Liu J, Li J (March 2019). "Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel, 1844): the first chromosome-level draft genome in the family Oplegnathidae". GigaScience. 8 (3). doi: 10.1093/gigascience/giz013. PMC  6423371. PMID  30715332.
  62. ^ McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, et al. (October 2014). "The cavefish genome reveals candidate genes for eye loss". Nature Communications. 5 (1): 5307. Bibcode: 2014NatCo...5.5307M. doi: 10.1038/ncomms6307. PMC  4218959. PMID  25329095.
  63. ^ Warren WC, Boggs TE, Borowsky R, et al. (July 2021). "A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution". Nature Communications. 12 (1447): 1447. Bibcode: 2021NatCo..12.1447W. doi: 10.1038/s41467-021-21733-z. PMC  7933363. PMID  33664263.
  64. ^ Hilsdorf AW, Silva MU, Coutinho LL, Montenegro H, Almeida-Val VM, Pinhal D (2021-09-27). "Genome assembly and annotation of the tambaqui (Colossoma macropomum): an emblematic fish of the Amazon River Basin". Gigabyte. 2021: 1–14. doi: 10.46471/gigabyte.29. PMC  9650303. PMID  36824330. S2CID  239207530.
  65. ^ Zu, Ru; Zhao, Zi-Xia; Xu, Peng; Sun, Xiao-Wen (24 Oct 2013). "The complete mitochondrial genome of the silvertip tetra, Hasemania nana (Characiformes: Characidae)". Mitochondrial DNA. 26 (6): 889–890. doi: 10.3109/19401736.2013.861445. PMID  24409871. S2CID  207747227.
  66. ^ Li, Chunyan; Sun, Zhijing; Fen, Shouming; Jiang, Jufeng; Wu, Huimen; Zhang, Zhenguo; Cai, Chao; Wang, Yongchen (29 Aug 2015). "The complete mitochondrial genome of Hemigrammus bleheri". Mitochondrial DNA Part A. 27 (6): 4449–4450. doi: 10.3109/19401736.2015.1089565. PMID  26544159. S2CID  3831171.
  67. ^ Duílio, M. Z. de A. Silva; Ricardo Utsunomia, Francisco J. Ruiz-Romano; Oliveira, Cláudio; Foresti, Fausto (5 Aug 2016). "The complete mitochondrial genome sequence of Astyanax paranae(Teleostei: characiformes)". Mitochondrial DNA Part B. 1 (1): 586–587. doi: 10.1080/23802359.2016.1222251. PMC  7800300. PMID  33490410.
  68. ^ a b Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ, Roberts RB, et al. (April 2019). "Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes". GigaScience. 8 (4). doi: 10.1093/gigascience/giz030. PMC  6447674. PMID  30942871.
  69. ^ Í Kongsstovu S, Dahl HA, Gislason H, Í Homrum E, Jacobsen JA, Flicek P, Mikalsen SO (April 2020). "Identification of male heterogametic sex determining regions on the Atlantic herring Clupea harengus genome". Journal of Fish Biology. 97 (1): 190–201. Bibcode: 2020JFBio..97..190I. doi: 10.1111/jfb.14349. PMC  7115899. PMID  32293027. S2CID  215774454.
  70. ^ Xu G, Bian C, Nie Z, Li J, Wang Y, Xu D, et al. (January 2020). "Genome and population sequencing of a chromosome-level genome assembly of the Chinese tapertail anchovy (Coilia nasus) provides novel insights into migratory adaptation". GigaScience. 9 (1). doi: 10.1093/gigascience/giz157. PMC  6939831. PMID  31895412.
  71. ^ Louro B, De Moro G, Garcia C, Cox CJ, Veríssimo A, Sabatino SJ, et al. (May 2019). "A haplotype-resolved draft genome of the European sardine (Sardina pilchardus)". GigaScience. 8 (5). doi: 10.1093/gigascience/giz059. PMC  6528745. PMID  31112613.
  72. ^ Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H, Maccallum I, et al. (April 2013). "The African coelacanth genome provides insights into tetrapod evolution". Nature. 496 (7445): 311–6. Bibcode: 2013Natur.496..311A. doi: 10.1038/nature12027. PMC  3633110. PMID  23598338.
  73. ^ Jiang W, Qiu Y, Pan X, Zhang Y, Wang X, Lv Y, et al. (2018). "Anabarilius grahami (Regan), and Its Evolutionary and Genetic Applications". Frontiers in Genetics. 9: 614. doi: 10.3389/fgene.2018.00614. PMC  6288284. PMID  30564274.
  74. ^ "Ensembl genome browser 59: Danio rerio - Description - Search Ensembl Zebrafish". Ensembl.org. Retrieved 2010-08-27.
  75. ^ Hu S, Niu J, Xie P, Liu C, Karjan A, Wang F, Ma X (2014-01-27). "The complete mitochondrial genome of Leuciscus leuciscus baicalensis (Cypriniformes: Cyprinidae)". Mitochondrial DNA. 26 (5): 751–752. doi: 10.3109/19401736.2013.848353. PMID  24460156. S2CID  42320065.
  76. ^ Hung-du Lin; Feng-Jiau Lin; Tzen-Yuh Chiang & Teh-Wang Lee (2015). "The complete mitochondrial genome sequence of Metzia formosae (Cypriniformes, Cyprinidae)". Mitochondrial DNA. 26 (2): 257–258. doi: 10.3109/19401736.2013.823187. PMID  24021002.
  77. ^ Liu HP, Xiao SJ, Wu N, Wang D, Liu YC, Zhou CW, et al. (February 2019). "The sequence and de novo assembly of Oxygymnocypris stewartii genome". Scientific Data. 6: 190009. Bibcode: 2019NatSD...690009L. doi: 10.1038/sdata.2019.9. PMC  6362891. PMID  30720802.
  78. ^ Liu H, Chen C, Gao Z, Min J, Gu Y, Jian J, et al. (July 2017). "The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet". GigaScience. 6 (7): 1–13. doi: 10.1093/gigascience/gix039. PMC  5570040. PMID  28535200.
  79. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the rosy bitterling, Rhodeus ocellatus". GigaScience Database. doi: 10.5524/102192.
  80. ^ Yuan D, Chen X, Gu H, Zou M, Zou Y, Fang J, et al. (November 2020). "Chromosomal genome of Triplophysa bleekeri provides insights into its evolution and environmental adaptation". GigaScience. 9 (11). doi: 10.1093/gigascience/giaa132. PMC  7684707. PMID  33231676.
  81. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of Pseudobrama simoni". GigaScience Database. doi: 10.5524/102191.
  82. ^ a b c d Johnson LK, Sahasrabudhe R, Gill JA, Roach JL, Froenicke L, Brown CT, Whitehead A (June 2020). "Draft genome assemblies using sequencing reads from Oxford Nanopore Technology and Illumina platforms for four species of North American Fundulus killifish". GigaScience. 9 (6). doi: 10.1093/gigascience/giaa067. PMC  7301629. PMID  32556169.
  83. ^ Shao F, Ludwig A, Mao Y, Liu N, Peng Z (August 2020). "Chromosome-level genome assembly of the female western mosquitofish (Gambusia affinis)". GigaScience. 9 (8). doi: 10.1093/gigascience/giaa092. PMC  7450667. PMID  32852039.
  84. ^ van Kruistum H, van den Heuvel J, Travis J, Kraaijeveld K, Zwaan BJ, Groenen MA, Megens HJ, Pollux BJ (July 2019). "The genome of the live-bearing fish Heterandria formosa implicates a role of conserved vertebrate genes in the evolution of placental fish". BMC Evolutionary Biology. 19 (1): 156. Bibcode: 2019BMCEE..19..156V. doi: 10.1186/s12862-019-1484-2. PMC  6660938. PMID  31349784.
  85. ^ Charlesworth D, Graham C, Trivedi U, Gardner J, Bergero R (July 2021). "PromethION sequencing and assembly of the genome of Micropoecilia picta, a fish with a highly Degenerated Y chromosome". Genome Biology and Evolution. 13 (9). evab171. doi: 10.1093/gbe/evab171. PMC  8449826. PMID  34297069.
  86. ^ Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, et al. (May 2013). "The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits". Nature Genetics. 45 (5): 567–72. doi: 10.1038/ng.2604. PMC  3677569. PMID  23542700.
  87. ^ Harel I, Benayoun BA, Machado B, Singh PP, Hu CK, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE, Brunet A (February 2015). "A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate". Cell. 160 (5): 1013–1026. doi: 10.1016/j.cell.2015.01.038. PMC  4344913. PMID  25684364.
  88. ^ Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, et al. (December 2015). "Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish". Cell. 163 (6): 1527–38. doi: 10.1016/j.cell.2015.10.071. PMID  26638077. S2CID  16423362.
  89. ^ Valenzano DR, Benayoun BA, Singh PP, Zhang E, Etter PD, Hu CK, Clément-Ziza M, Willemsen D, Cui R, Harel I, Machado BE, Yee MC, Sharp SC, Bustamante CD, Beyer A, Johnson EA, Brunet A (December 2015). "The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan". Cell. 163 (6): 1539–54. doi: 10.1016/j.cell.2015.11.008. PMC  4684691. PMID  26638078.
  90. ^ Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, et al. (February 2021). "African lungfish genome sheds light on the vertebrate water-to-land transition". Cell. 184 (5): 1362–1376.e18. doi: 10.1016/j.cell.2021.01.047. PMID  33545087. S2CID  231809825.
  91. ^ Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, et al. (2014). "The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei". PLOS ONE. 9 (7): e102089. Bibcode: 2014PLoSO...9j2089R. doi: 10.1371/journal.pone.0102089. PMC  4113312. PMID  25069045.
  92. ^ Ma Y, Lou F, Yin X, Cong B, Liu S, Zhao L, Zheng L (July 2022). "Whole-genome survey and phylogenetic analysis of Gadus macrocephalus". Bioscience Reports. 42 (7). doi: 10.1042/bsr20221037. PMC  9289796. PMID  35788826.
  93. ^ Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrøm M, Gregers TF, et al. (August 2011). "The genome sequence of Atlantic cod reveals a unique immune system". Nature. 477 (7363): 207–210. Bibcode: 2011Natur.477..207S. doi: 10.1038/nature10342. PMC  3537168. PMID  21832995.
  94. ^ Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. (April 2012). "The genomic basis of adaptive evolution in threespine sticklebacks". Nature. 484 (7392): 55–61. Bibcode: 2012Natur.484...55.. doi: 10.1038/nature10944. PMC  3322419. PMID  22481358.
  95. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the marble goby, Oxyeleotris marmorata". GigaScience Database. doi: 10.5524/102185. Retrieved 2020-08-19.
  96. ^ Yang Y, Yoo JY, Baek SH, Song HY, Jo S, Jung SH, Choi JH (January 2022). "Chromosome-level genome assembly of the shuttles hoppfish, Periophthalmus modestus". GigaScience. 11 (1): giab089. doi: 10.1093/gigascience/giab089. PMC  8756193. PMID  35022698.
  97. ^ Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen PH, Novina CD, et al. (June 2014). "Nonhuman genetics. Genomic basis for the convergent evolution of electric organs". Science. 344 (6191): 1522–5. doi: 10.1126/science.1254432. PMC  5541775. PMID  24970089.
  98. ^ Wang X, Qu M, Liu Y, Schneider RF, Song Y, Chen Z, et al. (January 2022). "Genomic basis of evolutionary adaptation in a warm-blooded fish". Innovation. 3 (1): 100185. Bibcode: 2022Innov...300185W. doi: 10.1016/j.xinn.2021.100185. PMC  8693259. PMID  34984407.
  99. ^ "Spotted gar". Ensembl. Retrieved 11 September 2014.
  100. ^ Zhong L, Wang M, Li D, Tang S, Zhang T, Bian W, Chen X (September 2016). "Complete mitochondrial genome of Chinese icefish Neosalanx tangkahkeiis (Salmoniformes, Salangidae): comparison reveals Neosalanx taihuensis not a valid name". Mitochondrial DNA Part A. 27 (5): 3303–3305. doi: 10.3109/19401736.2015.1015014. PMID  25693716. S2CID  5644729.
  101. ^ Liu K, Xu D, Li J, Bian C, Duan J, Zhou Y, et al. (April 2017). "Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius". GigaScience. 6 (4): 1–6. doi: 10.1093/gigascience/giw012. PMC  5530312. PMID  28327943.
  102. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genome data of the African bonytongue, Heterotis niloticus". GigaScience Database. doi: 10.5524/102184. Retrieved 2020-08-19.
  103. ^ Gallant JR, Losilla M, Tomlinson C, Warren WC (December 2017). "The Genome and Adult Somatic Transcriptome of the Mormyrid Electric Fish Paramormyrops kingsleyae". Genome Biology and Evolution. 9 (12): 3525–3530. doi: 10.1093/gbe/evx265. PMC  5751062. PMID  29240929.
  104. ^ Bian C, Hu Y, Ravi V, Kuznetsova IS, Shen X, Mu X, et al. (April 2016). "The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts". Scientific Reports. 6 (1): 24501. Bibcode: 2016NatSR...624501B. doi: 10.1038/srep24501. PMC  4835728. PMID  27089831.
  105. ^ Li C, Yang X, Shao L, Zhang R, Liu Q, Zhang M, et al. (2021-11-09). "Bicolor angelfish (Centropyge bicolor) provides the first chromosome-level genome of the Pomacanthidae family". Gigabyte. 2021: 1–13. doi: 10.46471/gigabyte.32. PMC  9650296. PMID  36824335. S2CID  243958461.
  106. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the melon butterflyfish, Chaetodon trifasciatus". GigaScience Database. doi: 10.5524/102187.
  107. ^ Xu J, Bian C, Chen K, Liu G, Jiang Y, Luo Q, et al. (April 2017). "Draft genome of the Northern snakehead, Channa argus". GigaScience. 6 (4): 1–5. doi: 10.1093/gigascience/gix011. PMC  5530311. PMID  28327946.
  108. ^ a b Ou M, Huang R, Yang C, Gui B, Luo Q, Zhao J, et al. (October 2021). "Chromosome-level genome assemblies of Channa argusandChanna maculata and comparative analysis of their temperature adaptability". GigaScience. 10 (10). doi: 10.1093/gigascience/giab070. PMC  8529964. PMID  34673930.
  109. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the copperband butterflyfish, Chelmon rostratus". GigaScience Database. doi: 10.5524/102189. Retrieved 2020-08-19.
  110. ^ a b Chen L, Lu Y, Li W, Ren Y, Yu M, Jiang S, et al. (April 2019). "The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes". GigaScience. 8 (4). doi: 10.1093/gigascience/giz016. PMC  6457430. PMID  30715292.
  111. ^ Zhou Q, Gao H, Xu H, Lin H, Chen S (February 2021). "Correction to: A Chromosomal-scale Reference Genome of the Kelp Grouper Epinephelus moara". Marine Biotechnology. 23 (1): 17. doi: 10.1007/s10126-020-10003-6. ISSN  1436-2228. PMID  33638737. S2CID  222217077.
  112. ^ Wu C, Zhang D, Kan M, Lv Z, Zhu A, Su Y, et al. (November 2014). "The draft genome of the large yellow croaker reveals well-developed innate immunity". Nature Communications. 5: 5227. Bibcode: 2014NatCo...5.5227W. doi: 10.1038/ncomms6227. PMC  4263168. PMID  25407894.
  113. ^ Norrell AE, Jones KL, Saillant EA (2020-04-29). "Development and characterization of genomic resources for a non-model marine teleost, the red snapper (Lutjanus campechanus, Lutjanidae): Construction of a high-density linkage map, anchoring of genome contigs and comparative genomic analysis". PLOS ONE. 15 (4): e0232402. Bibcode: 2020PLoSO..1532402N. doi: 10.1371/journal.pone.0232402. PMC  7190162. PMID  32348345.
  114. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the bignose unicornfish, Naso vlamingii". GigaScience Database. doi: 10.5524/102188.
  115. ^ Ahn DH, Shin SC, Kim BM, Kang S, Kim JH, Ahn I, Park J, Park H (August 2017). "Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti". GigaScience. 6 (8): 1–6. doi: 10.1093/gigascience/gix060. PMC  5597851. PMID  28873966.
  116. ^ Sarropoulou E, Sundaram AY, Kaitetzidou E, Kotoulas G, Gilfillan GD, Papandroulakis N, et al. (December 2017). "Full genome survey and dynamics of gene expression in the greater amberjack Seriola dumerili". GigaScience. 6 (12): 1–13. doi: 10.1093/gigascience/gix108. PMC  5751066. PMID  29126158.
  117. ^ Xu S, Xiao S, Zhu S, Zeng X, Luo J, Liu J, et al. (September 2018). "A draft genome assembly of the Chinese sillago (Sillago sinica), the first reference genome for Sillaginidae fishes". GigaScience. 7 (9). doi: 10.1093/gigascience/giy108. PMC  6143730. PMID  30202912.
  118. ^ Lu L, Zhao J, Li C (March 2020). "High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii)". G3: Genes, Genomes, Genetics. 10 (3): 877–880. doi: 10.1534/g3.119.400930. PMC  7056987. PMID  31953307.
  119. ^ Pauletto M, Manousaki T, Ferraresso S, Babbucci M, Tsakogiannis A, Louro B, et al. (2018-08-17). "Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish". Communications Biology. 1 (1): 119. doi: 10.1038/s42003-018-0122-7. PMC  6123679. PMID  30271999.
  120. ^ Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. (May 2016). "The Atlantic salmon genome provides insights into rediploidization". Nature. 533 (7602): 200–5. Bibcode: 2016Natur.533..200L. doi: 10.1038/nature17164. PMC  8127823. PMID  27088604. S2CID  4398298.
  121. ^ Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al. (April 2014). "The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates". Nature Communications. 5: 3657. Bibcode: 2014NatCo...5.3657B. doi: 10.1038/ncomms4657. PMC  4071752. PMID  24755649.
  122. ^ Christensen KA, Leong JS, Sakhrani D, Biagi CA, Minkley DR, Withler RE, et al. (2018-04-05). "Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome". PLOS ONE. 13 (4): e0195461. Bibcode: 2018PLoSO..1395461C. doi: 10.1371/journal.pone.0195461. PMC  5886536. PMID  29621340.
  123. ^ Narum SR, Di Genova A, Micheletti SJ, Maass A (July 2018). "Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon". Proceedings. Biological Sciences. 285 (1883): 20180935. doi: 10.1098/rspb.2018.0935. PMC  6083255. PMID  30051839.
  124. ^ Smith SR, Normandeau E, Djambazian H, Nawarathna PM, Berube P, Muir AM, et al. (February 2022). "A chromosome-anchored genome assembly for Lake Trout (Salvelinus namaycush)". Molecular Ecology Resources. 22 (2): 679–694. doi: 10.1111/1755-0998.13483. PMC  9291852. PMID  34351050. S2CID  234859350.
  125. ^ He Y, Chang Y, Bao L, Yu M, Li R, Niu J, et al. (May 2019). "A chromosome-level genome of black rockfish, Sebastes schlegelii, provides insights into the evolution of live birth" (PDF). Molecular Ecology Resources. 19 (5): 1309–1321. doi: 10.1111/1755-0998.13034. PMID  31077549. S2CID  149454779.
  126. ^ Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, et al. (June 2016). "The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts". Nature Communications. 7: 11757. Bibcode: 2016NatCo...711757L. doi: 10.1038/ncomms11757. PMC  4895719. PMID  27249958.
  127. ^ Ozerov MY, Flajšhans M, Noreikiene K, Vasemägi A, Gross R (November 2020). "Draft Genome Assembly of the Freshwater Apex Predator Wels Catfish (Silurus glanis) Using Linked-Read Sequencing". G3: Genes, Genomes, Genetics. 10 (11): 3897–3906. doi: 10.1534/g3.120.401711. PMC  7642921. PMID  32917720. S2CID  221636677. Archived from the original on 2020-11-26. Retrieved 2020-11-11.
  128. ^ Gao Z, You X, Zhang X, Chen J, Xu T, Huang Y, Lin X, Xu J, Bian C, Shi Q (September 2021). "A chromosome-level genome assembly of the striped catfish (Pangasianodon hypophthalmus)". Genomics. 113 (5): 3349–3356. doi: 10.1016/j.ygeno.2021.07.026. ISSN  0888-7543. PMID  34343676.
  129. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the Siamese tigerfish, Datnioides pulcher". GigaScience Database. doi: 10.5524/102186.
  130. ^ Sun S, Wang Y, Zeng W, Du X, Li L, Hong X, et al. (May 2020). "The genome of Mekong tiger perch (Datnioides undecimradiatus) provides insights into the phylogenetic position of Lobotiformes and biological conservation". Scientific Reports. 10 (1): 8164. Bibcode: 2020NatSR..10.8164S. doi: 10.1038/s41598-020-64398-2. PMC  7235238. PMID  32424221. S2CID  218670972.
  131. ^ Small CM, Bassham S, Catchen J, Amores A, Fuiten AM, Brown RS, et al. (December 2016). "The genome of the Gulf pipefish enables understanding of evolutionary innovations". Genome Biology. 17 (1): 258. doi: 10.1186/s13059-016-1126-6. PMC  5168715. PMID  27993155.
  132. ^ Ramesh B, Small CM, Healey H, Johnson B, Barker E, Currey M, et al. (2023-02-20). "Improvements to the Gulf pipefish Syngnathus scovelli genome". GigaByte. 2023: 1–11. doi: 10.46471/gigabyte.76. PMC  10038202. PMID  36969711.
  133. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genome data of the long-spine porcupinefish, Diodon holocanthus". GigaScience Database. doi: 10.5524/102183.
  134. ^ Pan H, Yu H, Ravi V, Li C, Lee AP, Lian MM, et al. (September 2016). "The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate". GigaScience. 5 (1): 36. doi: 10.1186/s13742-016-0144-3. PMC  5016917. PMID  27609345.
  135. ^ "Fourth Genome Assembly". Fugu Genome Project. International Fugu Genome Consortium. Archived from the original on 2010-01-31.
  136. ^ Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, et al. (August 2002). "Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes". Science. 297 (5585): 1301–10. Bibcode: 2002Sci...297.1301A. doi: 10.1126/science.1072104. PMID  12142439. S2CID  10310355.
  137. ^ Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. (October 2004). "Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype". Nature. 431 (7011): 946–57. Bibcode: 2004Natur.431..946J. doi: 10.1038/nature03025. PMID  15496914. S2CID  4414316.
  138. ^ Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AW, Pippel M, et al. (February 2018). "The axolotl genome and the evolution of key tissue formation regulators". Nature. 554 (7690): 50–55. Bibcode: 2018Natur.554...50N. doi: 10.1038/nature25458. hdl: 21.11116/0000-0003-F659-4. PMID  29364872. S2CID  256770603.
  139. ^ Farquharson, Katherine A.; McLennan, Elspeth A.; Belov, Katherine; Hogg, Carolyn J. (2023-07-18). "The genome sequence of the critically endangered Kroombit tinkerfrog (Taudactylus pleione)". F1000Research. 12 (845): 845. doi: 10.12688/f1000research.138571.1. PMC  10474343. PMID  37663197.
  140. ^ Li J, Yu H, Wang W, Fu C, Zhang W, Han F, Wu H (December 2019). "Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense". Nature Communications. 10 (1): 5551. Bibcode: 2019NatCo..10.5551L. doi: 10.1038/s41467-019-13531-5. PMC  6895153. PMID  31804492.
  141. ^ Li Q, Guo Q, Zhou Y, Tan H, Bertozzi T, Zhu Y, et al. (2020). "A draft genome assembly of the eastern banjo frog Limnodynastes dumerilii dumerilii (Anura: Limnodynastidae)". Gigabyte. 2020: 1–13. doi: 10.46471/gigabyte.2. PMC  9632003. PMID  36824594. S2CID  229079337.
  142. ^ Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, et al. (March 2015). "Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes". Proceedings of the National Academy of Sciences of the United States of America. 112 (11): E1257-62. Bibcode: 2015PNAS..112E1257S. doi: 10.1073/pnas.1501764112. PMC  4371989. PMID  25733869.
  143. ^ Rogers RL, Zhou L, Chu C, Márquez R, Corl A, Linderoth T, et al. (December 2018). "Genomic Takeover by Transposable Elements in the Strawberry Poison Frog". Molecular Biology and Evolution. 35 (12): 2913–2927. doi: 10.1093/molbev/msy185. PMC  6278860. PMID  30517748.
  144. ^ Lamichhaney S, Catullo R, Keogh JS, Clulow S, Edwards SV, Ezaz T (March 2021). "A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, Platyplectrum ornatum". Proceedings of the National Academy of Sciences of the United States of America. 118 (11): e2011649118. Bibcode: 2021PNAS..11811649L. doi: 10.1073/pnas.2011649118. PMC  7980411. PMID  33836564.
  145. ^ Denton RD, Kudra RS, Malcom JW, Du Preez L, Malone JH (2018-11-20). "The African Bullfrog (Pyxicephalus adspersus) genome unites the two ancestral ingredients for making vertebrate sex chromosomes". bioRxiv: 329847. doi: 10.1101/329847. S2CID  90800869.
  146. ^ Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA, Pandoh P, Kirk H, Zhao Y, Jones M, Mungall AJ, Coope R, Pleasance S, Moore RA, Holt RA, Round JM, Ohora S, Walle BV, Veldhoen N, Helbing CC, Birol I (November 2017). "The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA". Nature Communications. 8 (1): 1433. Bibcode: 2017NatCo...8.1433H. doi: 10.1038/s41467-017-01316-7. PMC  5681567. PMID  29127278.
  147. ^ Chen W, Chen H, Liao J, Tang M, Qin H, Zhao Z, et al. (January 2023). "Chromosome-level genome assembly of a high-altitude-adapted frog (Rana kukunoris) from the Tibetan plateau provides insight into amphibian genome evolution and adaptation". Frontiers in Zoology. 20 (1): 1. doi: 10.1186/s12983-022-00482-9. PMC  9817415. PMID  36604706.
  148. ^ Edwards RJ, Tuipulotu DE, Amos TG, O'Meally D, Richardson MF, Russell TL, et al. (August 2018). "Draft genome assembly of the invasive cane toad, Rhinella marina". GigaScience. 7 (9). doi: 10.1093/gigascience/giy095. PMC  6145236. PMID  30101298.
  149. ^ Li Y, Ren Y, Zhang D, Jiang H, Wang Z, Li X, Rao D (September 2019). "Chromosome-level assembly of the mustache toad genome using third-generation DNA sequencing and Hi-C analysis". GigaScience. 8 (9). doi: 10.1093/gigascience/giz114. PMC  6755253. PMID  31544214.
  150. ^ Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. (April 2010). "The genome of the Western clawed frog Xenopus tropicalis". Science. 328 (5978): 633–6. Bibcode: 2010Sci...328..633H. doi: 10.1126/science.1183670. PMC  2994648. PMID  20431018.
  151. ^ a b c St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, et al. (January 2012). "Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes". Genome Biology. 13 (1): 415. doi: 10.1186/gb-2012-13-1-415. PMC  3334581. PMID  22293439.
  152. ^ Wan QH, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, et al. (September 2013). "Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator". Cell Research. 23 (9): 1091–105. doi: 10.1038/cr.2013.104. PMC  3760627. PMID  23917531.
  153. ^ Wan QH, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, et al. (March 28, 2014). "Genomic data of the Chinese alligator (Alligator sinensis)". GigaScience Database. doi: 10.5524/100077.
  154. ^ Gemmell NJ, Rutherford K, Prost S, Tollis M, Winter D, Macey JR, et al. (August 2020). "The tuatara genome reveals ancient features of amniote evolution". Nature. 584 (7821): 403–409. doi: 10.1038/s41586-020-2561-9. PMC  7116210. PMID  32760000.
  155. ^ Tang CY, Zhang X, Xu X, Sun S, Peng C, Song MH, et al. (March 2023). "Genetic mapping and molecular mechanism behind color variation in the Asian vine snake". Genome Biology. 24 (1): 46. doi: 10.1186/s13059-023-02887-z. PMC  9999515. PMID  36895044.
  156. ^ Gower DJ, Fleming JF, Pisani D, Vonk FJ, Kerkkamp HM, Peichl L, et al. (December 2021). "Eye-Transcriptome and Genome-Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake". Genome Biology and Evolution. 13 (12). doi: 10.1093/gbe/evab253. PMC  8643396. PMID  34791190.
  157. ^ Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, et al. (August 2011). "The genome of the green anole lizard and a comparative analysis with birds and mammals". Nature. 477 (7366): 587–91. Bibcode: 2011Natur.477..587A. doi: 10.1038/nature10390. PMC  3184186. PMID  21881562.
  158. ^ Wood DA, Richmond JQ, Escalona M, Marimuthu MP, Nguyen O, Sacco S, et al. (November 2022). "Reference genome of the California glossy snake, Arizona elegans occidentalis: A declining California Species of Special Concern". The Journal of Heredity. 113 (6): 632–640. doi: 10.1093/jhered/esac040. PMC  9923794. PMID  35939354.
  159. ^ Myers EA, Strickland JL, Rautsaw RM, Mason AJ, Schramer TD, Nystrom GS, et al. (July 2022). "De Novo Genome Assembly Highlights the Role of Lineage-Specific Gene Duplications in the Evolution of Venom in Fea's Viper (Azemiops feae)". Genome Biology and Evolution. 14 (7). doi: 10.1093/gbe/evac082. PMC  9256536. PMID  35670514.
  160. ^ Card DC, Adams RH, Schield DR, Perry BW, Corbin AB, Pasquesi GI, et al. (November 2019). "Genomic Basis of Convergent Island Phenotypes in Boa Constrictors". Genome Biology and Evolution. 11 (11): 3123–3143. doi: 10.1093/gbe/evz226. PMC  6836717. PMID  31642474.
  161. ^ Almeida DD, Viala VL, Nachtigall PG, Broe M, Gibbs HL, de Toledo Serrano SM, Moura-da-Silva AM, Ho PL, Nishiyama MY Jr, Junqueira-de-Azevedo IL (2021). "Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the Bothrops jararaca genome". Proceedings of the National Academy of Sciences of the United States of America. 118 (20): e2015159118. Bibcode: 2021PNAS..11815159A. doi: 10.1073/pnas.2015159118. PMC  8157943. PMID  33972420.
  162. ^ Zhang ZY, Lv Y, Wu W, Yan C, Tang CY, Peng C, Li JT (July 2022). "The structural and functional divergence of a neglected three-finger toxin subfamily in lethal elapids". Cell Reports. 40 (2): 111079. doi: 10.1016/j.celrep.2022.111079. PMID  35830808. S2CID  250511576.
  163. ^ Xu J, Guo S, Yin X, Li M, Su H, Liao X, et al. (May 2023). "Genomic, transcriptomic, and epigenomic analysis of a medicinal snake, Bungarus multicinctus, to provides insights into the origin of Elapidae neurotoxins". Acta Pharmaceutica Sinica B. 13 (5): 2234–2249. doi: 10.1016/j.apsb.2022.11.015. PMC  10213816. PMID  37250171.
  164. ^ Liu B, Cui L, Deng Z, Ma Y, Yang D, Gong Y, et al. (2023-06-29). "The genome assembly and annotation of the many-banded krait, Bungarus multicinctus". Gigabyte. 2023: gigabyte82. doi: 10.46471/gigabyte.82. ISSN  2709-4715. PMC  10315667. PMID  37404266. S2CID  259321695.
  165. ^ Grismer JL, Escalona M, Miller C, Beraut E, Fairbairn CW, Marimuthu MP, et al. (November 2022). "Reference genome of the rubber boa, Charina bottae (Serpentes: Boidae)". The Journal of Heredity. 113 (6): 641–648. doi: 10.1093/jhered/esac048. PMC  9709994. PMID  36056886.
  166. ^ Dinesh D, Mitra I, Roy S (2023-05-14). "The Complete Genome Sequence of Chyrsopelea ornata, Ornate Flying Snake". Biodiversity Genomes. doi: 10.56179/001c.75385.
  167. ^ Hogan MP, Whittington AC, Broe MB, Ward MJ, Gibbs HL, Rokyta DR (June 2021). "The Chemosensory Repertoire of the Eastern Diamondback Rattlesnake (Crotalus adamanteus) Reveals Complementary Genetics of Olfactory and Vomeronasal-Type Receptors". Journal of Molecular Evolution. 89 (4–5): 313–328. Bibcode: 2021JMolE..89..313H. doi: 10.1007/s00239-021-10007-3. PMID  33881604. S2CID  233326982.
  168. ^ Gilbert C, Meik JM, Dashevsky D, Card DC, Castoe TA, Schaack S (September 2014). "Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes". Proceedings. Biological Sciences. 281 (1791): 20141122. doi: 10.1098/rspb.2014.1122. PMC  4132678. PMID  25080342.
  169. ^ Margres MJ, Rautsaw RM, Strickland JL, Mason AJ, Schramer TD, Hofmann EP, et al. (January 2021). "The Tiger Rattlesnake genome reveals a complex genotype underlying a simple venom phenotype". Proceedings of the National Academy of Sciences of the United States of America. 118 (4). Bibcode: 2021PNAS..11814634M. doi: 10.1073/pnas.2014634118. PMC  7848695. PMID  33468678.
  170. ^ Pasquesi GI, Adams RH, Card DC, Schield DR, Corbin AB, Perry BW, et al. (July 2018). "Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals". Nature Communications. 9 (1): 2774. Bibcode: 2018NatCo...9.2774P. doi: 10.1038/s41467-018-05279-1. PMC  6050309. PMID  30018307.
  171. ^ Saethang T, Somparn P, Payungporn S, Sriswasdi S, Yee KT, Hodge K, et al. (July 2022). "Identification of Daboia siamensis venome using integrated multi-omics data". Scientific Reports. 12 (1): 13140. Bibcode: 2022NatSR..1213140S. doi: 10.1038/s41598-022-17300-1. PMC  9338987. PMID  35907887.
  172. ^ Yin W, Wang ZJ, Li QY, Lian JM, Zhou Y, Lu BZ, et al. (October 2016). "Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper". Nature Communications. 7 (1): 13107. Bibcode: 2016NatCo...713107Y. doi: 10.1038/ncomms13107. PMC  5059746. PMID  27708285.
  173. ^ Song B, Cheng S, Sun Y, Zhong X, Jin J, Guan R, Murphy RW, Che J, Zhang Y, Liu X (2015). "A genome draft of the legless anguid lizard, Ophisaurus gracilis". GigaScience. 4: 17. doi: 10.1186/s13742-015-0056-7. PMC  4391233. PMID  25859342.
  174. ^ Mahtani-Williams S, Fulton W, Desvars-Larrive A, Lado S, Elbers JP, Halpern B, et al. (October 2020). "Landscape Genomics of a Widely Distributed Snake, Dolichophis caspius (Gmelin, 1789) across Eastern Europe and Western Asia". Genes. 11 (10): 1218. doi: 10.3390/genes11101218. PMC  7603136. PMID  33080926.
  175. ^ a b c d Kishida T, Go Y, Tatsumoto S, Tatsumi K, Kuraku S, Toda M (2019). "Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes". Proceedings of the Royal Society B: Biological Sciences. 286 (1910): 20191828. doi: 10.1098/rspb.2019.1828. PMC  6742997. PMID  31506057.
  176. ^ Xiong Z, Li F, Li Q, Zhou L, Gamble T, Zheng J, et al. (October 2016). "Draft genome of the leopard gecko, Eublepharis macularius". GigaScience. 5 (1): 47. doi: 10.1186/s13742-016-0151-4. PMC  5080775. PMID  27784328.
  177. ^ Shibata H, Chijiwa T, Oda-Ueda N, Nakamura H, Yamaguchi K, Hattori S, et al. (July 2018). "The habu genome reveals accelerated evolution of venom protein genes". Scientific Reports. 8 (1): 11300. Bibcode: 2018NatSR...811300S. doi: 10.1038/s41598-018-28749-4. PMC  6062510. PMID  30050104.
  178. ^ Aird SD, Arora J, Barua A, Qiu L, Terada K, Mikheyev AS (October 2017). "Population Genomic Analysis of a Pitviper Reveals Microevolutionary Forces Underlying Venom Chemistry". Genome Biology and Evolution. 9 (10): 2640–2649. doi: 10.1093/gbe/evx199. PMC  5737360. PMID  29048530.
  179. ^ Dyson CJ, Pfennig A, Ariano-Sánchez D, Lachance J, Mendelson Iii JR, Goodisman MA (December 2022). "Genome of the endangered Guatemalan Beaded Lizard, Heloderma charlesbogerti, reveals evolutionary relationships of squamates and declines in effective population sizes". G3: Genes, Genomes, Genetics. 12 (12). doi: 10.1093/g3journal/jkac276. PMC  9713440. PMID  36226801.
  180. ^ Leitão HG, Diedericks G, Broeckhoven C, Baeckens S, Svardal H (February 2023). "Chromosome-Level Genome Assembly of the Cape Cliff Lizard (Hemicordylus capensis)". Genome Biology and Evolution. 15 (2). doi: 10.1093/gbe/evad001. PMC  9907493. PMID  36624992.
  181. ^ Peng C, Ren JL, Deng C, Jiang D, Wang J, Qu J, et al. (June 2020). "The Genome of Shaw's Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment". Molecular Biology and Evolution. 37 (6): 1744–1760. doi: 10.1093/molbev/msaa043. PMID  32077944.
  182. ^ Li A, Wang J, Sun K, Wang S, Zhao X, Wang T, et al. (October 2021). "Two Reference-Quality Sea Snake Genomes Reveal Their Divergent Evolution of Adaptive Traits and Venom Systems". Molecular Biology and Evolution. 38 (11): 4867–4883. doi: 10.1093/molbev/msab212. PMC  8557462. PMID  34320652.
  183. ^ Khedkar G, Kambayashi C, Tabata H, Takemura I, Minei R, Ogura A, Kurabayashi A (July 2022). "The draft genome sequence of the Brahminy blindsnake Indotyphlops braminus". Scientific Data. 9 (1): 410. Bibcode: 2022NatSD...9..410K. doi: 10.1038/s41597-022-01530-z. PMC  9287396. PMID  35840572.
  184. ^ Morrill BH, Bessell IS, Pirro S (2022-12-27). "The Complete Genome Sequence of Morelia viridis, the Green Tree Python". Biodiversity Genomes. 2022: 18–19. doi: 10.56179/001c.66204. PMC  9835526. PMID  36644785.
  185. ^ Köhler G, Khaing KP, Than NL, Baranski D, Schell T, Greve C, et al. (January 2021). "A new genus and species of mud snake from Myanmar (Reptilia, Squamata, Homalopsidae)". Zootaxa. 4915 (3): zootaxa.4915.3.1. doi: 10.11646/zootaxa.4915.3.1. PMID  33756559. S2CID  232339097.
  186. ^ Suryamohan K, Krishnankutty SP, Guillory J, Jevit M, Schröder MS, Wu M, et al. (January 2020). "The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins". Nature Genetics. 52 (1): 106–117. doi: 10.1038/s41588-019-0559-8. PMC  8075977. PMID  31907489.
  187. ^ a b Galbraith JD, Ludington AJ, Sanders KL, Amos TG, Thomson VA, Enosi Tuipulotu D, et al. (January 2022). "Horizontal Transposon Transfer and Its Implications for the Ancestral Ecology of Hydrophiine Snakes". Genes. 13 (2): 217. doi: 10.3390/genes13020217. PMC  8872380. PMID  35205262.
  188. ^ Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, et al. (December 2013). "The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system". Proceedings of the National Academy of Sciences of the United States of America. 110 (51): 20651–6. Bibcode: 2013PNAS..11020651V. doi: 10.1073/pnas.1314702110. PMC  3870661. PMID  24297900.
  189. ^ Ullate-Agote A, Milinkovitch MC, Tzika AC (2015-07-02). "The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates". The International Journal of Developmental Biology. 58 (10–12): 881–8. doi: 10.1387/ijdb.150060at. PMID  26154328.
  190. ^ Ullate-Agote, Asier; Tzika, Athanasia C. (2021). "Characterization of the Leucistic Texas Rat Snake Pantherophis obsoletus". Frontiers in Ecology and Evolution. 9. doi: 10.3389/fevo.2021.583136. ISSN  2296-701X.
  191. ^ Georges A, Li Q, Lian J, O'Meally D, Deakin J, Wang Z, et al. (2015-12-01). "High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps". GigaScience. 4 (1): 45. doi: 10.1186/s13742-015-0085-2. PMC  4585809. PMID  26421146.
  192. ^ Farleigh K, Vladimirova SA, Blair C, Bracken JT, Koochekian N, Schield DR, et al. (September 2021). "The effects of climate and demographic history in shaping genomic variation across populations of the Desert Horned Lizard (Phrynosoma platyrhinos)". Molecular Ecology. 30 (18): 4481–4496. Bibcode: 2021MolEc..30.4481F. doi: 10.1111/mec.16070. PMID  34245067. S2CID  235786119.
  193. ^ Finger N, Farleigh K, Bracken JT, Leaché AD, François O, Yang Z, et al. (January 2022). "Genome-Scale Data Reveal Deep Lineage Divergence and a Complex Demographic History in the Texas Horned Lizard (Phrynosoma cornutum) throughout the Southwestern and Central United States". Genome Biology and Evolution. 14 (1). doi: 10.1093/gbe/evab260. PMC  8735750. PMID  34849831.
  194. ^ Castoe TA, de Koning AP, Hall KT, Card DC, Schield DR, Fujita MK, et al. (December 2013). "The Burmese python genome reveals the molecular basis for extreme adaptation in snakes". Proceedings of the National Academy of Sciences of the United States of America. 110 (51): 20645–50. Bibcode: 2013PNAS..11020645C. doi: 10.1073/pnas.1314475110. PMC  3870669. PMID  24297902.
  195. ^ Roscito JG, Sameith K, Pippel M, Francoijs KJ, Winkler S, Dahl A, et al. (December 2018). "The genome of the tegu lizard Salvator merianae: combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly". GigaScience. 7 (12). doi: 10.1093/gigascience/giy141. PMC  6304105. PMID  30481296.
  196. ^ Westfall AK, Telemeco RS, Grizante MB, Waits DS, Clark AD, Simpson DY, et al. (October 2021). "A chromosome-level genome assembly for the eastern fence lizard (Sceloporus undulatus), a reptile model for physiological and evolutionary ecology". GigaScience. 10 (10). doi: 10.1093/gigascience/giab066 (inactive 31 January 2024). PMC  8486681. PMID  34599334.{{ cite journal}}: CS1 maint: DOI inactive as of January 2024 ( link)
  197. ^ Gao J, Li Q, Wang Z, Zhou Y, Martelli P, Li F, et al. (July 2017). "Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus". GigaScience. 6 (7): 1–6. doi: 10.1093/gigascience/gix041. PMC  5569961. PMID  28595343.
  198. ^ Morrill BH, MacKnight HP, Flagle AR, Pirro S (2022-09-06). "The Complete Genome Sequence of the Simalia boeleni, the Boelen's Python". Biodiversity Genomes. 2022. doi: 10.56179/001c.38128. PMC  9681057. PMID  36420082.
  199. ^ Perry BW, Card DC, McGlothlin JW, Pasquesi GI, Adams RH, Schield DR, et al. (August 2018). "Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome". Genome Biology and Evolution. 10 (8): 2110–2129. doi: 10.1093/gbe/evy157. PMC  6110522. PMID  30060036.
  200. ^ Li JT, Gao YD, Xie L, Deng C, Shi P, Guan ML, et al. (August 2018). "Comparative genomic investigation of high-elevation adaptation in ectothermic snakes". Proceedings of the National Academy of Sciences of the United States of America. 115 (33): 8406–8411. Bibcode: 2018PNAS..115.8406L. doi: 10.1073/pnas.1805348115. PMC  6099860. PMID  30065117.
  201. ^ Yurchenko AA, Recknagel H, Elmer KR (November 2020). "Chromosome-Level Assembly of the Common Lizard (Zootoca vivipara) Genome". Genome Biology and Evolution. 12 (11): 1953–1960. doi: 10.1093/gbe/evaa161. PMC  7643610. PMID  32835354.
  202. ^ Todd BD, Jenkinson TS, Escalona M, Beraut E, Nguyen O, Sahasrabudhe R, et al. (November 2022). "Reference Genome of the Northwestern Pond Turtle, Actinemys marmorata". The Journal of Heredity. 113 (6): 624–631. doi: 10.1093/jhered/esac021. PMC  9709993. PMID  35665811.
  203. ^ a b Quesada V, Freitas-Rodríguez S, Miller J, Pérez-Silva JG, Jiang ZF, Tapia W, et al. (January 2019). "Giant tortoise genomes provide insights into longevity and age-related disease". Nature Ecology & Evolution. 3 (1): 87–95. doi: 10.1038/s41559-018-0733-x. PMC  6314442. PMID  30510174.
  204. ^ Çilingir FG, A'Bear L, Hansen D, Davis LR, Bunbury N, Ozgul A, et al. (October 2022). "Chromosome-level genome assembly for the Aldabra giant tortoise enables insights into the genetic health of a threatened population". GigaScience. 11. doi: 10.1093/gigascience/giac090. PMC  9553416. PMID  36251273.
  205. ^ a b Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, et al. (June 2013). "The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan". Nature Genetics. 45 (6): 701–706. doi: 10.1038/ng.2615. PMC  4000948. PMID  23624526.
  206. ^ Jensen EL, Gaughran SJ, Fusco NA, Poulakakis N, Tapia W, Sevilla C, et al. (June 2022). "The Galapagos giant tortoise Chelonoidis phantasticus is not extinct". Communications Biology. 5 (1): 546. doi: 10.1038/s42003-022-03483-w. PMC  9184544. PMID  35681083.
  207. ^ Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, et al. (March 2013). "The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage". Genome Biology. 14 (3): R28. doi: 10.1186/gb-2013-14-3-r28. PMC  4054807. PMID  23537068.
  208. ^ Liu J, Liu S, Zheng K, Tang M, Gu L, Young J, et al. (May 2022). "Chromosome-level genome assembly of the Chinese three-keeled pond turtle (Mauremys reevesii) provides insights into freshwater adaptation". Molecular Ecology Resources. 22 (4): 1596–1605. doi: 10.1111/1755-0998.13563. PMID  34845835. S2CID  244730411.
  209. ^ Cao D, Wang M, Ge Y, Gong S (May 2019). "Draft genome of the big-headed turtle Platysternon megacephalum". Scientific Data. 6 (1): 60. Bibcode: 2019NatSD...6...60C. doi: 10.1038/s41597-019-0067-9. PMC  6522511. PMID  31097710.
  210. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. (December 2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–31. Bibcode: 2014Sci...346.1320J. doi: 10.1126/science.1253451. PMC  4405904. PMID  25504713.
  211. ^ Chung O, Jin S, Cho YS, Lim J, Kim H, Jho S, et al. (October 2015). "The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures". Genome Biology. 16 (1): 215. doi: 10.1186/s13059-015-0780-4. PMC  4618389. PMID  26486310.
  212. ^ "Golden Eagle Genome Sequenced".
  213. ^ Huang Y, Li Y, Burt DW, Chen H, Zhang Y, Qian W, et al. (July 2013). "The duck genome and transcriptome provide insight into an avian influenza virus reservoir species". Nature Genetics. 45 (7): 776–783. doi: 10.1038/ng.2657. PMC  4003391. PMID  23749191.
  214. ^ Mueller RC, Ellström P, Howe K, Uliano-Silva M, Kuo RI, Miedzinska K, et al. (December 2021). "A high-quality genome and comparison of short- versus long-read transcriptome of the palaearctic duck Aythya fuligula (tufted duck)". GigaScience. 10 (12): giab081. doi: 10.1093/gigascience/giab081. PMC  8685854. PMID  34927191.
  215. ^ Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L, Prohaska SJ, et al. (July 2015). "Kiwi genome provides insights into evolution of a nocturnal lifestyle". Genome Biology. 16 (1): 147. doi: 10.1186/s13059-015-0711-4. PMC  4511969. PMID  26201466.
  216. ^ a b c d Galla SJ, Forsdick NJ, Brown L, Hoeppner MP, Knapp M, Maloney RF, et al. (December 2018). "Reference Genomes from Distantly Related Species Can Be Used for Discovery of Single Nucleotide Polymorphisms to Inform Conservation Management". Genes. 10 (1): 9. doi: 10.3390/genes10010009. PMC  6356778. PMID  30583569.
  217. ^ Li S, Li B, Cheng C, Xiong Z, Liu Q, Lai J, et al. (2014-12-11). "Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species". Genome Biology. 15 (12): 557. doi: 10.1186/s13059-014-0557-1. PMC  4290368. PMID  25496777.
  218. ^ a b Zhan X, Pan S, Wang J, Dixon A, He J, Muller MG, et al. (May 2013). "Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle". Nature Genetics. 45 (5): 563–6. doi: 10.1038/ng.2588. PMID  23525076. S2CID  10858993.
  219. ^ Zhou C, Tu H, Yu H, Zheng S, Dai B, Price M, et al. (September 2019). "The Draft Genome of the Endangered Sichuan Partridge (Arborophila rufipectus) with Evolutionary Implications". Genes. 10 (9): 677. doi: 10.3390/genes10090677. PMC  6770966. PMID  31491910.
  220. ^ International Chicken Genome Sequencing Consortium. (December 2004). "Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution". Nature. 432 (7018): 695–716. Bibcode: 2004Natur.432..695C. doi: 10.1038/nature03154. PMID  15592404. S2CID  4405203.
  221. ^ Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg L, et al. (September 2010). "Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis". PLOS Biology. 8 (9): e10000475. doi: 10.1371/journal.pbio.1000475. PMC  2935454. PMID  20838655.
  222. ^ Vignal A, Boitard S, Thébault N, Dayo GK, Yapi-Gnaore V, Youssao Abdou Karim I, et al. (July 2019). "A guinea fowl genome assembly provides new evidence on evolution following domestication and selection in galliformes". Molecular Ecology Resources. 19 (4): 997–1014. doi: 10.1111/1755-0998.13017. PMC  6579635. PMID  30945415.
  223. ^ Jaiswal SK, Gupta A, Saxena R (5 May 2018). "Genome Sequence of Indian Peacock Reveals the Peculiar Case of a Glittering Bird". bioRxiv. doi: 10.1101/315457. S2CID  196632443.
  224. ^ Zhang X, Lin C, Li H, Liu S, Wang Q, Yang S, et al. (February 2022). "Chromosome-Level Genome Assembly of the Green Peafowl (Pavo muticus)". Genome Biology and Evolution. 14 (2): evac015. doi: 10.1093/gbe/evac015. PMC  8857919. PMID  35106558.
  225. ^ Liu Y, Liu S, Zhang N, Que P, Liu N, Höglund J, et al. (December 2019). "Genome Assembly of the Common Pheasant Phasianus colchicus: A Model for Speciation and Ecological Genomics". Genome Biology and Evolution. 11 (12): 3326–3331. doi: 10.1093/gbe/evz249. PMC  7145668. PMID  31713630.
  226. ^ Lee CY, Hsieh PH, Chiang LM, Chattopadhyay A, Li KY, Lee YF, et al. (May 2018). "Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant". GigaScience. 7 (5). doi: 10.1093/gigascience/giy044. PMC  5941149. PMID  29722814.
  227. ^ Wang B, Ekblom R, Bunikis I, Siitari H, Höglund J (March 2014). "Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution". BMC Genomics. 15 (1): 180. doi: 10.1186/1471-2164-15-180. PMC  4022176. PMID  24602261.
  228. ^ Sutton JT, Helmkampf M, Steiner CC, Bellinger MR, Korlach J, Hall R, et al. (August 2018). "A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii's Last Remaining Crow Species". Genes. 9 (8): 393. doi: 10.3390/genes9080393. PMC  6115840. PMID  30071683.
  229. ^ Gan HM, Falk S, Morales HE, Austin CM, Sunnucks P, Pavlova A (September 2019). "Genomic evidence of neo-sex chromosomes in the eastern yellow robin". GigaScience. 8 (9). doi: 10.1093/gigascience/giz111. PMC  6736294. PMID  31494668.
  230. ^ a b Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, et al. (November 2012). "The genomic landscape of species divergence in Ficedula flycatchers". Nature. 491 (7426): 756–60. Bibcode: 2012Natur.491..756E. doi: 10.1038/nature11584. PMID  23103876. S2CID  4414084.
  231. ^ Formenti G, Chiara M, Poveda L, Francoijs KJ, Bonisoli-Alquati A, Canova L, et al. (January 2019). "SMRT long reads and Direct Label and Stain optical maps allow the generation of a high-quality genome assembly for the European barn swallow (Hirundo rustica rustica)". GigaScience. 8 (1). doi: 10.1093/gigascience/giy142. PMC  6324554. PMID  30496513.
  232. ^ Colquitt BM, Mets DG, Brainard MS (March 2018). "Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning". GigaScience. 7 (3): 1–6. doi: 10.1093/gigascience/giy008. PMC  5861438. PMID  29618046.
  233. ^ Prost S, Armstrong EE, Nylander J, Thomas GW, Suh A, Petersen B, et al. (2019). "GigaDB Dataset - Genome data of the bird of paradise, Lycocorax pyrrhopterus". GigaScience Database. doi: 10.5524/102158. Retrieved 2019-06-14.
  234. ^ a b c d Prost S, Armstrong EE, Nylander J, Thomas GW, Suh A, Petersen B, et al. (May 2019). "Comparative analyses identify genomic features potentially involved in the evolution of birds-of-paradise". GigaScience. 8 (5). doi: 10.1093/gigascience/giz003. PMC  6497032. PMID  30689847.
  235. ^ Peona V, Blom MP, Xu L, Burri R, Sullivan S, Bunikis I, et al. (January 2021). "Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise". Molecular Ecology Resources. 21 (1): 263–286. doi: 10.1111/1755-0998.13252. PMC  7757076. PMID  32937018.
  236. ^ Peñalba JV, Deng Y, Fang Q, Joseph L, Moritz C, Cockburn A (March 2020). "Genome of an iconic Australian bird: High-quality assembly and linkage map of the superb fairy-wren (Malurus cyaneus)". Molecular Ecology Resources. 20 (2): 560–578. doi: 10.1111/1755-0998.13124. hdl: 1885/206161. PMID  31821695. S2CID  209317246.
  237. ^ de Villemereuil P, Rutschmann A, Lee KD, Ewen JG, Brekke P, Santure AW (March 2019). "Little Adaptive Potential in a Threatened Passerine Bird". Current Biology. 29 (5): 889–894.e3. Bibcode: 2019CBio...29E.889D. doi: 10.1016/j.cub.2019.01.072. PMID  30799244. S2CID  72334429.
  238. ^ Prost S, Armstrong EE, Nylander J, Thomas GW, Suh A, Petersen B, et al. (2019). "Genome data of the bird of paradise, Ptiloris paradiseus". GigaScience Database. doi: 10.5524/102159.
  239. ^ Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, et al. (April 2010). "The genome of a songbird". Nature. 464 (7289): 757–62. Bibcode: 2010Natur.464..757W. doi: 10.1038/nature08819. PMC  3187626. PMID  20360741.
  240. ^ a b Kolchanova S, Kliver S, Komissarov A, Dobrinin P, Tamazian G, Grigorev K, et al. (January 2019). "Genomes of Three Closely Related Caribbean Amazons Provide Insight for Species History and Conservation". Genes. 10 (1): 54. doi: 10.3390/genes10010054. PMC  6356210. PMID  30654561.
  241. ^ Oleksyk TK, Pombert JF, Siu D, Mazo-Vargas A, Ramos B, Guiblet W, et al. (September 2012). "A locally funded Puerto Rican parrot (Amazona vittata) genome sequencing project increases avian data and advances young researcher education". GigaScience. 1 (1): 14. doi: 10.1186/2047-217X-1-14. PMC  3626513. PMID  23587420.
  242. ^ Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ, Liboriussen P, et al. (2013-05-08). "A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao)". PLOS ONE. 8 (5): e62415. Bibcode: 2013PLoSO...862415S. doi: 10.1371/journal.pone.0062415. PMC  3648530. PMID  23667475.
  243. ^ Galla SJ, Moraga R, Brown L, Cleland S, Hoeppner MP, Maloney RF, et al. (May 2020). "A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: Implications for conservation breeding programmes worldwide". Evolutionary Applications. 13 (5): 991–1008. Bibcode: 2020EvApp..13..991G. doi: 10.1111/eva.12916. PMC  7232769. PMID  32431748.
  244. ^ Guhlin, Joseph; Le Lec, Marissa F.; Wold, Jana; Koot, Emily; Winter, David; Biggs, Patrick J.; Galla, Stephanie J.; Urban, Lara; Foster, Yasmin; Cox, Murray P.; Digby, Andrew; Uddstrom, Lydia R.; Eason, Daryl; Vercoe, Deidre; Davis, Tāne (2023-08-28). "Species-wide genomics of kākāpō provides tools to accelerate recovery". Nature Ecology & Evolution. 7 (10): 1693–1705. Bibcode: 2023NatEE...7.1693G. doi: 10.1038/s41559-023-02165-y. ISSN  2397-334X. PMID  37640765. S2CID  261324540.
  245. ^ a b c d e f g h i j k l m n o p q r s Pan H, Cole TL, Bi X, Fang M, Zhou C, Yang Z, et al. (September 2019). "High-coverage genomes to elucidate the evolution of penguins". GigaScience. 8 (9). doi: 10.1093/gigascience/giz117. PMC  6904868. PMID  31531675.
  246. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from King penguin (Aptenodytes patagonicus)". GigaScience Database. doi: 10.5524/102182.
  247. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Western rockhopper penguin (Eudyptes chrysocome)". GigaScience Database. doi: 10.5524/102170.
  248. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Macaroni penguin (Eudyptes chrysolophus chrysolophus)". GigaScience Database. doi: 10.5524/102165.
  249. ^ Alan DT, Andrew RH, McKinlay B, Charles-André B, Chengran Z, Daniel KT, et al. (2019). "Genomic data from Royal penguin (Eudyptes chrysolophus schlegeli)". GigaScience Database. doi: 10.5524/102164.
  250. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Eastern rockhopper penguin (Eudyptes filholi)". GigaScience Database. doi: 10.5524/102169.
  251. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Northern rockhopper penguin (Eudyptes moseleyi)". GigaScience Database. doi: 10.5524/102171.
  252. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Fiordland-crested penguin (Eudyptes pachyrhynchus)". GigaScience Database. doi: 10.5524/102166.
  253. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Snares-crested penguin (Eudyptes robustus)". GigaScience Database. doi: 10.5524/102167.
  254. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Erect-crested penguin (Eudyptes sclateri)". GigaScience Database. doi: 10.5524/102168.
  255. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from White-flippered penguin (Eudyptula minor albosignata)". GigaScience Database. doi: 10.5524/102177.
  256. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Little blue penguin (Eudyptula minor minor)". GigaScience Database. doi: 10.5524/102178.
  257. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Fairy penguin (Eudyptula novaehollandiae)". GigaScience Database. doi: 10.5524/102179.
  258. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Yellow-eyed penguin (Megadyptes antipodes antipodes)". GigaScience Database. doi: 10.5524/102172.
  259. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Chinstrap penguin (Pygoscelis antarctica)". GigaScience Database. doi: 10.5524/102181.
  260. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Gentoo penguin (Pygoscelis papua)". GigaScience Database. doi: 10.5524/102180.
  261. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Humboldt penguin (Spheniscus humboldti)". GigaScience Database. doi: 10.5524/102176.
  262. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Magellanic penguin (Spheniscus magellanicus)". GigaScience Database. doi: 10.5524/102173.
  263. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Galápagos penguin (Spheniscus mendiculus)". GigaScience Database. doi: 10.5524/102175.
  264. ^ a b Hanna ZR, Henderson JB, Wall JD, Emerling CA, Fuchs J, Runckel C, et al. (October 2017). "Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes". Genome Biology and Evolution. 9 (10): 2522–2545. doi: 10.1093/gbe/evx158. PMC  5629816. PMID  28992302.
  265. ^ a b c d Burga A, Wang W, Ben-David E, Wolf PC, Ramey AM, Verdugo C, Lyons K, Parker PG, Kruglyak L (June 2017). "A genetic signature of the evolution of loss of flight in the Galapagos cormorant". Science. 356 (6341): eaal3345. doi: 10.1126/science.aal3345. PMC  5567675. PMID  28572335.
  266. ^ Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, et al. (May 2008). "Genome analysis of the platypus reveals unique signatures of evolution". Nature. 453 (7192): 175–83. Bibcode: 2008Natur.453..175W. doi: 10.1038/nature06936. PMC  2803040. PMID  18464734.
  267. ^ a b Y. Zhou et al. Platypus and echidna genomes reveal mammalian biology and evolution. Nature, published online January 6, 2021; doi: 10.1038/s41586-020-03039-0
  268. ^ Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, et al. (May 2007). "Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences". Nature. 447 (7141): 167–77. Bibcode: 2007Natur.447..167M. doi: 10.1038/nature05805. PMID  17495919. S2CID  4337232.
  269. ^ Brandies PA, Tang S, Johnson RS, Hogg CJ, Belov K (2020). "The first Antechinus reference genome provides a resource for investigating the genetic basis of semelparity and age-related neuropathologies". Gigabyte. 2020: 1–22. doi: 10.46471/gigabyte.7. PMC  9631953. PMID  36824596. S2CID  228895349. Retrieved 2020-11-17.
  270. ^ Miller W, Hayes VM, Ratan A, Petersen DC, Wittekindt NE, Miller J, et al. (July 2011). "Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil)". Proceedings of the National Academy of Sciences of the United States of America. 108 (30): 12348–12353. Bibcode: 2011PNAS..10812348M. doi: 10.1073/pnas.1102838108. PMC  3145710. PMID  21709235.
  271. ^ "Fat-tailed dunnart genome". Oz Mammals Genomics.
  272. ^ "Northern quoll genome". Oz Mammals Genomics.
  273. ^ "Numbat genome". Oz Mammals Genomics.
  274. ^ Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA, Mitchell KJ, et al. (January 2018). "Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore". Nature Ecology & Evolution. 2 (1): 182–192. doi: 10.1038/s41559-017-0417-y. PMID  29230027. S2CID  4630578.
  275. ^ "Eastern barred bandicoot genome".
  276. ^ "Greater bilby genome". Oz Mammals Genomics.
  277. ^ "Marsupial mole genome". Oz Mammals Genomics.
  278. ^ Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, et al. (August 2011). "Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development". Genome Biology. 12 (8): R81. doi: 10.1186/gb-2011-12-8-r81. PMC  3277949. PMID  21854559.
  279. ^ "Brush-tailed rock-wallaby genome". Oz Mammals Genomics.
  280. ^ "Eastern bettong genome". Oz Mammals Genomics.
  281. ^ Peel E, Silver L, Brandies P, Hogg CJ, Belov K (2021-12-10). "A reference genome for the critically endangered woylie, Bettongia penicillata ogilbyi". Gigabyte. 2021: 1–15. doi: 10.46471/gigabyte.35. PMC  9650285. PMID  36824341. S2CID  245097228.
  282. ^ "Leadbeater's possum genome". Oz Mammals Genomics.
  283. ^ "Mountain pygmy-possum genome". Oz Mammals Genomics.
  284. ^ "Bare-nosed wombat genome". Oz Mammals Genomics.
  285. ^ Davey, M. (10 April 2013). "Australians crack the code of koala's genetic blueprint". The Age. Retrieved 25 June 2013.
  286. ^ a b "Mammalian Genome Project". MIT. Archived from the original on 2009-01-06. Retrieved 2012-05-23.
  287. ^ Grigorev K, Kliver S, Dobrynin P, Komissarov A, Wolfsberger W, Krasheninnikova K, et al. (June 2018). "Innovative assembly strategy contributes to understanding the evolution and conservation genetics of the endangered Solenodon paradoxus from the island of Hispaniola". GigaScience. 7 (6). doi: 10.1093/gigascience/giy025. PMC  6009670. PMID  29718205.
  288. ^ a b c d Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ (October 2013). "Genome-wide signatures of convergent evolution in echolocating mammals". Nature. 502 (7470): 228–31. Bibcode: 2013Natur.502..228P. doi: 10.1038/nature12511. PMC  3836225. PMID  24005325.
  289. ^ a b Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, et al. (October 2011). "A high-resolution map of human evolutionary constraint using 29 mammals". Nature. 478 (7370): 476–82. Bibcode: 2011Natur.478..476.. doi: 10.1038/nature10530. PMC  3207357. PMID  21993624.
  290. ^ "Little Brown Bat Genome Project". Broad Institute. 23 September 2008.
  291. ^ a b c d e Gutiérrez-Guerrero YT, Ibarra-Laclette E, Martínez Del Río C, Barrera-Redondo J, Rebollar EA, Ortega J, et al. (June 2020). "Genomic consequences of dietary diversification and parallel evolution due to nectarivory in leaf-nosed bats". GigaScience. 9 (6). doi: 10.1093/gigascience/giaa059. PMC  7276932. PMID  32510151.
  292. ^ "Otolemur garnettii". e!Ensembl.
  293. ^ Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, et al. (April 2007). "Evolutionary and biomedical insights from the rhesus macaque genome". Science. 316 (5822): 222–34. Bibcode: 2007Sci...316..222.. doi: 10.1126/science.1139247. PMID  17431167. S2CID  10535839.
  294. ^ a b Yan G, Zhang G, Fang X, Zhang Y, Li C, Ling F, et al. (October 2011). "Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques". Nature Biotechnology. 29 (11): 1019–23. doi: 10.1038/nbt.1992. PMID  22002653. S2CID  9218360.
  295. ^ Batra SS, Levy-Sakin M, Robinson J, Guillory J, Durinck S, Vilgalys TP, et al. (December 2020). "Accurate assembly of the olive baboon (Papio anubis) genome using long-read and Hi-C data". GigaScience. 9 (12). doi: 10.1093/gigascience/giaa134. PMC  7719865. PMID  33283855.
  296. ^ Wall JD, Schlebusch SA, Alberts SC, Cox LA, Snyder-Mackler N, Nevonen KA, et al. (July 2016). "Genomewide ancestry and divergence patterns from low-coverage sequencing data reveal a complex history of admixture in wild baboons". Molecular Ecology. 25 (14): 3469–83. Bibcode: 2016MolEc..25.3469W. doi: 10.1111/mec.13684. PMC  5306399. PMID  27145036.
  297. ^ Wang L, Wu J, Liu X, Di D, Liang Y, Feng Y, et al. (August 2019). "A high-quality genome assembly for the endangered golden snub-nosed monkey (Rhinopithecus roxellana)". GigaScience. 8 (8). doi: 10.1093/gigascience/giz098. PMC  6705546. PMID  31437279.
  298. ^ Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, et al. (January 2011). "Comparative and demographic analysis of orang-utan genomes". Nature. 469 (7331): 529–33. Bibcode: 2011Natur.469..529L. doi: 10.1038/nature09687. PMC  3060778. PMID  21270892.
  299. ^ Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, et al. (March 2012). "Insights into hominid evolution from the gorilla genome sequence". Nature. 483 (7388): 169–75. Bibcode: 2012Natur.483..169S. doi: 10.1038/nature10842. PMC  3303130. PMID  22398555.
  300. ^ McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, et al. (February 2001). "A physical map of the human genome". Nature. 409 (6822): 934–41. Bibcode: 2001Natur.409..934M. doi: 10.1038/35057157. PMID  11237014. S2CID  186244510.
  301. ^ Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. (February 2001). "The sequence of the human genome". Science. 291 (5507): 1304–51. Bibcode: 2001Sci...291.1304V. doi: 10.1126/science.1058040. PMID  11181995. S2CID  85981305.
  302. ^ Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. (April 2022). "The complete sequence of a human genome" (PDF). Science. 376 (6588): 44–53. Bibcode: 2022Sci...376...44N. doi: 10.1126/science.abj6987. PMC  9186530. PMID  35357919. S2CID  247854936.
  303. ^ Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. (May 2010). "A draft sequence of the Neandertal genome". Science. 328 (5979): 710–722. Bibcode: 2010Sci...328..710G. doi: 10.1126/science.1188021. PMC  5100745. PMID  20448178.
  304. ^ Chimpanzee Sequencing and Analysis Consortium. (September 2005). "Initial sequence of the chimpanzee genome and comparison with the human genome". Nature. 437 (7055): 69–87. Bibcode: 2005Natur.437...69.. doi: 10.1038/nature04072. PMID  16136131. S2CID  2638825.
  305. ^ Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, et al. (June 2012). "The bonobo genome compared with the chimpanzee and human genomes". Nature. 486 (7404): 527–31. Bibcode: 2012Natur.486..527P. doi: 10.1038/nature11128. PMC  3498939. PMID  22722832.
  306. ^ "allithrix jacchus". e!Ensembl.
  307. ^ Worley KC, Warren WC, Rogers J, Locke D, Muzny DM, Mardis ER, et al. (Marmoset Genome Sequencing and Analysis Consortium) (August 2014). "The common marmoset genome provides insight into primate biology and evolution". Nature Genetics. 46 (8): 850–7. doi: 10.1038/ng.3042. PMC  4138798. PMID  25038751.
  308. ^ Dobrynin P, Liu S, Tamazian G, Xiong Z, Yurchenko AA, Krasheninnikova K, et al. (December 2015). "Genomic legacy of the African cheetah, Acinonyx jubatus". Genome Biology. 16 (1): 277. doi: 10.1186/s13059-015-0837-4. PMC  4676127. PMID  26653294.
  309. ^ Pontius JU, Mullikin JC, Smith DR, Lindblad-Toh K, Gnerre S, Clamp M, et al. (November 2007). "Initial sequence and comparative analysis of the cat genome". Genome Research. 17 (11): 1675–89. doi: 10.1101/gr.6380007. PMC  2045150. PMID  17975172.
  310. ^ a b c d Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, et al. (2013). "The tiger genome and comparative analysis with lion and snow leopard genomes". Nature Communications. 4: 2433. Bibcode: 2013NatCo...4.2433C. doi: 10.1038/ncomms3433. PMC  3778509. PMID  24045858.
  311. ^ a b Kim S, Cho YS, Kim HM, Chung O, Kim H, Jho S, et al. (October 2016). "Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly". Genome Biology. 17 (1): 211. doi: 10.1186/s13059-016-1071-4. PMC  5090899. PMID  27802837.
  312. ^ Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature. 438 (7069): 803–19. Bibcode: 2005Natur.438..803L. doi: 10.1038/nature04338. PMID  16341006. S2CID  4338513.
  313. ^ Gopalakrishnan S, Samaniego Castruita JA, Sinding MS, Kuderna LF, Räikkönen J, Petersen B, et al. (June 2017). "The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics". BMC Genomics. 18 (1): 495. doi: 10.1186/s12864-017-3883-3. PMC  5492679. PMID  28662691.
  314. ^ Armstrong EE, Taylor RW, Prost S, Blinston P, van der Meer E, Madzikanda H, et al. (February 2019). "Cost-effective assembly of the African wild dog (Lycaon pictus) genome using linked reads". GigaScience. 8 (2). doi: 10.1093/gigascience/giy124. PMC  6350039. PMID  30346553.
  315. ^ Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. (January 2010). "The sequence and de novo assembly of the giant panda genome". Nature. 463 (7279): 311–7. Bibcode: 2010Natur.463..311L. doi: 10.1038/nature08696. PMC  3951497. PMID  20010809.
  316. ^ Taylor GA, Kirk H, Coombe L, Jackman SD, Chu J, Tse K, et al. (November 2018). "The Genome of the North American Brown Bear or Grizzly: Ursus arctos ssp. horribilis". Genes. 9 (12): 598. doi: 10.3390/genes9120598. PMC  6315469. PMID  30513700.
  317. ^ Srivastava A, Kumar Sarsani V, Fiddes I, Sheehan SM, Seger RL, Barter ME, et al. (February 2019). "Genome assembly and gene expression in the American black bear provides new insights into the renal response to hibernation". DNA Research. 26 (1): 37–44. doi: 10.1093/dnares/dsy036. PMC  6379037. PMID  30395234.
  318. ^ Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, et al. (May 2014). "Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears". Cell. 157 (4): 785–94. doi: 10.1016/j.cell.2014.03.054. PMC  4089990. PMID  24813606.
  319. ^ Li B, Zhang G, Willersleve E, Wang J, Wang J (2011). "Genomic data from the polar bear (Ursus maritimus)". GigaScience Database. doi: 10.5524/100008. Retrieved 2019-06-21.
  320. ^ a b c Foote AD, Liu Y, Thomas GW, Vinař T, Alföldi J, Deng J, et al. (March 2015). "Convergent evolution of the genomes of marine mammals". Nature Genetics. 47 (3): 272–5. doi: 10.1038/ng.3198. PMC  4644735. PMID  25621460.
  321. ^ Jones SJ, Haulena M, Taylor GA, Chan S, Bilobram S, Warren RL, et al. (December 2017). "The Genome of the Northern Sea Otter (Enhydra lutris kenyoni)". Genes. 8 (12): 379. doi: 10.3390/genes8120379. PMC  5748697. PMID  29232880.
  322. ^ Colella JP, Lan T, Schuster SC, Talbot SL, Cook JA, Lindqvist C (2018-05-31). "Mustela erminea finds that pulsed hybridization impacts evolution at highlatitudes". Communications Biology. 1 (1): 51. doi: 10.1038/s42003-018-0058-y. PMC  6123727. PMID  30271934.
  323. ^ Peng X, Alföldi J, Gori K, Eisfeld AJ, Tyler SR, Tisoncik-Go J, et al. (December 2014). "The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease". Nature Biotechnology. 32 (12): 1250–5. doi: 10.1038/nbt.3079. PMC  4262547. PMID  25402615.
  324. ^ Beichman AC, Koepfli KP, Li G, Murphy W, Dobrynin P, Kilver S, et al. (June 2019). "Aquatic adaptation and depleted diversity: a deep dive into the genomes of the sea otter and giant otter". Molecular Biology and Evolution. 36 (12): 2631–2655. doi: 10.1093/molbev/msz101. PMC  7967881. PMID  31212313.
  325. ^ Dastjerdi A, Robert C, Watson M (2014). "Low coverage sequencing of two Asian elephant (Elephas maximus) genomes". GigaScience. 3: 12. doi: 10.1186/2047-217X-3-12. PMC  4106201. PMID  25053995.
  326. ^ "Loxodonta africana". UCSC browser entry.
  327. ^ Palkopoulou E, Lipson M, Mallick S, Nielsen S, Rohland N, Baleka S, et al. (March 2018). "A comprehensive genomic history of extinct and living elephants". Proceedings of the National Academy of Sciences of the United States of America. 115 (11): E2566–E2574. Bibcode: 2018PNAS..115E2566P. doi: 10.1073/pnas.1720554115. PMC  5856550. PMID  29483247.
  328. ^ Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, et al. (November 2009). "Genome sequence, comparative analysis, and population genetics of the domestic horse". Science. 326 (5954): 865–7. Bibcode: 2009Sci...326..865W. doi: 10.1126/science.1178158. PMC  3785132. PMID  19892987.
  329. ^ Kalbfleisch TS, Rice ES, DePriest MS, Walenz BP, Hestand MS, Vermeesch JR, et al. (2018-11-16). "Improved reference genome for the domestic horse increases assembly contiguity and composition". Communications Biology. 1 (1): 197. doi: 10.1038/s42003-018-0199-z. PMC  6240028. PMID  30456315.
  330. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z, et al. (June 2019). "Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits". Science. 364 (6446): eaav6202. Bibcode: 2019Sci...364.6202C. doi: 10.1126/science.aav6202. PMID  31221828. S2CID  195191415.
  331. ^ Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, et al. (January 2015). "Insights into the evolution of longevity from the bowhead whale genome". Cell Reports. 10 (1): 112–22. doi: 10.1016/j.celrep.2014.12.008. PMC  4536333. PMID  25565328.
  332. ^ a b c d e Árnason Ú, Lammers F, Kumar V, Nilsson MA, Janke A (April 2018). "Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow". Science Advances. 4 (4): eaap9873. Bibcode: 2018SciA....4.9873A. doi: 10.1126/sciadv.aap9873. PMC  5884691. PMID  29632892.
  333. ^ a b c Yim HS, Cho YS, Guang X, Kang SG, Jeong JY, Cha SS, et al. (January 2014). "Minke whale genome and aquatic adaptation in cetaceans". Nature Genetics. 46 (1): 88–92. doi: 10.1038/ng.2835. PMC  4079537. PMID  24270359.
  334. ^ Wang K, Wang L, Lenstra JA, Jian J, Yang Y, Hu Q, et al. (April 2017). "The genome sequence of the wisent (Bison bonasus)". GigaScience. 6 (4): 1–5. doi: 10.1093/gigascience/gix016. PMC  5530314. PMID  28327911.
  335. ^ Dong J, Hu Z, Wu C, Guo H, Zhou B, Lv J, et al. (July 2012). "Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population". Nature Genetics. 44 (8): 895–9. doi: 10.1038/ng.2351. PMC  6628171. PMID  22797725.
  336. ^ Canavez FC, Luche DD, Stothard P, Leite KR, Sousa-Canavez JM, Plastow G, et al. (2012). "Genome sequence and assembly of Bos indicus". The Journal of Heredity. 103 (3): 342–8. doi: 10.1093/jhered/esr153. PMID  22315242.
  337. ^ Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, et al. (April 2009). "The genome sequence of taurine cattle: a window to ruminant biology and evolution". Science. 324 (5926): 522–8. Bibcode: 2009Sci...324..522A. doi: 10.1126/science.1169588. PMC  2943200. PMID  19390049.
  338. ^ Williams JL, Iamartino D, Pruitt KD, Sonstegard T, Smith TP, Low WY, et al. (October 2017). "Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50)". GigaScience. 6 (10): 1–6. doi: 10.1093/gigascience/gix088. PMC  5737279. PMID  29048578.
  339. ^ Koepfli KP, Tamazian G, Wildt D, Dobrynin P, Kim C, Frandsen PB, et al. (June 2019). "in Situ Populations". G3: Genes, Genomes, Genetics. 9 (6): 1785–1793. doi: 10.1534/g3.119.400084. PMC  6553546. PMID  31000506.
  340. ^ Farré M, Li Q, Zhou Y, Damas J, Chemnick LG, Kim J, et al. (February 2019). "A near-chromosome-scale genome assembly of the gemsbok (Oryx gazella): an iconic antelope of the Kalahari desert". GigaScience. 8 (2). doi: 10.1093/gigascience/giy162. PMC  6351727. PMID  30649288.
  341. ^ Yang Y, Wang Y, Zhao Y, Zhang X, Li R, Chen L, et al. (December 2017). "Draft genome of the Marco Polo Sheep (Ovis ammon polii)". GigaScience. 6 (12): 1–7. doi: 10.1093/gigascience/gix106. PMC  5740985. PMID  29112761.
  342. ^ Cui, Peng; Ji, Rimutu; Ding, Feng; Qi, Dan; Gao, Hongwei; Meng, He; Yu, Jun; Hu, Songnian; Zhang, Heping (2007-01-01). "A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of camelidae". BMC Genomics. 8: 241. doi: 10.1186/1471-2164-8-241. ISSN  1471-2164. PMC  1939714. PMID  17640355.
  343. ^ Zhang C, Chen L, Zhou Y, Wang K, Chemnick LG, Ryder OA, et al. (February 2018). "Draft genome of the milu (Elaphurus davidianus)". GigaScience. 7 (2). doi: 10.1093/gigascience/gix130. PMC  5824821. PMID  29267854.
  344. ^ Lamb S, Taylor AM, Hughes TA, McMillan BR, Larsen RT, Khan R, et al. (2021-11-22). "De novo chromosome-length assembly of the mule deer (Odocoileus hemionus) genome". Gigabyte. 2021: 1–13. doi: 10.46471/gigabyte.34. PMC  9650288. PMID  36824347. S2CID  244421049.
  345. ^ Li Z, Lin Z, Ba H, Chen L, Yang Y, Wang K, et al. (December 2017). "Draft genome of the reindeer (Rangifer tarandus)". GigaScience. 6 (12): 1–5. doi: 10.1093/gigascience/gix102. PMC  5726476. PMID  29099922.
  346. ^ Ming Y, Jian J, Yu X, Wang J, Liu W (May 2019). "The genome resources for conservation of Indo-Pacific humpback dolphin, Sousa chinensis". Scientific Data. 6 (1): 68. Bibcode: 2019NatSD...6...68M. doi: 10.1038/s41597-019-0078-6. PMC  6531461. PMID  31118413.
  347. ^ Farré M, Li Q, Darolti I, Zhou Y, Damas J, Proskuryakova AA, et al. (August 2019). "An integrated chromosome-scale genome assembly of the Masai giraffe (Giraffa camelopardalis tippelskirchi)". GigaScience. 8 (8). doi: 10.1093/gigascience/giz090. PMC  6669057. PMID  31367745.
  348. ^ Ip S (12 December 2017). "Beluga whale genome sequenced for the first time in Vancouver". Vancouver Sun.
  349. ^ Fan Z, Li W, Jin J, Cui K, Yan C, Peng C, et al. (April 2018). "The draft genome sequence of forest musk deer (Moschus berezovskii)". GigaScience. 7 (4). doi: 10.1093/gigascience/giy038. PMC  5906906. PMID  29635287.
  350. ^ Yin D, Chen C, Lin D, Zhang J, Ying C, Liu Y, et al. (December 2022). "Gapless genome assembly of East Asian finless porpoise". Scientific Data. 9 (1): 765. Bibcode: 2022NatSD...9..765Y. doi: 10.1038/s41597-022-01868-4. PMC  9747978. PMID  36513679.
  351. ^ Fan G, Zhang Y, Liu X, Wang J, Sun Z, Sun S, et al. (July 2019). "The first chromosome-level genome for a marine mammal as a resource to study ecology and evolution" (PDF). Molecular Ecology Resources. 19 (4): 944–956. doi: 10.1111/1755-0998.13003. PMID  30735609. S2CID  73451140.
  352. ^ Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. (November 2012). "Analyses of pig genomes provide insight into porcine demography and evolution". Nature. 491 (7424): 393–8. Bibcode: 2012Natur.491..393G. doi: 10.1038/nature11622. PMC  3566564. PMID  23151582.
  353. ^ Herrera-Alvarez S, Karlsson E, Ryder OA, Lindblad-Toh K, Crawford AJ (2018-09-23). "How to make a rodent giant: Genomic basis and tradeoffs of gigantism in the capybara, the world's largest rodent". bioRxiv  10.1101/424606.
  354. ^ a b Duckett DJ, Sullivan J, Pirro S, Carstens BC (May 2021). "Genomic Resources for the North American Water Vole (Microtus richardsoni) and the Montane Vole (Microtus montanus)". Gigabyte. 1: 1–13. doi: 10.46471/gigabyte.19. PMC  9631978. PMID  36824326. S2CID  236550254.
  355. ^ Duckett DJ, Sullivan J, Pirro S, Carstens BC (2021). "Genomic data for the montane vole (Microtus montanus)". GigaScience Database. doi: 10.5524/100885.
  356. ^ Duckett DJ, Sullivan J, Pirro S, Carstens BC (2021). "Genomic data for the North American water vole (Microtus richardsoni)". GigaScience Database. doi: 10.5524/100886.
  357. ^ Long AD, Baldwin-Brown J, Tao Y, Cook VJ, Balderrama-Gutierrez G, Crobett-Detig R, Mortazavi R, Barbour AG (July 2019). "The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections". Science Advances. 5 (7): eaaw6441. Bibcode: 2019SciA....5.6441L. doi: 10.1126/sciadv.aaw6441. PMC  6656541. PMID  31355335.
  358. ^ Wilder AP, Dudchenko O, Curry C, Korody M, Turbek SP, Daly M, et al. (August 2022). "A Chromosome-Length Reference Genome for the Endangered Pacific Pocket Mouse Reveals Recent Inbreeding in a Historically Large Population". Genome Biology and Evolution. 14 (8). doi: 10.1093/gbe/evac122. PMC  9348616. PMID  35894178.
  359. ^ Hardin A, Nevonen KA, Eckalbar WL, Carbone L, Ahituv N (Aug 2019). "Comparative genomic characterization of the multimammate mouse Mastomys coucha". Molecular Biology and Evolution. 36 (12): 2805–2812. doi: 10.1093/molbev/msz188. PMC  6878952. PMID  31424545.
  360. ^ Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. (December 2002). "Initial sequencing and comparative analysis of the mouse genome". Nature. 420 (6915): 520–62. Bibcode: 2002Natur.420..520W. doi: 10.1038/nature01262. PMID  12466850.
  361. ^ Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, et al. (April 2004). "Genome sequence of the Brown Norway rat yields insights into mammalian evolution". Nature. 428 (6982): 493–521. Bibcode: 2004Natur.428..493G. doi: 10.1038/nature02426. PMID  15057822. S2CID  4415600.
  362. ^ "Oryctolagus cuniculus". e!Ensembl.
  363. ^ a b Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, et al. (March 2018). "Hemimetabolous genomes reveal molecular basis of termite eusociality". Nature Ecology & Evolution. 2 (3): 557–566. Bibcode: 2018NatEE...2..557H. doi: 10.1038/s41559-017-0459-1. PMC  6482461. PMID  29403074.
  364. ^ Li S, Zhu S, Jia Q, Yuan D, Ren C, Li K, et al. (March 2018). "The genomic and functional landscapes of developmental plasticity in the American cockroach". Nature Communications. 9 (1): 1008. Bibcode: 2018NatCo...9.1008L. doi: 10.1038/s41467-018-03281-1. PMC  5861062. PMID  29559629.
  365. ^ Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, et al. (May 2014). "Molecular traces of alternative social organization in a termite genome". Nature Communications. 5: 3636. Bibcode: 2014NatCo...5.3636T. doi: 10.1038/ncomms4636. hdl: 11858/00-001M-0000-0017-9F85-9. PMID  24845553. S2CID  12087886.
  366. ^ Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. (October 2014). "Complementary symbiont contributions to plant decomposition in a fungus-farming termite". Proceedings of the National Academy of Sciences of the United States of America. 111 (40): 14500–5. Bibcode: 2014PNAS..11114500P. doi: 10.1073/pnas.1319718111. PMC  4209977. PMID  25246537.
  367. ^ Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, et al. (March 2013). "Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest". Genome Biology. 14 (3): R27. doi: 10.1186/gb-2013-14-3-r27. PMC  4053930. PMID  23537049.
  368. ^ a b Fallon TR, Lower SE, Chang CH, Bessho-Uehara M, Martin GJ, Bewick AJ, et al. (October 2018). Tautz R, Waterhouse D (eds.). "Firefly genomes illuminate parallel origins of bioluminescence in beetles". eLife. 7: e36495. doi: 10.7554/eLife.36495. PMC  6191289. PMID  30324905.
  369. ^ Wang K, Li P, Gao Y, Liu C, Wang Q, Yin J, et al. (April 2019). "De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis)". GigaScience. 8 (4). doi: 10.1093/gigascience/giz019. PMC  6449472. PMID  30949689.
  370. ^ Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, et al. (April 2008). "The genome of the model beetle and pest Tribolium castaneum" (PDF). Nature. 452 (7190): 949–55. Bibcode: 2008Natur.452..949R. doi: 10.1038/nature06784. PMID  18362917. S2CID  4402128.
  371. ^ Wang Q, Liu L, Zhang S, Wu H, Huang J (June 2022). "A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability". GigaScience. 11. doi: 10.1093/gigascience/giac059. PMC  9239855. PMID  35764601.
  372. ^ a b Schneider C, Woehle C, Greve C, D'Haese CA, Wolf M, Hiller M, et al. (May 2021). "Two high-quality de novo genomes from single ethanol-preserved specimens of tiny metazoans (Collembola)". GigaScience. 10 (5). doi: 10.1093/gigascience/giab035. PMC  8138834. PMID  34018554.
  373. ^ Schneider C, Woehle C, Greve C, D'Haese CA, Wolf M, Hiller M, et al. (2021). "High-quality de novo genome from an ethanol-preserved specimen of Desoria tigrina". GigaScience Database. doi: 10.5524/100897.
  374. ^ Schneider C, Woehle C, Greve C, D'Haese CA, Wolf M, Hiller M, et al. (2021). "High-quality de novo genome from an ethanol-preserved specimen of Sminthurides aquaticus". GigaScience Database. doi: 10.5524/100871.
  375. ^ Meng F, Liu Z, Han H, Finkelbergs D, Jiang Y, Zhu M, et al. (March 2020). "Chromosome-level genome assembly of Aldrichina grahami, a forensically important blowfly". GigaScience. 9 (3). doi: 10.1093/gigascience/giaa020. PMC  7081965. PMID  32191812.
  376. ^ Drukewitz SH, Bokelmann L, Undheim EA, von Reumont BM (July 2019). "Toxins from scratch? Diverse, multimodal gene origins in the predatory robber fly Dasypogon diadema indicate a dynamic venom evolution in dipteran insects". GigaScience. 8 (7). doi: 10.1093/gigascience/giz081. PMC  6615979. PMID  31289835.
  377. ^ Kim S, Oh M, Jung W, Park J, Choi HG, Shin SC (March 2017). "Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula". GigaScience. 6 (3): 1–8. doi: 10.1093/gigascience/giw009. PMC  5467013. PMID  28327954.
  378. ^ Dikow RB, Frandsen PB, Turcatel M, Dikow T (2017-01-31). "Proctacanthus coquilletti (Insecta: Diptera: Asilidae) and 16 representative transcriptomes". PeerJ. 5: e2951. doi: 10.7717/peerj.2951. PMC  5289110. PMID  28168115.
  379. ^ Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al. (June 2007). "Genome sequence of Aedes aegypti, a major arbovirus vector". Science. 316 (5832): 1718–23. Bibcode: 2007Sci...316.1718N. doi: 10.1126/science.1138878. PMC  2868357. PMID  17510324.
  380. ^ Chen XG, Jiang X, Gu J, Xu M, Wu Y, Deng Y, et al. (November 2015). "Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution". Proceedings of the National Academy of Sciences of the United States of America. 112 (44): E5907-15. Bibcode: 2015PNAS..112E5907C. doi: 10.1073/pnas.1516410112. PMC  4640774. PMID  26483478.
  381. ^ Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. (October 2002). "The genome sequence of the malaria mosquito Anopheles gambiae". Science. 298 (5591): 129–49. Bibcode: 2002Sci...298..129H. doi: 10.1126/science.1076181. PMID  12364791. S2CID  4512225.H
  382. ^ a b Lawniczak MK, Emrich SJ, Holloway AK, Regier AP, Olson M, White B, et al. (October 2010). "Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences". Science. 330 (6003): 512–4. Bibcode: 2010Sci...330..512L. doi: 10.1126/science.1195755. PMC  3674514. PMID  20966253.
  383. ^ Zhou D, Zhang D, Ding G, Shi L, Hou Q, Ye Y, et al. (January 2014). "Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites". BMC Genomics. 15 (1): 42. doi: 10.1186/1471-2164-15-42. PMC  3901762. PMID  24438588.
  384. ^ a b c d e f g h i j k l m n o Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. (January 2015). "Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes". Science. 347 (6217): 1258522. doi: 10.1126/science.1258522. PMC  4380271. PMID  25554792.
  385. ^ Ghurye J, Koren S, Small ST, Redmond S, Howell P, Phillippy AM, Besansky NJ (June 2019). "A chromosome-scale assembly of the major African malaria vector Anopheles funestus". GigaScience. 8 (6). doi: 10.1093/gigascience/giz063. PMC  6545970. PMID  31157884.
  386. ^ Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, et al. (October 2010). "Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics". Science. 330 (6000): 86–8. Bibcode: 2010Sci...330...86A. doi: 10.1126/science.1191864. PMC  3740384. PMID  20929810.
  387. ^ Zhou Q, Zhu HM, Huang QF, Zhao L, Zhang GJ, Roy SW, et al. (March 2012). "Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans". BMC Genomics. 13: 109. doi: 10.1186/1471-2164-13-109. PMC  3353239. PMID  22439699.
  388. ^ a b c d e f g h i j Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, et al. (November 2007). "Evolution of genes and genomes on the Drosophila phylogeny". Nature. 450 (7167): 203–18. Bibcode: 2007Natur.450..203C. doi: 10.1038/nature06341. PMID  17994087. S2CID  2416812.
  389. ^ a b c d e f g h "Drosophila modENCODE Project BCM-HGSC". Baylor College of Medicine, Human Genome Sequencing Center.
  390. ^ Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. (March 2000). "The genome sequence of Drosophila melanogaster". Science. 287 (5461): 2185–95. Bibcode: 2000Sci...287.2185.. doi: 10.1126/science.287.5461.2185. PMID  10731132.
  391. ^ Hamilton PT, Leong JS, Koop BF, Perlman SJ (March 2014). "Transcriptional responses in a Drosophila defensive symbiosis". Molecular Ecology. 23 (6): 1558–70. Bibcode: 2014MolEc..23.1558H. doi: 10.1111/mec.12603. PMID  24274471. S2CID  2964885.
  392. ^ Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, et al. (January 2005). "Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution". Genome Research. 15 (1): 1–18. doi: 10.1101/gr.3059305. PMC  540289. PMID  15632085.
  393. ^ "The Drosophila santomea genome - release 1.0". Andolfatto Lab. Princeton University. Archived from the original on 2018-10-22. Retrieved 2012-05-23.
  394. ^ a b Jiménez-Guri E, Huerta-Cepas J, Cozzuto L, Wotton KR, Kang H, Himmelbauer H, et al. (February 2013). "Comparative transcriptomics of early dipteran development". BMC Genomics. 14: 123. doi: 10.1186/1471-2164-14-123. PMC  3616871. PMID  23432914.
  395. ^ Martinson EO, Peyton J, Kelkar YD, Jennings EC, Benoit JB, Werren JH, Denlinger DL (May 2019). "Sarcophaga bullata". G3: Genes, Genomes, Genetics. 9 (5): 1313–1320. doi: 10.1534/g3.119.400148. PMC  6505164. PMID  30926723.
  396. ^ Lemke S, Antonopoulos DA, Meyer F, Domanus MH, Schmidt-Ott U (May 2011). "BMP signaling components in embryonic transcriptomes of the hover fly Episyrphus balteatus (Syrphidae)". BMC Genomics. 12: 278. doi: 10.1186/1471-2164-12-278. PMC  3224130. PMID  21627820.
  397. ^ International Aphid Genomics Consortium (February 2010). "Genome sequence of the pea aphid Acyrthosiphon pisum". PLOS Biology. 8 (2): e1000313. doi: 10.1371/journal.pbio.1000313. PMC  2826372. PMID  20186266.
  398. ^ Yang P, Yu S, Hao J, Liu W, Zhao Z, Zhu Z, et al. (September 2019). "Genome sequence of the Chinese white wax scale insect Ericerus pela: the first draft genome for the Coccidae family of scale insects". GigaScience. 8 (9). doi: 10.1093/gigascience/giz113. PMC  6743827. PMID  31518402.
  399. ^ Zhu J, Jiang F, Wang X, Yang P, Bao Y, Zhao W, et al. (December 2017). "Genome sequence of the small brown planthopper, Laodelphax striatellus". GigaScience. 6 (12): 1–12. doi: 10.1093/gigascience/gix109. PMC  5740986. PMID  29136191.
  400. ^ Kingan SB, Urban J, Lambert CC, Baybayan P, Childers AK, Coates B, et al. (October 2019). "A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system". GigaScience. 8 (10). doi: 10.1093/gigascience/giz122. PMC  6791401. PMID  31609423.
  401. ^ Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, et al. (December 2015). "Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection". Proceedings of the National Academy of Sciences of the United States of America. 112 (48): 14936–41. Bibcode: 2015PNAS..11214936M. doi: 10.1073/pnas.1506226112. PMC  4672799. PMID  26627243.
  402. ^ Chen W, Shakir S, Bigham M, Richter A, Fei Z, Jander G (April 2019). "Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch)". GigaScience. 8 (4). doi: 10.1093/gigascience/giz033. PMC  6451198. PMID  30953568.
  403. ^ Chen J, Fan J, Zhang Y, Li Q, Zhang S, Yin H, et al. (2019-08-01). "A chromosome-level draft genome of the grain aphid Sitobion miscanthi". GigaScience. 8 (8). doi: 10.1093/gigascience/giz101. PMC  6701489. PMID  31430367.
  404. ^ Liu Q, Guo Y, Zhang Y, Hu W, Li Y, Zhu D, et al. (August 2019). "A chromosomal-level genome assembly for the insect vector for Chagas disease, Triatoma rubrofasciata". GigaScience. 8 (8). doi: 10.1093/gigascience/giz089. PMC  6699579. PMID  31425588.
  405. ^ Nygaard S, Zhang G, Schiøtt M, Li C, Wurm Y, Hu H, et al. (August 2011). "The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming". Genome Research. 21 (8): 1339–48. doi: 10.1101/gr.121392.111. PMC  3149500. PMID  21719571.
  406. ^ Honeybee Genome Sequencing Consortium (October 2006). "Insights into social insects from the genome of the honeybee Apis mellifera". Nature. 443 (7114): 931–49. Bibcode: 2006Natur.443..931T. doi: 10.1038/nature05260. PMC  2048586. PMID  17073008.
  407. ^ Suen G, Teiling C, Li L, Holt C, Abouheif E, Bornberg-Bauer E, et al. (February 2011). Copenhaver G (ed.). "The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle". PLOS Genetics. 7 (2): e1002007. doi: 10.1371/journal.pgen.1002007. PMC  3037820. PMID  21347285.
  408. ^ a b Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, et al. (August 2010). "Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator". Science. 329 (5995): 1068–71. Bibcode: 2010Sci...329.1068B. doi: 10.1126/science.1192428. PMC  3772619. PMID  20798317.
  409. ^ Oxley PR, Ji L, Fetter-Pruneda I, McKenzie SK, Li C, Hu H, Zhang G, Kronauer DJ (February 2014). "The genome of the clonal raider ant Cerapachys biroi". Current Biology. 24 (4): 451–8. Bibcode: 2014CBio...24..451O. doi: 10.1016/j.cub.2014.01.018. PMC  3961065. PMID  24508170.
  410. ^ Brand P, Saleh N, Pan H, Li C, Kapheim KM, Ramírez SR (September 2017). "The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma". G3: Genes, Genomes, Genetics. 7 (9): 2891–2898. doi: 10.1534/g3.117.043687. PMC  5592917. PMID  28701376.
  411. ^ Konorov EA, Nikitin MA, Mikhailov KV, Lysenkov SN, Belenky M, Chang PL, Nuzhdin SV, Scobeyeva VA (February 2017). "Genomic exaptation enables Lasius niger adaptation to urban environments". BMC Evolutionary Biology. 17 (Suppl 1): 39. Bibcode: 2017BMCEE..17S..39K. doi: 10.1186/s12862-016-0867-x. PMC  5333191. PMID  28251870.
  412. ^ Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cash E, et al. (April 2011). "Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5673–8. Bibcode: 2011PNAS..108.5673S. doi: 10.1073/pnas.1008617108. PMC  3078359. PMID  21282631.
  413. ^ a b c Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, et al. (January 2010). "Functional and evolutionary insights from the genomes of three parasitoid Nasonia species". Science. 327 (5963): 343–8. Bibcode: 2010Sci...327..343.. doi: 10.1126/science.1178028. PMC  2849982. PMID  20075255.
  414. ^ Kapheim KM, Pan H, Li C, Blatti C, Harpur BA, Ioannidis P, et al. (March 2019). "Nomia melanderi)". G3: Genes, Genomes, Genetics. 9 (3): 625–634. doi: 10.1534/g3.118.200865. PMC  6404593. PMID  30642875.
  415. ^ Smith CR, Smith CD, Robertson HM, Helmkampf M, Zimin A, Yandell M, et al. (April 2011). "Draft genome of the red harvester ant Pogonomyrmex barbatus". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5667–72. Bibcode: 2011PNAS..108.5667S. doi: 10.1073/pnas.1007901108. PMC  3078412. PMID  21282651.
  416. ^ Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, et al. (April 2011). "The genome of the fire ant Solenopsis invicta". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5679–84. Bibcode: 2011PNAS..108.5679W. doi: 10.1073/pnas.1009690108. PMC  3078418. PMID  21282665.
  417. ^ Shen J, Cong Q, Borek D, Otwinowski Z, Grishin NV (July 2017). "Complete Genome of Achalarus lyciades, The First Representative of the Eudaminae Subfamily of Skippers". Current Genomics. 18 (4): 366–374. doi: 10.2174/1389202918666170426113315. PMC  5635620. PMID  29081692.
  418. ^ Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, et al. (January 2018). "Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae". GigaScience. 7 (1): 1–11. doi: 10.1093/gigascience/gix113. PMC  5774507. PMID  29186418.
  419. ^ Yen EC, McCarthy SA, Galarza JA, Generalovic TN, Pelan S, Nguyen P, et al. (August 2020). "A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning". GigaScience. 9 (8). doi: 10.1093/gigascience/giaa088. PMC  7433188. PMID  32808665.
  420. ^ Nowell RW, Elsworth B, Oostra V, Zwaan BJ, Wheat CW, Saastamoinen M, et al. (July 2017). "A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana". GigaScience. 6 (7): 1–7. doi: 10.1093/gigascience/gix035. PMC  5493746. PMID  28486658.
  421. ^ Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T (February 2004). "The genome sequence of silkworm, Bombyx mori". DNA Research. 11 (1): 27–35. doi: 10.1093/dnares/11.1.27. PMID  15141943.
  422. ^ a b Cong Q, Shen J, Borek D, Robbins RK, Otwinowski Z, Grishin NV (April 2016). "Complete genomes of Hairstreak butterflies, their speciation and nucleo-mitochondrial incongruence". Scientific Reports. 6 (24863): 24863. Bibcode: 2016NatSR...624863C. doi: 10.1038/srep24863. PMC  4848470. PMID  27120974.
  423. ^ Wan F, Yin C, Tang R, Chen M, Wu Q, Huang C, et al. (September 2019). "A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance". Nature Communications. 10 (1): 4237. Bibcode: 2019NatCo..10.4237W. doi: 10.1038/s41467-019-12175-9. PMC  6748993. PMID  31530873.
  424. ^ Zhan S, Merlin C, Boore JL, Reppert SM (November 2011). "The monarch butterfly genome yields insights into long-distance migration". Cell. 147 (5): 1171–85. doi: 10.1016/j.cell.2011.09.052. PMC  3225893. PMID  22118469.
  425. ^ Dasmahapatra KK (July 2012). "Butterfly genome reveals promiscuous exchange of mimicry adaptations among species". Nature. 487 (7405): 94–8. Bibcode: 2012Natur.487...94T. doi: 10.1038/nature11041. PMC  3398145. PMID  22722851.
  426. ^ Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, et al. (September 2014). "The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera". Nature Communications. 5 (1): 4737. Bibcode: 2014NatCo...5.4737A. doi: 10.1038/ncomms5737. PMC  4164777. PMID  25189940.
  427. ^ Smolander OP, Blande D, Ahola V, Rastas P, Tanskanen J, Kammonen JI, et al. (January 2022). "Improved chromosome-level genome assembly of the Glanville fritillary butterfly (Melitaea cinxia) integrating Pacific Biosciences long reads and a high-density linkage map". GigaScience. 11 (1): giab097. doi: 10.1093/gigascience/giab097. PMC  8756199. PMID  35022701.
  428. ^ Cong Q, Li W, Borek D, Otwinowski Z, Grishin NV (February 2019). "The Bear Giant-Skipper genome suggests genetic adaptations to living inside yucca roots". Molecular Genetics and Genomics. 294 (1): 211–226. doi: 10.1007/s00438-018-1494-6. PMC  6436644. PMID  30293092.
  429. ^ a b c Bastide H, López-Villavicencio M, Ogereau D, Lledo J, Dutrillaux AM, Debat V, Llaurens V (December 2022). "Genome assembly of 3 Amazonian Morpho butterfly species reveals Z-chromosome rearrangements between closely related species living in sympatry". GigaScience. 12. doi: 10.1093/gigascience/giad033. PMC  10202424. PMID  37216769.
  430. ^ Héloïse, Bastide; Manuela, López-Villavicencio; David, Ogereau; Joanna, Lledo; Dutrillaux Anne-Marie; Vincent, Debat; Violaine, Llaurens (2023). "GigaDB Dataset - DOI 10.5524/102367 - Genomic data of the Amazonian blue butterfly, Morpho helenor". gigadb.org. doi: 10.5524/102367. Retrieved 2023-07-10.
  431. ^ Héloïse, Bastide; Manuela, López-Villavicencio; David, Ogereau; Joanna, Lledo; Dutrillaux Anne-Marie; Vincent, Debat; Violaine, Llaurens (2023). "GigaDB Dataset - DOI 10.5524/102366 - Genomic data of the Amazonian blue butterfly, Morpho achilles". gigadb.org. doi: 10.5524/102366. Retrieved 2023-07-10.
  432. ^ Héloïse, Bastide; Manuela, López-Villavicencio; David, Ogereau; Joanna, Lledo; Dutrillaux Anne-Marie; Vincent, Debat; Violaine, Llaurens (2023). "GigaDB Dataset - DOI 10.5524/102366 - Genomic data of the Amazonian blue butterfly, Morpho achilles". gigadb.org. doi: 10.5524/102366. Retrieved 2023-07-10.
  433. ^ Lu S, Yang J, Dai X, Xie F, He J, Dong Z, et al. (November 2019). "Chromosomal-level reference genome of Chinese peacock butterfly (Papilio bianor) based on third-generation DNA sequencing and Hi-C analysis". GigaScience. 8 (11). doi: 10.1093/gigascience/giz128. PMC  6827417. PMID  31682256.
  434. ^ Shen J, Cong Q, Kinch LN, Borek D, Otwinowski Z, Grishin NV (2016-11-03). "Pieris rapae, a resilient alien, a cabbage pest, and a source of anti-cancer proteins". F1000Research. 5: 2631. doi: 10.12688/f1000research.9765.1. PMC  5247789. PMID  28163896.
  435. ^ a b Kawahara AY, Storer CG, Markee A, Heckenhauer J, Powell A, Plotkin D, et al. (2022). "Long-read HiFi sequencing correctly assembles repetitive heavy fibroin silk genes in new moth and caddisfly genomes". GigaByte. 2022: 1–14. doi: 10.46471/gigabyte.64. PMC  9693786. PMID  36824508.
  436. ^ Akito KY, Caroline SG, Amanda M, Jacqueline H, Ashlyn P, David P, et al. (2022). "GigaDB Dataset - Chromosome-scale assembly of the Indianmeal moth Plodia interpunctella". GigaDB. doi: 10.5524/102231.
  437. ^ You M, Yue Z, He W, Yang X, Yang G, Xie M, et al. (February 2013). "A heterozygous moth genome provides insights into herbivory and detoxification". Nature Genetics. 45 (2): 220–5. doi: 10.1038/ng.2524. hdl: 2440/80359. PMID  23313953. S2CID  645600.
  438. ^ Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM, Duvic B, et al. (September 2017). "Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges". Scientific Reports. 7 (1): 11816. Bibcode: 2017NatSR...711816G. doi: 10.1038/s41598-017-10461-4. PMC  5613006. PMID  28947760.
  439. ^ Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK (August 2014). "A draft genome assembly of the army worm, Spodoptera frugiperda". Genomics. 104 (2): 134–43. doi: 10.1016/j.ygeno.2014.06.005. PMID  24984256.
  440. ^ Sivasankaran K, Mathew P, Anand S, Ceasar SA, Mariapackiam S, Ignacimuthu S (December 2017). "Complete mitochondrial genome sequence of fruit-piercing moth Eudocima phalonia (Linnaeus, 1763) (Lepidoptera: Noctuoidea)". Genomics Data. 14: 66–81. doi: 10.1016/j.gdata.2017.09.004. PMC  5633087. PMID  29021958.
  441. ^ Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. (14 January 2014). "The locust genome provides insight into swarm formation and long-distance flight". Nature Communications. 5 (1): 2957. Bibcode: 2014NatCo...5.2957W. doi: 10.1038/ncomms3957. PMC  3896762. PMID  24423660.
  442. ^ Verlinden H, Sterck L, Li J, Li Z, Yssel A, Gansemans Y, et al. (27 July 2020). "First draft genome assembly of the desert locust, Schistocerca gregaria". F1000Research. 9: 775. doi: 10.12688/f1000research.25148.1. PMC  7607483. PMID  33163158.
  443. ^ Ylla G, Nakamura T, Itoh T, Kajitani R, Toyoda A, Tomonari S, et al. (June 2021). "Insights into the genomic evolution of insects from cricket genomes". Communications Biology. 4 (1): 733. doi: 10.1038/s42003-021-02197-9. PMC  8203789. PMID  34127782.
  444. ^ Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, et al. (July 2010). "Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle". Proceedings of the National Academy of Sciences of the United States of America. 107 (27): 12168–73. Bibcode: 2010PNAS..10712168K. doi: 10.1073/pnas.1003379107. PMC  2901460. PMID  20566863.
  445. ^ Feng S, Opit G, Deng W, Stejskal V, Li Z (July 2022). "A chromosome-level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation". GigaScience. 11. doi: 10.1093/gigascience/giac062. PMC  9295366. PMID  35852419.
  446. ^ Wolf, Magnus; Greve, Carola; Schell, Tilman; Janke, Axel; Schmitt, Thomas; Pauls, Steffen U.; Aspöck, Horst; Aspöck, Ulrike (2024). "The de novo genome of the Black-necked Snakefly ( Venustoraphidia nigricollis Albarda, 1891): A resource to study the evolution of living fossils". Journal of Heredity. 115 (1): 112–119. doi: 10.1093/jhered/esad074. PMC  10838129. PMID  37988623.
  447. ^ Akito KY, Caroline SG, Amanda M, Jacqueline H, Ashlyn P, David P, et al. (2022). "GigaDB Dataset - Chromosome-scale assembly of the caddisfly Eubasilissa regina". GigaDB. doi: 10.5524/102230.
  448. ^ Luo S, Tang M, Frandsen PB, Stewart RJ, Zhou X (December 2018). "The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera)". GigaScience. 7 (12). doi: 10.1093/gigascience/giy143. PMC  6302954. PMID  30476205.
  449. ^ Jørgensen TS, Petersen B, Petersen HC, Browne PD, Prost S, Stillman JH, et al. (May 2019). "The Genome and mRNA Transcriptome of the Cosmopolitan Calanoid Copepod Acartia tonsa Dana Improve the Understanding of Copepod Genome Size Evolution". Genome Biology and Evolution. 11 (5): 1440–1450. doi: 10.1093/gbe/evz067. PMC  6526698. PMID  30918947.
  450. ^ Tan MH, Gan HM, Lee YP, Grandjean F, Croft LJ, Austin CM (2020). "A Giant Genome for a Giant Crayfish (Cherax quadricarinatus) With Insights Into cox1 Pseudogenes in Decapod Genomes". Frontiers in Genetics. 11: 201. doi: 10.3389/fgene.2020.00201. PMC  7069360. PMID  32211032.
  451. ^ "The Daphnia Genomics Consortium". Archived from the original on 2010-01-09. Retrieved 2012-05-23.
  452. ^ "Daphnia pulex v1.0". DOE Joint Genome Institute. Retrieved 2009-11-29.
  453. ^ Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, et al. (February 2011). "The ecoresponsive genome of Daphnia pulex". Science. 331 (6017): 555–61. Bibcode: 2011Sci...331..555C. doi: 10.1126/science.1197761. PMC  3529199. PMID  21292972.
  454. ^ Baldwin-Brown JG, Weeks SC, Long AD (January 2018). "A New Standard for Crustacean Genomes: The Highly Contiguous, Annotated Genome Assembly of the Clam Shrimp Eulimnadia texana Reveals HOX Gene Order and Identifies the Sex Chromosome". Genome Biology and Evolution. 10 (1): 143–156. doi: 10.1093/gbe/evx280. PMC  5765565. PMID  29294012.
  455. ^ Jin S, Bian C, Jiang S, Han K, Xiong Y, Zhang W, et al. (January 2021). "A chromosome-level genome assembly of the oriental river prawn, Macrobrachium nipponense". GigaScience. 10 (1). doi: 10.1093/gigascience/giaa160. PMC  7812440. PMID  33459341.
  456. ^ Kenny NJ, Sin YW, Shen X, Zhe Q, Wang W, Chan TF, et al. (March 2014). "Genomic sequence and experimental tractability of a new decapod shrimp model, Neocaridina denticulata". Marine Drugs. 12 (3): 1419–37. doi: 10.3390/md12031419. PMC  3967219. PMID  24619275.
  457. ^ Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, et al. (November 2016). "Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion". eLife. 5: e20062. doi: 10.7554/eLife.20062. PMC  5111886. PMID  27849518.
  458. ^ Bernot JP, Avdeyev P, Zamyatin A, Dreyer N, Alexeev N, Pérez-Losada M, Crandall KA (March 2022). "Chromosome-level genome assembly, annotation, and phylogenomics of the gooseneck barnacle Pollicipes pollicipes". GigaScience. 11: giac021. doi: 10.1093/gigascience/giac021. PMC  8917513. PMID  35277961.
  459. ^ Tang B, Zhang D, Li H, Jiang S, Zhang H, Xuan F, et al. (January 2020). "Chromosome-level genome assembly reveals the unique genome evolution of the swimming crab (Portunus trituberculatus)". GigaScience. 9 (1). doi: 10.1093/gigascience/giz161. PMC  6944217. PMID  31904811.
  460. ^ Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy J, Lyko F (March 2018). "Clonal genome evolution and rapid invasive spread of the marbled crayfish". Nature Ecology & Evolution. 2 (3): 567–573. Bibcode: 2018NatEE...2..567G. doi: 10.1038/s41559-018-0467-9. PMID  29403072. S2CID  3354026.
  461. ^ Kang S, Ahn DH, Lee JH, Lee SG, Shin SC, Lee J, et al. (January 2017). "The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis". GigaScience. 6 (1): 1–9. doi: 10.1093/gigascience/giw010. PMC  5467011. PMID  28369352.
  462. ^ Nossa CW, Havlak P, Yue JX, Lv J, Vincent KY, Brockmann HJ, et al. (2014). "Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication". GigaScience. 3: 9. doi: 10.1186/2047-217X-3-9. PMC  4066314. PMID  24987520.
  463. ^ Shingate P, Ravi V, Prasad A, Tay BH, Garg KM, Chattopadhyay B, et al. (May 2020). "Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution". Nature Communications. 11 (1): 2322. Bibcode: 2020NatCo..11.2322S. doi: 10.1038/s41467-020-16180-1. PMC  7210998. PMID  32385269.
  464. ^ a b Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF, Gupta V, et al. (May 2014). "Spider genomes provide insight into composition and evolution of venom and silk". Nature Communications. 5: 3765. Bibcode: 2014NatCo...5.3765S. doi: 10.1038/ncomms4765. PMC  4273655. PMID  24801114.
  465. ^ Sheffer MM, Hoppe A, Krehenwinkel H, Uhl G, Kuss AW, Jensen L, et al. (January 2021). "Chromosome-level reference genome of the European wasp spider Argiope bruennichi: a resource for studies on range expansion and evolutionary adaptation". GigaScience. 10 (1). doi: 10.1093/gigascience/giaa148. PMC  7788392. PMID  33410470.
  466. ^ Sánchez-Herrero JF, Frías-López C, Escuer P, Hinojosa-Alvarez S, Arnedo MA, Sánchez-Gracia A, Rozas J (August 2019). "The draft genome sequence of the spider Dysdera silvatica (Araneae, Dysderidae): A valuable resource for functional and evolutionary genomic studies in chelicerates". GigaScience. 8 (8). doi: 10.1093/gigascience/giz099. PMC  6701490. PMID  31430368.
  467. ^ Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, et al. (February 2016). "Genomic insights into the Ixodes scapularis tick vector of Lyme disease". Nature Communications. 7: 10507. Bibcode: 2016NatCo...710507G. doi: 10.1038/ncomms10507. PMC  4748124. PMID  26856261.
  468. ^ Wang Z, Zhu K, Li H, Gao L, Huang H, Ren Y, Xiang H (May 2022). "Chromosome-level genome assembly of the black widow spider Latrodectus elegans illuminates composition and evolution of venom and silk proteins". GigaScience. 11: giac049. doi: 10.1093/gigascience/giac049. PMC  9154082. PMID  35639632.
  469. ^ Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, et al. (2013). "The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods". Nature Communications. 4: 2602. Bibcode: 2013NatCo...4.2602C. doi: 10.1038/ncomms3602. PMC  3826648. PMID  24129506.
  470. ^ Babb PL, Lahens NF, Correa-Garhwal SM, Nicholson DN, Kim EJ, Hogenesch JB, et al. (May 2017). "The Nephila clavipes genome highlights the diversity of spider silk genes and their complex expression". Nature Genetics. 49 (6): 895–903. doi: 10.1038/ng.3852. PMID  28459453. S2CID  1221097.
  471. ^ Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, et al. (July 2017). "The house spider genome reveals an ancient whole-genome duplication during arachnid evolution". BMC Biology. 15 (1): 62. doi: 10.1186/s12915-017-0399-x. PMC  5535294. PMID  28756775.
  472. ^ Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, et al. (November 2011). "The genome of Tetranychus urticae reveals herbivorous pest adaptations". Nature. 479 (7374): 487–92. Bibcode: 2011Natur.479..487G. doi: 10.1038/nature10640. PMC  4856440. PMID  22113690.
  473. ^ Dong X, Armstrong SD, Xia D, Makepeace BL, Darby AC, Kadowaki T (1 March 2017). "Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history". GigaScience. 6 (3): 1–17. doi: 10.1093/gigascience/gix008. PMC  5467014. PMID  28327890.
  474. ^ Miller J, Zimin AV, Gordus A (December 2022). "Chromosome-level genome and the identification of sex chromosomes in Uloborus diversus". GigaScience. 12. doi: 10.1093/gigascience/giad002. PMC  9912274. PMID  36762707.
  475. ^ Chipman AD, Ferrier DE, Brena C, Qu J, Hughes DS, Schröder R, et al. (November 2014). "The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima". PLOS Biology. 12 (11): e1002005. doi: 10.1371/journal.pbio.1002005. PMC  4244043. PMID  25423365.
  476. ^ Boothby TC, Tenlen JR, Smith FW, Wang JR, Patanella KA, Nishimura EO, et al. (December 2015). "Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade". Proceedings of the National Academy of Sciences of the United States of America. 112 (52): 15976–81. Bibcode: 2015PNAS..11215976B. doi: 10.1073/pnas.1510461112. PMC  4702960. PMID  26598659.
  477. ^ Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M (2015). "The genome of the tardigrade Hypsibius dujardini". bioRxiv  10.1101/033464.
  478. ^ Varney RM, Speiser DI, McDougall C, Degnan BM, Kocot KM (December 2020). "The iron-responsive genome of the chiton Acanthopleura Granulata". Genome Biology and Evolution. 13 (1). evaa263. doi: 10.1093/gbe/evaa263. PMC  7850002. PMID  33320175.
  479. ^ Guo Y, Zhang Y, Liu Q, Huang Y, Mao G, Yue Z, et al. (October 2019). "A chromosomal-level genome assembly for the giant African snail Achatina fulica". GigaScience. 8 (10). doi: 10.1093/gigascience/giz124. PMC  6802634. PMID  31634388.
  480. ^ Brejova B, Albertin CB, Silva F, Gardner P, Baril T, Hayward A, et al. (2020-01-01). "A draft genome sequence of the elusive giant squid, Architeuthis dux". GigaScience. 9 (1). doi: 10.1093/gigascience/giz152. PMC  6962438. PMID  31942620.
  481. ^ Li C, Liu X, Liu B, Ma B, Liu F, Liu G, et al. (April 2018). "Draft genome of the Peruvian scallop Argopecten purpuratus". GigaScience. 7 (4). doi: 10.1093/gigascience/giy031. PMC  5905365. PMID  29617765.
  482. ^ a b Sun J, Zhang Y, Xu T, Zhang Y, Mu H, Zhang Y, et al. (April 2017). "Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes". Nature Ecology & Evolution. 1 (5): 121. Bibcode: 2017NatEE...1..121S. doi: 10.1038/s41559-017-0121. PMID  28812709. S2CID  26405671.
  483. ^ Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, et al. (May 2017). "Whole genome analysis of a schistosomiasis-transmitting freshwater snail". Nature Communications. 8: 15451. Bibcode: 2017NatCo...815451A. doi: 10.1038/ncomms15451. PMC  5440852. PMID  28508897.
  484. ^ Nong W, Yu Y, Aase-Remedios ME, Xie Y, So WL, Li Y, et al. (February 2022). "Genome of the ramshorn snail Biomphalaria straminea-an obligate intermediate host of schistosomiasis". GigaScience. 11: giac012. doi: 10.1093/gigascience/giac012 (inactive 31 January 2024). PMC  8848322. PMID  35166339.{{ cite journal}}: CS1 maint: DOI inactive as of January 2024 ( link)
  485. ^ Chueca LJ, Schell T, Pfenninger M (August 2021). "De novo genome assembly of the land snail Candidula unifasciata (Mollusca: Gastropoda)". G3: Genes, Genomes, Genetics. 11 (8). doi: 10.1093/g3journal/jkab180. PMC  8496239. PMID  34849805.
  486. ^ Li Y, Sun X, Hu X, Xun X, Zhang J, Guo X, et al. (November 2017). "Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins". Nature Communications. 8 (1): 1721. Bibcode: 2017NatCo...8.1721L. doi: 10.1038/s41467-017-01927-0. PMC  5700196. PMID  29167427.
  487. ^ Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. (October 2012). "The oyster genome reveals stress adaptation and complexity of shell formation". Nature. 490 (7418): 49–54. Bibcode: 2012Natur.490...49Z. doi: 10.1038/nature11413. hdl: 10722/251007. PMID  22992520. S2CID  52853995.
  488. ^ Calcino AD, Luiz de Oliveira A, Simakov O, Schwaha T, Zieger E, Wollesen T, et al. (October 2019). "The quagga mussel genome and the evolution of freshwater tolerance". DNA Research. 26 (5): 411–422. doi: 10.1093/dnares/dsz019. PMC  6796509. PMID  31504356.
  489. ^ Belcaid M, Casaburi G, McAnulty SJ, Schmidbaur H, Suria AM, Moriano-Gutierrez S, et al. (February 2019). "Symbiotic organs shaped by distinct modes of genome evolution in cephalopods". Proceedings of the National Academy of Sciences of the United States of America. 116 (8): 3030–3035. Bibcode: 2019PNAS..116.3030B. doi: 10.1073/pnas.1817322116. PMC  6386654. PMID  30635418.
  490. ^ Cai H, Li Q, Fang X, Li J, Curtis NE, Altenburger A, et al. (February 2019). "A draft genome assembly of the solar-powered sea slug Elysia chlorotica". Scientific Data. 6 (1): 190022. Bibcode: 2019NatSD...690022C. doi: 10.1038/sdata.2019.22. PMC  6380222. PMID  30778257.
  491. ^ Nam BH, Kwak W, Kim YO, Kim DG, Kong HJ, Kim WJ, et al. (May 2017). "Genome sequence of pacific abalone (Haliotis discus hannai): the first draft genome in family Haliotidae". GigaScience. 6 (5): 1–8. doi: 10.1093/gigascience/gix014. PMC  5439488. PMID  28327967.
  492. ^ Whitelaw BL, Cooke IR, Finn J, da Fonseca RR, Ritschard EA, Gilbert MT, et al. (November 2020). "Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss". GigaScience. 9 (11). doi: 10.1093/gigascience/giaa120. PMC  7656900. PMID  33175168.
  493. ^ Pardos-Blas JR, Irisarri I, Abalde S, Afonso CM, Tenorio MJ, Zardoya R (May 2021). "The genome of the venomous snail Lautoconus ventricosus sheds light on the origin of conotoxin diversity". GigaScience. 10 (5). doi: 10.1093/gigascience/giab037. PMC  8152183. PMID  34037232.
  494. ^ a b c Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, et al. (January 2013). "Insights into bilaterian evolution from three spiralian genomes". Nature. 493 (7433): 526–31. Bibcode: 2013Natur.493..526S. doi: 10.1038/nature11696. PMC  4085046. PMID  23254933.
  495. ^ Uliano-Silva M, Dondero F, Dan Otto T, Costa I, Lima NC, Americo JA, et al. (February 2018). "A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnoperna fortunei". GigaScience. 7 (2). doi: 10.1093/gigascience/gix128. PMC  5836269. PMID  29267857.
  496. ^ Gomes-Dos-Santos A, Lopes-Lima M, Machado AM, Forest T, Achaz G, Teixeira A, et al. (2023-05-15). "The Crown Pearl V2: an improved genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758)". GigaByte. 2023: 1–14. doi: 10.46471/gigabyte.81. PMC  10189783. PMID  37207176.
  497. ^ Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C (2016-03-15). "A First Insight into the Genome of the Filter-Feeder Mussel Mytilus galloprovincialis". PLOS ONE. 11 (3): e0151561. Bibcode: 2016PLoSO..1151561M. doi: 10.1371/journal.pone.0151561. PMC  4792442. PMID  26977809.
  498. ^ Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et al. (August 2015). "The octopus genome and the evolution of cephalopod neural and morphological novelties". Nature. 524 (7564): 220–4. Bibcode: 2015Natur.524..220A. doi: 10.1038/nature14668. PMC  4795812. PMID  26268193.
  499. ^ Kim BM, Kang S, Ahn DH, Jung SH, Rhee H, Yoo JS, et al. (November 2018). "The genome of common long-arm octopus Octopus minor". GigaScience. 7 (11). doi: 10.1093/gigascience/giy119. PMC  6279123. PMID  30256935.
  500. ^ Zarrella I, Herten K, Maes GE, Tai S, Yang M, Seuntjens E, et al. (April 2019). "The survey and reference assisted assembly of the Octopus vulgaris genome". Scientific Data. 6 (1): 13. Bibcode: 2019NatSD...6...13Z. doi: 10.1038/s41597-019-0017-6. PMC  6472339. PMID  30931949.
  501. ^ Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, et al. (April 2017). "Scallop genome provides insights into evolution of bilaterian karyotype and development". Nature Ecology & Evolution. 1 (5): 120. Bibcode: 2017NatEE...1..120W. doi: 10.1038/s41559-017-0120. PMC  10970998. PMID  28812685. S2CID  10331741.
  502. ^ Kenny NJ, McCarthy SA, Dudchenko O, James K, Betteridge E, Corton C, et al. (May 2020). "The gene-rich genome of the scallop Pecten maximus". GigaScience. 9 (5). doi: 10.1093/gigascience/giaa037. PMC  7191990. PMID  32352532.
  503. ^ Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M, Ikuta T, et al. (April 2012). "Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology". DNA Research. 19 (2): 117–30. doi: 10.1093/dnares/dss005. PMC  3325083. PMID  22315334.
  504. ^ Maeda T, Takahashi S, Yoshida T, Shimamura S, Takaki Y, Nagai Y, Toyoda A, Suzuki Y, Arimoto A, Ishii H, Satoh N, Nishiyama T, Hasebe M, Maruyama T, Minagawa J, Obokata J, Shigenobu S (April 2021). "Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs, Plakobranchus ocellatus". eLife. 10 (e60176). doi: 10.7554/eLife.60176. PMC  8079154. PMID  33902812.
  505. ^ Liu C, Zhang Y, Ren Y, Wang H, Li S, Jiang F, et al. (September 2018). "The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation". GigaScience. 7 (9). doi: 10.1093/gigascience/giy101. PMC  6129957. PMID  30107526.
  506. ^ Mun S, Kim YJ, Markkandan K, Shin W, Oh S, Woo J, et al. (June 2017). "The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum)". Genome Biology and Evolution. 9 (6): 1487–1498. doi: 10.1093/gbe/evx096. PMC  5499747. PMID  28505302.
  507. ^ Powell D, Subramanian S, Suwansa-Ard S, Zhao M, O'Connor W, Raftos D, Elizur A (December 2018). "The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves". DNA Research. 25 (6): 655–665. doi: 10.1093/dnares/dsy032. PMC  6289776. PMID  30295708.
  508. ^ Bai CM, Xin LS, Rosani U, Wu B, Wang QC, Duan XK, et al. (July 2019). "Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C". GigaScience. 8 (7). doi: 10.1093/gigascience/giz067. PMC  6615981. PMID  31289832.
  509. ^ Renaut S, Guerra D, Hoeh WR, Stewart DT, Bogan AE, Ghiselli F, et al. (July 2018). "Genome Survey of the Freshwater Mussel Venustaconcha ellipsiformis (Bivalvia: Unionida) Using a Hybrid De Novo Assembly Approach". Genome Biology and Evolution. 10 (7): 1637–1646. doi: 10.1093/gbe/evy117. PMC  6054159. PMID  29878181.
  510. ^ Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, et al. (October 2011). "The draft genome of the carcinogenic human liver fluke Clonorchis sinensis". Genome Biology. 12 (10): R107. doi: 10.1186/gb-2011-12-10-r107. PMC  3333777. PMID  22023798.
  511. ^ a b c d Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sánchez-Flores A, Brooks KL, et al. (April 2013). "The genomes of four tapeworm species reveal adaptations to parasitism". Nature. 496 (7443): 57–63. Bibcode: 2013Natur.496...57.. doi: 10.1038/nature12031. PMC  3964345. PMID  23485966.
  512. ^ Zheng H, Zhang W, Zhang L, Zhang Z, Li J, Lu G, et al. (October 2013). "The genome of the hydatid tapeworm Echinococcus granulosus". Nature Genetics. 45 (10): 1168–75. doi: 10.1038/ng.2757. PMID  24013640. S2CID  205347630.
  513. ^ Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, et al. (January 2012). "Whole-genome sequence of Schistosoma haematobium". Nature Genetics. 44 (2): 221–5. doi: 10.1038/ng.1065. hdl: 10072/45821. PMID  22246508. S2CID  13309839.
  514. ^ Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, et al. (September 2019). "High-quality Schistosoma haematobium genome achieved by single-molecule and long-range sequencing". GigaScience. 8 (9). doi: 10.1093/gigascience/giz108. PMC  6736295. PMID  31494670.
  515. ^ The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (July 2009). "The Schistosoma japonicum genome reveals features of host-parasite interplay". Nature. 460 (7253): 345–51. Bibcode: 2009Natur.460..345Z. doi: 10.1038/nature08140. PMC  3747554. PMID  19606140.
  516. ^ Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. (July 2009). "The genome of the blood fluke Schistosoma mansoni". Nature. 460 (7253): 352–8. Bibcode: 2009Natur.460..352B. doi: 10.1038/nature08160. PMC  2756445. PMID  19606141.
  517. ^ Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al. (January 2012). "A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni". PLOS Neglected Tropical Diseases. 6 (1): e1455. doi: 10.1371/journal.pntd.0001455. PMC  3254664. PMID  22253936.
  518. ^ "Schmidtea mediterranea". The Genome Institute. Washington University in St. Louis. Archived from the original on 2012-03-08. Retrieved 2012-05-23.
  519. ^ Schwarz EM, Hu Y, Antoshechkin I, Miller MM, Sternberg PW, Aroian RV (April 2015). "The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families". Nature Genetics. 47 (4): 416–22. doi: 10.1038/ng.3237. PMC  4617383. PMID  25730766.
  520. ^ Han L, Liu T, He F, Hou Z (2023-03-27). "The first genome assembly of the amphibian nematode parasite (Aplectana chamaeleonis)". Gigabyte. 2023: 1–8. doi: 10.46471/gigabyte.79. ISSN  2709-4715. PMC  10043924. PMID  36999120.
  521. ^ Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, et al. (October 2011). "Ascaris suum draft genome". Nature. 479 (7374): 529–33. Bibcode: 2011Natur.479..529J. doi: 10.1038/nature10553. PMID  22031327. S2CID  205226683.
  522. ^ Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, et al. (September 2007). "Draft genome of the filarial nematode parasite Brugia malayi". Science. 317 (5845): 1756–60. Bibcode: 2007Sci...317.1756G. doi: 10.1126/science.1145406. PMC  2613796. PMID  17885136.
  523. ^ Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, McVeigh P, et al. (September 2011). "Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus". PLOS Pathogens. 7 (9): e1002219. doi: 10.1371/journal.ppat.1002219. PMC  3164644. PMID  21909270.
  524. ^ Mortazavi A, Schwarz EM, Williams B, Schaeffer L, Antoshechkin I, Wold BJ, et al. (December 2010). "Scaffolding a Caenorhabditis nematode genome with RNA-seq". Genome Research. 20 (12): 1740–7. doi: 10.1101/gr.111021.110. PMC  2990000. PMID  20980554.
  525. ^ "GSC: Caenorhabditis n. sp. PB2801". Archived from the original on 18 August 2007. Retrieved 28 April 2007.
  526. ^ "Wormbase". Retrieved 4 September 2015.
  527. ^ Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, et al. (November 2003). "The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics". PLOS Biology. 1 (2): E45. doi: 10.1371/journal.pbio.0000045. PMC  261899. PMID  14624247.
  528. ^ C. elegans Sequencing Consortium. (December 1998). "Genome sequence of the nematode C. elegans: a platform for investigating biology". Science. 282 (5396): 2012–8. Bibcode: 1998Sci...282.2012.. doi: 10.1126/science.282.5396.2012. PMID  9851916.
  529. ^ "GSC: Caenorhabditis remanei". Archived from the original on 13 March 2007. Retrieved 28 April 2007.
  530. ^ Haag ES, Chamberlin H, Coghlan A, Fitch DH, Peters AD, Schulenburg H (March 2007). "Caenorhabditis evolution: if they all look alike, you aren't looking hard enough" (PDF). Trends in Genetics. 23 (3): 101–4. doi: 10.1016/j.tig.2007.01.002. PMID  17275130.
  531. ^ Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, Comandatore F, et al. (November 2012). "The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets". FASEB Journal. 26 (11): 4650–61. doi: 10.1096/fj.12-205096. PMC  3475251. PMID  22889830.
  532. ^ Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, et al. (March 2014). "The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode". Genome Biology. 15 (3): R43. doi: 10.1186/gb-2014-15-3-r43. PMC  4054857. PMID  24580726.
  533. ^ Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, et al. (August 2013). "The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery". Genome Biology. 14 (8): R88. doi: 10.1186/gb-2013-14-8-r88. PMC  4054779. PMID  23985316.
  534. ^ Masonbrink R, Maier TR, Muppirala U, Seetharam AS, Lord E, Juvale PS, et al. (9 February 2019). "The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes". BMC Genomics. 20 (1): 119. doi: 10.1186/s12864-019-5485-8. PMC  6367775. PMID  30732586.
  535. ^ Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, et al. (18 July 2013). "A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora". PLOS ONE. 8 (7): e69618. Bibcode: 2013PLoSO...869618B. doi: 10.1371/journal.pone.0069618. PMC  3715494. PMID  23874975.
  536. ^ Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, Zucker J, et al. (May 2013). "Genomics of Loa loa, a Wolbachia-free filarial parasite of humans". Nature Genetics. 45 (5): 495–500. doi: 10.1038/ng.2585. PMC  4238225. PMID  23525074.
  537. ^ Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, et al. (September 2008). "Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism". Proceedings of the National Academy of Sciences of the United States of America. 105 (39): 14802–7. Bibcode: 2008PNAS..10514802O. doi: 10.1073/pnas.0805946105. PMC  2547418. PMID  18809916.
  538. ^ Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, et al. (August 2008). "Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita". Nature Biotechnology. 26 (8): 909–15. doi: 10.1038/nbt.1482. hdl: 1912/2392. PMID  18660804. S2CID  8836601.
  539. ^ Tang YT, Gao X, Rosa BA, Abubucker S, Hallsworth-Pepin K, Martin J, et al. (March 2014). "Genome of the human hookworm Necator americanus". Nature Genetics. 46 (3): 261–269. doi: 10.1038/ng.2875. PMC  3978129. PMID  24441737.
  540. ^ a b "Filarial worms Database". 2015-06-04. Retrieved 5 June 2015.
  541. ^ Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I, et al. (October 2008). "The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism". Nature Genetics. 40 (10): 1193–8. doi: 10.1038/ng.227. PMC  3816844. PMID  18806794.
  542. ^ Schiffer PH, Kroiher M, Kraus C, Koutsovoulos GD, Kumar S, Camps JI, et al. (December 2013). "The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda". BMC Genomics. 14 (1): 923. doi: 10.1186/1471-2164-14-923. PMC  3890508. PMID  24373391.
  543. ^ Jex AR, Nejsum P, Schwarz EM, Hu L, Young ND, Hall RS, et al. (July 2014). "Genome and transcriptome of the porcine whipworm Trichuris suis". Nature Genetics. 46 (7): 701–6. doi: 10.1038/ng.3012. PMC  4105696. PMID  24929829.
  544. ^ a b Foth BJ, Tsai IJ, Reid AJ, Bancroft AJ, Nichol S, Tracey A, et al. (July 2014). "Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction". Nature Genetics. 46 (7): 693–700. doi: 10.1038/ng.3010. PMC  5012510. PMID  24929830.
  545. ^ "Capitella teleta". The Joint Genome Institute. Berkeley National Laboratory.
  546. ^ "J Helobdella robusta". The Joint Genome Institute. Berkeley National Laboratory.
  547. ^ "Eisenia fetida". WhitneyLab.
  548. ^ Zwarycz AS, Nossa CW, Putnam NH, Ryan JF (December 2015). "Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm Eisenia fetida". Genome Biology and Evolution. 8 (1): 271–81. doi: 10.1093/gbe/evv243. PMC  4758240. PMID  26659921.
  549. ^ Sun Y, Sun J, Yang Y, Lan Y, Ip J, Wong WC, Kwan YH, Zhang Y, Han Z, Qiu JW, Qian PY (13 July 2021). "Genomic Signatures Supporting the Symbiosis and Formation of Chitinous Tube in the Deep-Sea Tubeworm Paraescarpia echinospica". Molecular Biology and Evolution. 38 (10): 4116–4134. doi: 10.1093/molbev/msab203. PMC  8476170. PMID  34255082.
  550. ^ a b c Zheng J, Wang X, Feng T, Rehman SU, Yan X, Shan H, et al. (December 2022). "Molecular mechanisms underlying hematophagia revealed by comparative analyses of leech genomes". GigaScience. 12. doi: 10.1093/gigascience/giad023. PMC  10087013. PMID  37039117.
  551. ^ Jinghui, Zheng; Xiaobo, Wang; Tong, Feng; Saif, Rehman Ur; Xiuying, Yan; Huiquan, Shan; Xiaocong, Ma; Weiguan, Zhou; Wenhua, Xu; Liying, Lu; Jiasheng, Liu; Xier, Luo; Kuiqing, Cui; Chaobin, Qin; Weihua, Chen; Jun, Yu; Zhipeng, Li; Jue, Ruan; Qingyou, Liu (2023). "GigaDB Dataset - DOI 10.5524/102363 - Genomic data of non-bloodsucking leech, Whitmania pigra". gigadb.org. doi: 10.5524/102363. Retrieved 2023-07-10.
  552. ^ Jinghui, Zheng; Xiaobo, Wang; Tong, Feng; Saif, Rehman Ur; Xiuying, Yan; Huiquan, Shan; Xiaocong, Ma; Weiguan, Zhou; Wenhua, Xu; Liying, Lu; Jiasheng, Liu; Xier, Luo; Kuiqing, Cui; Chaobin, Qin; Weihua, Chen; Jun, Yu; Zhipeng, Li; Jue, Ruan; Qingyou, Liu (2023). "GigaDB Dataset - DOI 10.5524/102364 - Genomic data of bloodsucking leech, Hirudo nipponia". gigadb.org. doi: 10.5524/102364. Retrieved 2023-07-10.
  553. ^ Jinghui, Zheng; Xiaobo, Wang; Tong, Feng; Saif, Rehman Ur; Xiuying, Yan; Huiquan, Shan; Xiaocong, Ma; Weiguan, Zhou; Wenhua, Xu; Liying, Lu; Jiasheng, Liu; Xier, Luo; Kuiqing, Cui; Chaobin, Qin; Weihua, Chen; Jun, Yu; Zhipeng, Li; Jue, Ruan; Qingyou, Liu (2023). "GigaDB Dataset - DOI 10.5524/102363 - Genomic data of non-bloodsucking leech, Whitmania pigra". gigadb.org. doi: 10.5524/102363. Retrieved 2023-07-10.
  554. ^ Rayko M, Komissarov A, Lim-Fong G, Rhodes AC, Kwan JC, Kliver S, Chesnokova P, O'Brien SJ, Lopez JV (September 2020). "Draft genome of Bryozoan Bugula neritina – a colonial animal packing powerful symbionts and potential medicines". Scientific Data. 7 (1): 356. doi: 10.1038/s41597-020-00684-y. PMC  7576161. PMID  33082320.
  555. ^ Luo YJ, Takeuchi T, Koyanagi R, Yamada L, Kanda M, Khalturina M, et al. (September 2015). "The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization". Nature Communications. 6: 8301. Bibcode: 2015NatCo...6.8301L. doi: 10.1038/ncomms9301. PMC  4595640. PMID  26383154.
  556. ^ Flot JF, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EG, et al. (August 2013). "Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga". Nature. 500 (7463): 453–7. Bibcode: 2013Natur.500..453F. doi: 10.1038/nature12326. hdl: 1721.1/87072. PMID  23873043. S2CID  1706158.
From Wikipedia, the free encyclopedia

This list of sequenced animal genomes contains animal species for which complete genome sequences have been assembled, annotated and published. Substantially complete draft genomes are included, but not partial genome sequences or organelle-only sequences.

Porifera

Ctenophora

Placozoa

Cnidaria

Deuterostomia

Hemichordates

Echinoderms

Tunicates

Cephalochordates

Cyclostomes

Cartilaginous fish

Bony fish

Amphibians

Reptiles

Birds

Mammals

Protostomia

Insects

Crustaceans

Chelicerates

Of which Arachnids:

Myriapoda

Tardigrades

Molluscs

Platyhelminthes

Nematodes

Annelids

Bryozoa

Brachiopoda

Rotifera

See also

References

  1. ^ Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier ME, Mitros T, et al. (August 2010). "The Amphimedon queenslandica genome and the evolution of animal complexity". Nature. 466 (7307): 720–6. Bibcode: 2010Natur.466..720S. doi: 10.1038/nature09201. PMC  3130542. PMID  20686567.
  2. ^ a b Ryu T, Seridi L, Moitinho-Silva L, Oates M, Liew YJ, Mavromatis C, et al. (February 2016). "Hologenome analysis of two marine sponges with different microbiomes". BMC Genomics. 17 (1): 158. doi: 10.1186/s12864-016-2501-0. PMC  4772301. PMID  26926518.
  3. ^ Kenny N, Francis, W, et al. (July 2020). "Tracing animal genomic evolution with the chromosomal-level assembly of the freshwater sponge Ephydatia muelleri". Nature Communications. 11 (1): 720–6. Bibcode: 2020NatCo..11.3676K. doi: 10.1038/s41467-020-17397-w. PMC  7385117. PMID  32719321.
  4. ^ National Human Genome Research Institute (2012). "NHGRI Mnemiopsis Genome Project". Retrieved 2013-02-05.
  5. ^ Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, et al. (December 2013). "The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution". Science. 342 (6164): 1242592. doi: 10.1126/science.1242592. PMC  3920664. PMID  24337300.
  6. ^ Schultz DT, Francis WR, McBroome JD, Christianson LM, Haddock SH, Green RE (October 2021). "A chromosome-scale genome assembly and karyotype of the ctenophore Hormiphora californensis". G3: Genes, Genomes, Genetics. 11 (11). doi: 10.1093/g3journal/jkab302. PMC  8527503. PMID  34545398.
  7. ^ Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, et al. (June 2014). "The ctenophore genome and the evolutionary origins of neural systems". Nature. 510 (7503): 109–14. Bibcode: 2014Natur.510..109M. doi: 10.1038/nature13400. PMC  4337882. PMID  24847885.
  8. ^ Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, et al. (August 2008). "The Trichoplax genome and the nature of placozoans". Nature. 454 (7207): 955–60. Bibcode: 2008Natur.454..955S. doi: 10.1038/nature07191. PMID  18719581. S2CID  4415492.
  9. ^ Eitel M, Francis WR, Varoqueaux F, Daraspe J, Osigus HJ, Krebs S, et al. (July 2018). "Comparative genomics and the nature of placozoan species". PLOS Biology. 16 (7): e2005359. doi: 10.1371/journal.pbio.2005359. PMC  6067683. PMID  30063702.
  10. ^ Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, et al. (March 2010). "The dynamic genome of Hydra". Nature. 464 (7288): 592–6. Bibcode: 2010Natur.464..592C. doi: 10.1038/nature08830. PMC  4479502. PMID  20228792.
  11. ^ Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, et al. (July 2007). "Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization". Science. 317 (5834): 86–94. Bibcode: 2007Sci...317...86P. doi: 10.1126/science.1139158. PMID  17615350. S2CID  9868191.
  12. ^ Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, et al. (September 2015). "The genome of Aiptasia, a sea anemone model for coral symbiosis". Proceedings of the National Academy of Sciences of the United States of America. 112 (38): 11893–8. Bibcode: 2015PNAS..11211893B. doi: 10.1073/pnas.1513318112. PMC  4586855. PMID  26324906.
  13. ^ Jiang J (2017). "Renilla muelleri genome". reefgenomics.
  14. ^ Jiang JB, Quattrini AM, Francis WR, Ryan JF, Rodríguez E, McFadden CS (April 2019). "A hybrid de novo assembly of the sea pansy (Renilla muelleri) genome". GigaScience. 8 (4). doi: 10.1093/gigascience/giz026. PMC  6446218. PMID  30942866.
  15. ^ Voolstra CR, Li Y, Liew YJ, Baumgarten S, Zoccola D, Flot JF, et al. (December 2017). "Comparative analysis of the genomes of Stylophora pistillata and Acropora digitifera provides evidence for extensive differences between species of corals". Scientific Reports. 7 (1): 17583. Bibcode: 2017NatSR...717583V. doi: 10.1038/s41598-017-17484-x. PMC  5730576. PMID  29242500.
  16. ^ Gold DA, Katsuki T, Li Y, Yan X, Regulski M, Ibberson D, et al. (January 2019). "The genome of the jellyfish Aurelia and the evolution of animal complexity" (PDF). Nature Ecology & Evolution. 3 (1): 96–104. doi: 10.1038/s41559-018-0719-8. PMID  30510179. S2CID  54437176.
  17. ^ Leclère L, Horin C, Chevalier S, Lapébie P, Dru P, Peron S, et al. (May 2019). "The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle". Nature Ecology & Evolution. 3 (5): 801–810. Bibcode: 2019NatEE...3..801L. doi: 10.1038/s41559-019-0833-2. PMID  30858591. S2CID  73728941.
  18. ^ Guo Q, Atkinson SD, Xiao B, Zhai Y, Bartholomew JL, Gu Z (February 2022). "A myxozoan genome reveals mosaic evolution in a parasitic cnidarian". BMC Biology. 20 (1): 51. doi: 10.1186/s12915-022-01249-8. PMC  8855578. PMID  35177085.
  19. ^ Kim HM, Weber JA, Lee N, Park SG, Cho YS, Bhak Y, et al. (March 2019). "The genome of the giant Nomura's jellyfish sheds light on the early evolution of active predation". BMC Biology. 17 (1): 28. doi: 10.1186/s12915-019-0643-7. PMC  6441219. PMID  30925871.
  20. ^ Li Y, Gao L, Pan Y, Tian M, Li Y, He C, et al. (April 2020). "Chromosome-level reference genome of the jellyfish Rhopilema esculentum". GigaScience. 9 (4). doi: 10.1093/gigascience/giaa036. PMC  7172023. PMID  32315029.
  21. ^ a b c Ohdera A, Ames CL, Dikow RB, Kayal E, Chiodin M, Busby B, et al. (July 2019). "Box, stalked, and upside-down? Draft genomes from diverse jellyfish (Cnidaria, Acraspeda) lineages: Alatina alata (Cubozoa), Calvadosia cruxmelitensis (Staurozoa), and Cassiopea xamachana (Scyphozoa)". GigaScience. 8 (7). doi: 10.1093/gigascience/giz069. PMC  6599738. PMID  31257419.
  22. ^ Jeon Y, Park SG, Lee N, Weber JA, Kim HS, Hwang SJ, et al. (March 2019). "The Draft Genome of an Octocoral, Dendronephthya gigantea". Genome Biology and Evolution. 11 (3): 949–953. doi: 10.1093/gbe/evz043. PMC  6447388. PMID  30825304.
  23. ^ a b c d e f g h i j k l m n o p q r Shinzato C, Khalturin K, Inoue J, Zayasu Y, Kanda M, Kawamitsu M, et al. (January 2021). "Eighteen Coral Genomes Reveal the Evolutionary Origin of Acropora Strategies to Accommodate Environmental Changes". Molecular Biology and Evolution. 38 (1): 16–30. doi: 10.1093/molbev/msaa216. PMC  7783167. PMID  32877528.
  24. ^ Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, et al. (July 2011). "Using the Acropora digitifera genome to understand coral responses to environmental change". Nature. 476 (7360): 320–3. Bibcode: 2011Natur.476..320S. doi: 10.1038/nature10249. PMID  21785439. S2CID  4364757.
  25. ^ Cooke I, Ying H, Forêt S, Bongaerts P, Strugnell JM, Simakov O, et al. (November 2020). "Genomic signatures in the coral holobiont reveal host adaptations driven by Holocene climate change and reef specific symbionts". Science Advances. 6 (48): eabc6318. Bibcode: 2020SciA....6.6318C. doi: 10.1126/sciadv.abc6318. PMC  7695477. PMID  33246955. S2CID  227179581.
  26. ^ Herrera S, Cordes EE (2023-03-16). "Genome assembly of the deep-sea coral Lophelia pertusa". GigaByte. 2023: 1–12. doi: 10.46471/gigabyte.78. PMC  10022433. PMID  36935863.
  27. ^ a b c d Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D (November 2022). "High-quality genome assembles from key Hawaiian coral species". GigaScience. 11. doi: 10.1093/gigascience/giac098. PMC  9646523. PMID  36352542.
  28. ^ Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D (2022). "GigaDB Dataset – DOI 10.5524/102268 – Chromosome-level genome assembly of Montipora capitata". GigaScience. GigaScience Database. doi: 10.5524/102268.
  29. ^ Prada C, Hanna B, Budd AF, Woodley CM, Schmutz J, Grimwood J, et al. (2016). "2016 Empty Niches after Extinctions Increase Population Sizes of Modern Corals". Current Biology. 1 (26): 3190–3194. doi: 10.1016/j.cub.2016.09.039. PMID  27866895. S2CID  188206.
  30. ^ Timothy SG, JunMo L, YuJin J, Hwan YS, Hollie PM, Eva M, Debashish B (2022). "GigaDB Dataset – DOI 10.5524/102269 – Genome assembly of a triploid Pocillopora acuta". GigaDB. GigaScience Database. doi: 10.5524/102269.
  31. ^ Cunning R, Bay RA, Gillette P, Baker AC, Traylor-Knowles N (October 2018). "Comparative analysis of the Pocillopora damicornis genome highlights role of immune system in coral evolution". Scientific Reports. 8 (1): 16134. Bibcode: 2018NatSR...816134C. doi: 10.1038/s41598-018-34459-8. PMC  6208414. PMID  30382153.
  32. ^ Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D (2022). "GigaDB Dataset – DOI 10.5524/102270 – Genome assembly of Pocillopora meandrina". GigaScience. GigaScience Database. doi: 10.5524/102270.
  33. ^ Wong KH, Putnam HM (2022-07-29). "The genome of the mustard hill coral, Porites astreoides". GigaByte. 2022: 1–12. doi: 10.46471/gigabyte.65. PMC  9693771. PMID  36824531.
  34. ^ Stephens TG, Lee J, Jeong Y, Yoon HS, Putnam HM, Majerová E, Bhattacharya D (2022). "GigaDB Dataset – DOI 10.5524/102271 – Genome assembly of Porites compressa". GigaScience. GigaScience Database. doi: 10.5524/102271.
  35. ^ a b Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, et al. (November 2015). "Hemichordate genomes and deuterostome origins". Nature. 527 (7579): 459–65. Bibcode: 2015Natur.527..459S. doi: 10.1038/nature16150. PMC  4729200. PMID  26580012.
  36. ^ Baughman KW, McDougall C, Cummins SF, Hall M, Degnan BM, Satoh N, Shoguchi E (December 2014). "Genomic organization of Hox and ParaHox clusters in the echinoderm, Acanthaster planci". Genesis. 52 (12): 952–8. doi: 10.1002/dvg.22840. PMID  25394327. S2CID  32809575.
  37. ^ Jo J, Oh J, Lee HG, Hong HH, Lee SG, Cheon S, et al. (January 2017). "Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants". GigaScience. 6 (1): 1–6. doi: 10.1093/gigascience/giw006. PMC  5437941. PMID  28369350.
  38. ^ Lee Y, Kim B, Jung J, Koh B, Jhang SY, Ban C, et al. (July 2022). "Chromosome-level genome assembly of Plazaster borealis sheds light on the morphogenesis of multiarmed starfish and its regenerative capacity". GigaScience. 11. doi: 10.1093/gigascience/giac063. PMC  9270726. PMID  35809048.
  39. ^ Sodergren E, Weinstock GM, Davidson EH, Cameron RA, Gibbs RA, Angerer RC, et al. (November 2006). "The genome of the sea urchin Strongylocentrotus purpuratus". Science. 314 (5801): 941–52. Bibcode: 2006Sci...314..941S. doi: 10.1126/science.1133609. PMC  3159423. PMID  17095691.
  40. ^ Dehal P, Satou Y, Campbell RK, Chapman J, Degnan B, De Tomaso A, et al. (December 2002). "The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins". Science. 298 (5601): 2157–67. Bibcode: 2002Sci...298.2157D. doi: 10.1126/science.1080049. PMID  12481130. S2CID  15987281.
  41. ^ Small KS, Brudno M, Hill MM, Sidow A (2007). "A haplome alignment and reference sequence of the highly polymorphic Ciona savignyi genome". Genome Biology. 8 (3): R41. doi: 10.1186/gb-2007-8-3-r41. PMC  1868934. PMID  17374142.
  42. ^ Seo HC, Kube M, Edvardsen RB, Jensen MF, Beck A, Spriet E, et al. (December 2001). "Miniature genome in the marine chordate Oikopleura dioica". Science. 294 (5551): 2506. doi: 10.1126/science.294.5551.2506. PMID  11752568.
  43. ^ Putnam NH, Butts T, Ferrier DE, Furlong RF, Hellsten U, Kawashima T, et al. (June 2008). "The amphioxus genome and the evolution of the chordate karyotype". Nature. 453 (7198): 1064–71. Bibcode: 2008Natur.453.1064P. doi: 10.1038/nature06967. PMID  18563158. S2CID  4418548.
  44. ^ Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW, Zhang Z, Wilkerson C, Li W (July 2009). "The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage". BMC Evolutionary Biology. 9 (1): 180. Bibcode: 2009BMCEE...9..180L. doi: 10.1186/1471-2148-9-180. PMC  2728731. PMID  19646260.
  45. ^ Smith JJ, Kuraku S, Holt C, Sauka-Spengler T, Jiang N, Campbell MS, et al. (April 2013). "Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution". Nature Genetics. 45 (4): 415–21, 421e1-2. doi: 10.1038/ng.2568. PMC  3709584. PMID  23435085.
  46. ^ Venkatesh B, Kirkness EF, Loh YH, Halpern AL, Lee AP, Johnson J, et al. (April 2007). "Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome". PLOS Biology. 5 (4): e101. doi: 10.1371/journal.pbio.0050101. PMC  1845163. PMID  17407382.
  47. ^ Marra NJ, Stanhope MJ, Jue NK, Wang M, Sun Q, Pavinski Bitar P, et al. (February 2019). "White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability". Proceedings of the National Academy of Sciences of the United States of America. 116 (10): 4446–4455. Bibcode: 2019PNAS..116.4446M. doi: 10.1073/pnas.1819778116. PMC  6410855. PMID  30782839.
  48. ^ Zhang Y, Gao H, Li H, Guo J, Ouyang B, Wang M, et al. (November 2020). "The White-Spotted Bamboo Shark Genome Reveals Chromosome Rearrangements and Fast-Evolving Immune Genes of Cartilaginous Fish". iScience. 23 (11): 101754. Bibcode: 2020iSci...23j1754Z. doi: 10.1016/j.isci.2020.101754. PMC  7677710. PMID  33251490.
  49. ^ a b Hara Y, Yamaguchi K, Onimaru K, Kadota M, Koyanagi M, Keeley SD, et al. (November 2018). "Shark genomes provide insights into elasmobranch evolution and the origin of vertebrates". Nature Ecology & Evolution. 2 (11): 1761–1771. Bibcode: 2018NatEE...2.1761H. doi: 10.1038/s41559-018-0673-5. PMID  30297745. S2CID  52944566.
  50. ^ Read TD, Petit RA, Joseph SJ, Alam MT, Weil MR, Ahmad M, et al. (July 2017). "Draft sequencing and assembly of the genome of the world's largest fish, the whale shark: Rhincodon typus Smith 1828". BMC Genomics. 18 (1): 532. doi: 10.1186/s12864-017-3926-9. PMC  5513125. PMID  28709399.
  51. ^ Fan G, Chan J, Ma K, Yang B, Zhang H, Yang X, et al. (November 2018). "Chromosome-level reference genome of the Siamese fighting fish Betta splendens, a model species for the study of aggression". GigaScience. 7 (11). doi: 10.1093/gigascience/giy087. PMC  6251983. PMID  30010754.
  52. ^ a b c d e f g h i j Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (August 2020). "Initial data release and announcement of the 10,000 Fish Genomes Project (Fish10K)". GigaScience. 9 (8). doi: 10.1093/gigascience/giaa080. PMC  7433795. PMID  32810278.
  53. ^ Guangyi S, Yue S, Liandong Y, Xiaoyun H, Suyu Z, Mengqi Z, Xianwei Y, Yue C, He Z (2020). "Genomic data of the kissing gourami, Helostoma temminkii". GigaScience Database. doi: 10.5524/102190. Retrieved 2020-08-19.
  54. ^ Henkel CV, Burgerhout E, de Wijze DL, Dirks RP, Minegishi Y, Jansen HJ, et al. (2012-02-24). "Primitive duplicate Hox clusters in the European eel's genome". PLOS ONE. 7 (2): e32231. Bibcode: 2012PLoSO...732231H. doi: 10.1371/journal.pone.0032231. PMC  3286462. PMID  22384188.
  55. ^ Wang H, Wan HT, Wu B, Jian J, Ng AH, Chung CY, et al. (December 2022). "A Chromosome-level assembly of the Japanese eel genome, insights into gene duplication and chromosomal reorganization". GigaScience. 11. doi: 10.1093/gigascience/giac120. PMC  9730501. PMID  36480030.
  56. ^ Kasahara M, Naruse K, Sasaki S, Nakatani Y, Qu W, Ahsan B, et al. (June 2007). "The medaka draft genome and insights into vertebrate genome evolution". Nature. 447 (7145): 714–9. Bibcode: 2007Natur.447..714K. doi: 10.1038/nature05846. PMID  17554307. S2CID  4419559.
  57. ^ Winter S, Prost S, De Raad J, Coimbra R, Wolf M, Nebenfuehr M, et al. (20 October 2020). "Chromosome-level genome assembly of a benthic associated Syngnathiformes species: the common dragonet, Callionymus lyra". Gigabyte. 2020: 1–10. doi: 10.46471/gigabyte.6. PMC  9631949. PMID  36824592. S2CID  228961387.
  58. ^ Pickett BD, Glass JR, Johnson TP, Ridge PG, Kauwe JS (2022). "The genome of a giant (trevally): Caranx ignobilis". GigaByte. 2022: 1–16. doi: 10.46471/gigabyte.67. PMC  9694125. PMID  36824527.
  59. ^ Pickett BD, Glass JR, Ridge PG, Kauwe JS (September 2021). "De novo genome assembly of the marine teleost, bluefin trevally (Caranx melampygus)". G3: Genes, Genomes, Genetics. 11 (10). doi: 10.1093/g3journal/jkab229. PMC  8473972. PMID  34568914.
  60. ^ Catanach A, Ruigrok M, Bowatte D, Davy M, Storey R, Valenza-Troubat N, et al. (November 2021). "The genome of New Zealand trevally (Carangidae: Pseudocaranx georgianus) uncovers a XY sex determination locus". BMC Genomics. 22 (1): 785. doi: 10.1186/s12864-021-08102-2. PMC  8561880. PMID  34727894.
  61. ^ Xiao Y, Xiao Z, Ma D, Liu J, Li J (March 2019). "Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel, 1844): the first chromosome-level draft genome in the family Oplegnathidae". GigaScience. 8 (3). doi: 10.1093/gigascience/giz013. PMC  6423371. PMID  30715332.
  62. ^ McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R, Chalopin D, et al. (October 2014). "The cavefish genome reveals candidate genes for eye loss". Nature Communications. 5 (1): 5307. Bibcode: 2014NatCo...5.5307M. doi: 10.1038/ncomms6307. PMC  4218959. PMID  25329095.
  63. ^ Warren WC, Boggs TE, Borowsky R, et al. (July 2021). "A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution". Nature Communications. 12 (1447): 1447. Bibcode: 2021NatCo..12.1447W. doi: 10.1038/s41467-021-21733-z. PMC  7933363. PMID  33664263.
  64. ^ Hilsdorf AW, Silva MU, Coutinho LL, Montenegro H, Almeida-Val VM, Pinhal D (2021-09-27). "Genome assembly and annotation of the tambaqui (Colossoma macropomum): an emblematic fish of the Amazon River Basin". Gigabyte. 2021: 1–14. doi: 10.46471/gigabyte.29. PMC  9650303. PMID  36824330. S2CID  239207530.
  65. ^ Zu, Ru; Zhao, Zi-Xia; Xu, Peng; Sun, Xiao-Wen (24 Oct 2013). "The complete mitochondrial genome of the silvertip tetra, Hasemania nana (Characiformes: Characidae)". Mitochondrial DNA. 26 (6): 889–890. doi: 10.3109/19401736.2013.861445. PMID  24409871. S2CID  207747227.
  66. ^ Li, Chunyan; Sun, Zhijing; Fen, Shouming; Jiang, Jufeng; Wu, Huimen; Zhang, Zhenguo; Cai, Chao; Wang, Yongchen (29 Aug 2015). "The complete mitochondrial genome of Hemigrammus bleheri". Mitochondrial DNA Part A. 27 (6): 4449–4450. doi: 10.3109/19401736.2015.1089565. PMID  26544159. S2CID  3831171.
  67. ^ Duílio, M. Z. de A. Silva; Ricardo Utsunomia, Francisco J. Ruiz-Romano; Oliveira, Cláudio; Foresti, Fausto (5 Aug 2016). "The complete mitochondrial genome sequence of Astyanax paranae(Teleostei: characiformes)". Mitochondrial DNA Part B. 1 (1): 586–587. doi: 10.1080/23802359.2016.1222251. PMC  7800300. PMID  33490410.
  68. ^ a b Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ, Roberts RB, et al. (April 2019). "Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes". GigaScience. 8 (4). doi: 10.1093/gigascience/giz030. PMC  6447674. PMID  30942871.
  69. ^ Í Kongsstovu S, Dahl HA, Gislason H, Í Homrum E, Jacobsen JA, Flicek P, Mikalsen SO (April 2020). "Identification of male heterogametic sex determining regions on the Atlantic herring Clupea harengus genome". Journal of Fish Biology. 97 (1): 190–201. Bibcode: 2020JFBio..97..190I. doi: 10.1111/jfb.14349. PMC  7115899. PMID  32293027. S2CID  215774454.
  70. ^ Xu G, Bian C, Nie Z, Li J, Wang Y, Xu D, et al. (January 2020). "Genome and population sequencing of a chromosome-level genome assembly of the Chinese tapertail anchovy (Coilia nasus) provides novel insights into migratory adaptation". GigaScience. 9 (1). doi: 10.1093/gigascience/giz157. PMC  6939831. PMID  31895412.
  71. ^ Louro B, De Moro G, Garcia C, Cox CJ, Veríssimo A, Sabatino SJ, et al. (May 2019). "A haplotype-resolved draft genome of the European sardine (Sardina pilchardus)". GigaScience. 8 (5). doi: 10.1093/gigascience/giz059. PMC  6528745. PMID  31112613.
  72. ^ Amemiya CT, Alföldi J, Lee AP, Fan S, Philippe H, Maccallum I, et al. (April 2013). "The African coelacanth genome provides insights into tetrapod evolution". Nature. 496 (7445): 311–6. Bibcode: 2013Natur.496..311A. doi: 10.1038/nature12027. PMC  3633110. PMID  23598338.
  73. ^ Jiang W, Qiu Y, Pan X, Zhang Y, Wang X, Lv Y, et al. (2018). "Anabarilius grahami (Regan), and Its Evolutionary and Genetic Applications". Frontiers in Genetics. 9: 614. doi: 10.3389/fgene.2018.00614. PMC  6288284. PMID  30564274.
  74. ^ "Ensembl genome browser 59: Danio rerio - Description - Search Ensembl Zebrafish". Ensembl.org. Retrieved 2010-08-27.
  75. ^ Hu S, Niu J, Xie P, Liu C, Karjan A, Wang F, Ma X (2014-01-27). "The complete mitochondrial genome of Leuciscus leuciscus baicalensis (Cypriniformes: Cyprinidae)". Mitochondrial DNA. 26 (5): 751–752. doi: 10.3109/19401736.2013.848353. PMID  24460156. S2CID  42320065.
  76. ^ Hung-du Lin; Feng-Jiau Lin; Tzen-Yuh Chiang & Teh-Wang Lee (2015). "The complete mitochondrial genome sequence of Metzia formosae (Cypriniformes, Cyprinidae)". Mitochondrial DNA. 26 (2): 257–258. doi: 10.3109/19401736.2013.823187. PMID  24021002.
  77. ^ Liu HP, Xiao SJ, Wu N, Wang D, Liu YC, Zhou CW, et al. (February 2019). "The sequence and de novo assembly of Oxygymnocypris stewartii genome". Scientific Data. 6: 190009. Bibcode: 2019NatSD...690009L. doi: 10.1038/sdata.2019.9. PMC  6362891. PMID  30720802.
  78. ^ Liu H, Chen C, Gao Z, Min J, Gu Y, Jian J, et al. (July 2017). "The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet". GigaScience. 6 (7): 1–13. doi: 10.1093/gigascience/gix039. PMC  5570040. PMID  28535200.
  79. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the rosy bitterling, Rhodeus ocellatus". GigaScience Database. doi: 10.5524/102192.
  80. ^ Yuan D, Chen X, Gu H, Zou M, Zou Y, Fang J, et al. (November 2020). "Chromosomal genome of Triplophysa bleekeri provides insights into its evolution and environmental adaptation". GigaScience. 9 (11). doi: 10.1093/gigascience/giaa132. PMC  7684707. PMID  33231676.
  81. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of Pseudobrama simoni". GigaScience Database. doi: 10.5524/102191.
  82. ^ a b c d Johnson LK, Sahasrabudhe R, Gill JA, Roach JL, Froenicke L, Brown CT, Whitehead A (June 2020). "Draft genome assemblies using sequencing reads from Oxford Nanopore Technology and Illumina platforms for four species of North American Fundulus killifish". GigaScience. 9 (6). doi: 10.1093/gigascience/giaa067. PMC  7301629. PMID  32556169.
  83. ^ Shao F, Ludwig A, Mao Y, Liu N, Peng Z (August 2020). "Chromosome-level genome assembly of the female western mosquitofish (Gambusia affinis)". GigaScience. 9 (8). doi: 10.1093/gigascience/giaa092. PMC  7450667. PMID  32852039.
  84. ^ van Kruistum H, van den Heuvel J, Travis J, Kraaijeveld K, Zwaan BJ, Groenen MA, Megens HJ, Pollux BJ (July 2019). "The genome of the live-bearing fish Heterandria formosa implicates a role of conserved vertebrate genes in the evolution of placental fish". BMC Evolutionary Biology. 19 (1): 156. Bibcode: 2019BMCEE..19..156V. doi: 10.1186/s12862-019-1484-2. PMC  6660938. PMID  31349784.
  85. ^ Charlesworth D, Graham C, Trivedi U, Gardner J, Bergero R (July 2021). "PromethION sequencing and assembly of the genome of Micropoecilia picta, a fish with a highly Degenerated Y chromosome". Genome Biology and Evolution. 13 (9). evab171. doi: 10.1093/gbe/evab171. PMC  8449826. PMID  34297069.
  86. ^ Schartl M, Walter RB, Shen Y, Garcia T, Catchen J, Amores A, et al. (May 2013). "The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits". Nature Genetics. 45 (5): 567–72. doi: 10.1038/ng.2604. PMC  3677569. PMID  23542700.
  87. ^ Harel I, Benayoun BA, Machado B, Singh PP, Hu CK, Pech MF, Valenzano DR, Zhang E, Sharp SC, Artandi SE, Brunet A (February 2015). "A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate". Cell. 160 (5): 1013–1026. doi: 10.1016/j.cell.2015.01.038. PMC  4344913. PMID  25684364.
  88. ^ Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, et al. (December 2015). "Insights into Sex Chromosome Evolution and Aging from the Genome of a Short-Lived Fish". Cell. 163 (6): 1527–38. doi: 10.1016/j.cell.2015.10.071. PMID  26638077. S2CID  16423362.
  89. ^ Valenzano DR, Benayoun BA, Singh PP, Zhang E, Etter PD, Hu CK, Clément-Ziza M, Willemsen D, Cui R, Harel I, Machado BE, Yee MC, Sharp SC, Bustamante CD, Beyer A, Johnson EA, Brunet A (December 2015). "The African Turquoise Killifish Genome Provides Insights into Evolution and Genetic Architecture of Lifespan". Cell. 163 (6): 1539–54. doi: 10.1016/j.cell.2015.11.008. PMC  4684691. PMID  26638078.
  90. ^ Wang K, Wang J, Zhu C, Yang L, Ren Y, Ruan J, et al. (February 2021). "African lungfish genome sheds light on the vertebrate water-to-land transition". Cell. 184 (5): 1362–1376.e18. doi: 10.1016/j.cell.2021.01.047. PMID  33545087. S2CID  231809825.
  91. ^ Rondeau EB, Minkley DR, Leong JS, Messmer AM, Jantzen JR, von Schalburg KR, et al. (2014). "The genome and linkage map of the northern pike (Esox lucius): conserved synteny revealed between the salmonid sister group and the Neoteleostei". PLOS ONE. 9 (7): e102089. Bibcode: 2014PLoSO...9j2089R. doi: 10.1371/journal.pone.0102089. PMC  4113312. PMID  25069045.
  92. ^ Ma Y, Lou F, Yin X, Cong B, Liu S, Zhao L, Zheng L (July 2022). "Whole-genome survey and phylogenetic analysis of Gadus macrocephalus". Bioscience Reports. 42 (7). doi: 10.1042/bsr20221037. PMC  9289796. PMID  35788826.
  93. ^ Star B, Nederbragt AJ, Jentoft S, Grimholt U, Malmstrøm M, Gregers TF, et al. (August 2011). "The genome sequence of Atlantic cod reveals a unique immune system". Nature. 477 (7363): 207–210. Bibcode: 2011Natur.477..207S. doi: 10.1038/nature10342. PMC  3537168. PMID  21832995.
  94. ^ Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E, Johnson J, et al. (April 2012). "The genomic basis of adaptive evolution in threespine sticklebacks". Nature. 484 (7392): 55–61. Bibcode: 2012Natur.484...55.. doi: 10.1038/nature10944. PMC  3322419. PMID  22481358.
  95. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the marble goby, Oxyeleotris marmorata". GigaScience Database. doi: 10.5524/102185. Retrieved 2020-08-19.
  96. ^ Yang Y, Yoo JY, Baek SH, Song HY, Jo S, Jung SH, Choi JH (January 2022). "Chromosome-level genome assembly of the shuttles hoppfish, Periophthalmus modestus". GigaScience. 11 (1): giab089. doi: 10.1093/gigascience/giab089. PMC  8756193. PMID  35022698.
  97. ^ Gallant JR, Traeger LL, Volkening JD, Moffett H, Chen PH, Novina CD, et al. (June 2014). "Nonhuman genetics. Genomic basis for the convergent evolution of electric organs". Science. 344 (6191): 1522–5. doi: 10.1126/science.1254432. PMC  5541775. PMID  24970089.
  98. ^ Wang X, Qu M, Liu Y, Schneider RF, Song Y, Chen Z, et al. (January 2022). "Genomic basis of evolutionary adaptation in a warm-blooded fish". Innovation. 3 (1): 100185. Bibcode: 2022Innov...300185W. doi: 10.1016/j.xinn.2021.100185. PMC  8693259. PMID  34984407.
  99. ^ "Spotted gar". Ensembl. Retrieved 11 September 2014.
  100. ^ Zhong L, Wang M, Li D, Tang S, Zhang T, Bian W, Chen X (September 2016). "Complete mitochondrial genome of Chinese icefish Neosalanx tangkahkeiis (Salmoniformes, Salangidae): comparison reveals Neosalanx taihuensis not a valid name". Mitochondrial DNA Part A. 27 (5): 3303–3305. doi: 10.3109/19401736.2015.1015014. PMID  25693716. S2CID  5644729.
  101. ^ Liu K, Xu D, Li J, Bian C, Duan J, Zhou Y, et al. (April 2017). "Whole genome sequencing of Chinese clearhead icefish, Protosalanx hyalocranius". GigaScience. 6 (4): 1–6. doi: 10.1093/gigascience/giw012. PMC  5530312. PMID  28327943.
  102. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genome data of the African bonytongue, Heterotis niloticus". GigaScience Database. doi: 10.5524/102184. Retrieved 2020-08-19.
  103. ^ Gallant JR, Losilla M, Tomlinson C, Warren WC (December 2017). "The Genome and Adult Somatic Transcriptome of the Mormyrid Electric Fish Paramormyrops kingsleyae". Genome Biology and Evolution. 9 (12): 3525–3530. doi: 10.1093/gbe/evx265. PMC  5751062. PMID  29240929.
  104. ^ Bian C, Hu Y, Ravi V, Kuznetsova IS, Shen X, Mu X, et al. (April 2016). "The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts". Scientific Reports. 6 (1): 24501. Bibcode: 2016NatSR...624501B. doi: 10.1038/srep24501. PMC  4835728. PMID  27089831.
  105. ^ Li C, Yang X, Shao L, Zhang R, Liu Q, Zhang M, et al. (2021-11-09). "Bicolor angelfish (Centropyge bicolor) provides the first chromosome-level genome of the Pomacanthidae family". Gigabyte. 2021: 1–13. doi: 10.46471/gigabyte.32. PMC  9650296. PMID  36824335. S2CID  243958461.
  106. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the melon butterflyfish, Chaetodon trifasciatus". GigaScience Database. doi: 10.5524/102187.
  107. ^ Xu J, Bian C, Chen K, Liu G, Jiang Y, Luo Q, et al. (April 2017). "Draft genome of the Northern snakehead, Channa argus". GigaScience. 6 (4): 1–5. doi: 10.1093/gigascience/gix011. PMC  5530311. PMID  28327946.
  108. ^ a b Ou M, Huang R, Yang C, Gui B, Luo Q, Zhao J, et al. (October 2021). "Chromosome-level genome assemblies of Channa argusandChanna maculata and comparative analysis of their temperature adaptability". GigaScience. 10 (10). doi: 10.1093/gigascience/giab070. PMC  8529964. PMID  34673930.
  109. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the copperband butterflyfish, Chelmon rostratus". GigaScience Database. doi: 10.5524/102189. Retrieved 2020-08-19.
  110. ^ a b Chen L, Lu Y, Li W, Ren Y, Yu M, Jiang S, et al. (April 2019). "The genomic basis for colonizing the freezing Southern Ocean revealed by Antarctic toothfish and Patagonian robalo genomes". GigaScience. 8 (4). doi: 10.1093/gigascience/giz016. PMC  6457430. PMID  30715292.
  111. ^ Zhou Q, Gao H, Xu H, Lin H, Chen S (February 2021). "Correction to: A Chromosomal-scale Reference Genome of the Kelp Grouper Epinephelus moara". Marine Biotechnology. 23 (1): 17. doi: 10.1007/s10126-020-10003-6. ISSN  1436-2228. PMID  33638737. S2CID  222217077.
  112. ^ Wu C, Zhang D, Kan M, Lv Z, Zhu A, Su Y, et al. (November 2014). "The draft genome of the large yellow croaker reveals well-developed innate immunity". Nature Communications. 5: 5227. Bibcode: 2014NatCo...5.5227W. doi: 10.1038/ncomms6227. PMC  4263168. PMID  25407894.
  113. ^ Norrell AE, Jones KL, Saillant EA (2020-04-29). "Development and characterization of genomic resources for a non-model marine teleost, the red snapper (Lutjanus campechanus, Lutjanidae): Construction of a high-density linkage map, anchoring of genome contigs and comparative genomic analysis". PLOS ONE. 15 (4): e0232402. Bibcode: 2020PLoSO..1532402N. doi: 10.1371/journal.pone.0232402. PMC  7190162. PMID  32348345.
  114. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the bignose unicornfish, Naso vlamingii". GigaScience Database. doi: 10.5524/102188.
  115. ^ Ahn DH, Shin SC, Kim BM, Kang S, Kim JH, Ahn I, Park J, Park H (August 2017). "Draft genome of the Antarctic dragonfish, Parachaenichthys charcoti". GigaScience. 6 (8): 1–6. doi: 10.1093/gigascience/gix060. PMC  5597851. PMID  28873966.
  116. ^ Sarropoulou E, Sundaram AY, Kaitetzidou E, Kotoulas G, Gilfillan GD, Papandroulakis N, et al. (December 2017). "Full genome survey and dynamics of gene expression in the greater amberjack Seriola dumerili". GigaScience. 6 (12): 1–13. doi: 10.1093/gigascience/gix108. PMC  5751066. PMID  29126158.
  117. ^ Xu S, Xiao S, Zhu S, Zeng X, Luo J, Liu J, et al. (September 2018). "A draft genome assembly of the Chinese sillago (Sillago sinica), the first reference genome for Sillaginidae fishes". GigaScience. 7 (9). doi: 10.1093/gigascience/giy108. PMC  6143730. PMID  30202912.
  118. ^ Lu L, Zhao J, Li C (March 2020). "High-Quality Genome Assembly and Annotation of the Big-Eye Mandarin Fish (Siniperca knerii)". G3: Genes, Genomes, Genetics. 10 (3): 877–880. doi: 10.1534/g3.119.400930. PMC  7056987. PMID  31953307.
  119. ^ Pauletto M, Manousaki T, Ferraresso S, Babbucci M, Tsakogiannis A, Louro B, et al. (2018-08-17). "Sparus aurata reveals the evolutionary dynamics of sex-biased genes in a sequential hermaphrodite fish". Communications Biology. 1 (1): 119. doi: 10.1038/s42003-018-0122-7. PMC  6123679. PMID  30271999.
  120. ^ Lien S, Koop BF, Sandve SR, Miller JR, Kent MP, Nome T, et al. (May 2016). "The Atlantic salmon genome provides insights into rediploidization". Nature. 533 (7602): 200–5. Bibcode: 2016Natur.533..200L. doi: 10.1038/nature17164. PMC  8127823. PMID  27088604. S2CID  4398298.
  121. ^ Berthelot C, Brunet F, Chalopin D, Juanchich A, Bernard M, Noël B, et al. (April 2014). "The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates". Nature Communications. 5: 3657. Bibcode: 2014NatCo...5.3657B. doi: 10.1038/ncomms4657. PMC  4071752. PMID  24755649.
  122. ^ Christensen KA, Leong JS, Sakhrani D, Biagi CA, Minkley DR, Withler RE, et al. (2018-04-05). "Chinook salmon (Oncorhynchus tshawytscha) genome and transcriptome". PLOS ONE. 13 (4): e0195461. Bibcode: 2018PLoSO..1395461C. doi: 10.1371/journal.pone.0195461. PMC  5886536. PMID  29621340.
  123. ^ Narum SR, Di Genova A, Micheletti SJ, Maass A (July 2018). "Genomic variation underlying complex life-history traits revealed by genome sequencing in Chinook salmon". Proceedings. Biological Sciences. 285 (1883): 20180935. doi: 10.1098/rspb.2018.0935. PMC  6083255. PMID  30051839.
  124. ^ Smith SR, Normandeau E, Djambazian H, Nawarathna PM, Berube P, Muir AM, et al. (February 2022). "A chromosome-anchored genome assembly for Lake Trout (Salvelinus namaycush)". Molecular Ecology Resources. 22 (2): 679–694. doi: 10.1111/1755-0998.13483. PMC  9291852. PMID  34351050. S2CID  234859350.
  125. ^ He Y, Chang Y, Bao L, Yu M, Li R, Niu J, et al. (May 2019). "A chromosome-level genome of black rockfish, Sebastes schlegelii, provides insights into the evolution of live birth" (PDF). Molecular Ecology Resources. 19 (5): 1309–1321. doi: 10.1111/1755-0998.13034. PMID  31077549. S2CID  149454779.
  126. ^ Liu Z, Liu S, Yao J, Bao L, Zhang J, Li Y, et al. (June 2016). "The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts". Nature Communications. 7: 11757. Bibcode: 2016NatCo...711757L. doi: 10.1038/ncomms11757. PMC  4895719. PMID  27249958.
  127. ^ Ozerov MY, Flajšhans M, Noreikiene K, Vasemägi A, Gross R (November 2020). "Draft Genome Assembly of the Freshwater Apex Predator Wels Catfish (Silurus glanis) Using Linked-Read Sequencing". G3: Genes, Genomes, Genetics. 10 (11): 3897–3906. doi: 10.1534/g3.120.401711. PMC  7642921. PMID  32917720. S2CID  221636677. Archived from the original on 2020-11-26. Retrieved 2020-11-11.
  128. ^ Gao Z, You X, Zhang X, Chen J, Xu T, Huang Y, Lin X, Xu J, Bian C, Shi Q (September 2021). "A chromosome-level genome assembly of the striped catfish (Pangasianodon hypophthalmus)". Genomics. 113 (5): 3349–3356. doi: 10.1016/j.ygeno.2021.07.026. ISSN  0888-7543. PMID  34343676.
  129. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genomic data of the Siamese tigerfish, Datnioides pulcher". GigaScience Database. doi: 10.5524/102186.
  130. ^ Sun S, Wang Y, Zeng W, Du X, Li L, Hong X, et al. (May 2020). "The genome of Mekong tiger perch (Datnioides undecimradiatus) provides insights into the phylogenetic position of Lobotiformes and biological conservation". Scientific Reports. 10 (1): 8164. Bibcode: 2020NatSR..10.8164S. doi: 10.1038/s41598-020-64398-2. PMC  7235238. PMID  32424221. S2CID  218670972.
  131. ^ Small CM, Bassham S, Catchen J, Amores A, Fuiten AM, Brown RS, et al. (December 2016). "The genome of the Gulf pipefish enables understanding of evolutionary innovations". Genome Biology. 17 (1): 258. doi: 10.1186/s13059-016-1126-6. PMC  5168715. PMID  27993155.
  132. ^ Ramesh B, Small CM, Healey H, Johnson B, Barker E, Currey M, et al. (2023-02-20). "Improvements to the Gulf pipefish Syngnathus scovelli genome". GigaByte. 2023: 1–11. doi: 10.46471/gigabyte.76. PMC  10038202. PMID  36969711.
  133. ^ Fan G, Song Y, Yang L, Huang X, Zhang S, Zhang M, et al. (2020). "Genome data of the long-spine porcupinefish, Diodon holocanthus". GigaScience Database. doi: 10.5524/102183.
  134. ^ Pan H, Yu H, Ravi V, Li C, Lee AP, Lian MM, et al. (September 2016). "The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate". GigaScience. 5 (1): 36. doi: 10.1186/s13742-016-0144-3. PMC  5016917. PMID  27609345.
  135. ^ "Fourth Genome Assembly". Fugu Genome Project. International Fugu Genome Consortium. Archived from the original on 2010-01-31.
  136. ^ Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, et al. (August 2002). "Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes". Science. 297 (5585): 1301–10. Bibcode: 2002Sci...297.1301A. doi: 10.1126/science.1072104. PMID  12142439. S2CID  10310355.
  137. ^ Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, et al. (October 2004). "Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype". Nature. 431 (7011): 946–57. Bibcode: 2004Natur.431..946J. doi: 10.1038/nature03025. PMID  15496914. S2CID  4414316.
  138. ^ Nowoshilow S, Schloissnig S, Fei JF, Dahl A, Pang AW, Pippel M, et al. (February 2018). "The axolotl genome and the evolution of key tissue formation regulators". Nature. 554 (7690): 50–55. Bibcode: 2018Natur.554...50N. doi: 10.1038/nature25458. hdl: 21.11116/0000-0003-F659-4. PMID  29364872. S2CID  256770603.
  139. ^ Farquharson, Katherine A.; McLennan, Elspeth A.; Belov, Katherine; Hogg, Carolyn J. (2023-07-18). "The genome sequence of the critically endangered Kroombit tinkerfrog (Taudactylus pleione)". F1000Research. 12 (845): 845. doi: 10.12688/f1000research.138571.1. PMC  10474343. PMID  37663197.
  140. ^ Li J, Yu H, Wang W, Fu C, Zhang W, Han F, Wu H (December 2019). "Genomic and transcriptomic insights into molecular basis of sexually dimorphic nuptial spines in Leptobrachium leishanense". Nature Communications. 10 (1): 5551. Bibcode: 2019NatCo..10.5551L. doi: 10.1038/s41467-019-13531-5. PMC  6895153. PMID  31804492.
  141. ^ Li Q, Guo Q, Zhou Y, Tan H, Bertozzi T, Zhu Y, et al. (2020). "A draft genome assembly of the eastern banjo frog Limnodynastes dumerilii dumerilii (Anura: Limnodynastidae)". Gigabyte. 2020: 1–13. doi: 10.46471/gigabyte.2. PMC  9632003. PMID  36824594. S2CID  229079337.
  142. ^ Sun YB, Xiong ZJ, Xiang XY, Liu SP, Zhou WW, Tu XL, et al. (March 2015). "Whole-genome sequence of the Tibetan frog Nanorana parkeri and the comparative evolution of tetrapod genomes". Proceedings of the National Academy of Sciences of the United States of America. 112 (11): E1257-62. Bibcode: 2015PNAS..112E1257S. doi: 10.1073/pnas.1501764112. PMC  4371989. PMID  25733869.
  143. ^ Rogers RL, Zhou L, Chu C, Márquez R, Corl A, Linderoth T, et al. (December 2018). "Genomic Takeover by Transposable Elements in the Strawberry Poison Frog". Molecular Biology and Evolution. 35 (12): 2913–2927. doi: 10.1093/molbev/msy185. PMC  6278860. PMID  30517748.
  144. ^ Lamichhaney S, Catullo R, Keogh JS, Clulow S, Edwards SV, Ezaz T (March 2021). "A bird-like genome from a frog: Mechanisms of genome size reduction in the ornate burrowing frog, Platyplectrum ornatum". Proceedings of the National Academy of Sciences of the United States of America. 118 (11): e2011649118. Bibcode: 2021PNAS..11811649L. doi: 10.1073/pnas.2011649118. PMC  7980411. PMID  33836564.
  145. ^ Denton RD, Kudra RS, Malcom JW, Du Preez L, Malone JH (2018-11-20). "The African Bullfrog (Pyxicephalus adspersus) genome unites the two ancestral ingredients for making vertebrate sex chromosomes". bioRxiv: 329847. doi: 10.1101/329847. S2CID  90800869.
  146. ^ Hammond SA, Warren RL, Vandervalk BP, Kucuk E, Khan H, Gibb EA, Pandoh P, Kirk H, Zhao Y, Jones M, Mungall AJ, Coope R, Pleasance S, Moore RA, Holt RA, Round JM, Ohora S, Walle BV, Veldhoen N, Helbing CC, Birol I (November 2017). "The North American bullfrog draft genome provides insight into hormonal regulation of long noncoding RNA". Nature Communications. 8 (1): 1433. Bibcode: 2017NatCo...8.1433H. doi: 10.1038/s41467-017-01316-7. PMC  5681567. PMID  29127278.
  147. ^ Chen W, Chen H, Liao J, Tang M, Qin H, Zhao Z, et al. (January 2023). "Chromosome-level genome assembly of a high-altitude-adapted frog (Rana kukunoris) from the Tibetan plateau provides insight into amphibian genome evolution and adaptation". Frontiers in Zoology. 20 (1): 1. doi: 10.1186/s12983-022-00482-9. PMC  9817415. PMID  36604706.
  148. ^ Edwards RJ, Tuipulotu DE, Amos TG, O'Meally D, Richardson MF, Russell TL, et al. (August 2018). "Draft genome assembly of the invasive cane toad, Rhinella marina". GigaScience. 7 (9). doi: 10.1093/gigascience/giy095. PMC  6145236. PMID  30101298.
  149. ^ Li Y, Ren Y, Zhang D, Jiang H, Wang Z, Li X, Rao D (September 2019). "Chromosome-level assembly of the mustache toad genome using third-generation DNA sequencing and Hi-C analysis". GigaScience. 8 (9). doi: 10.1093/gigascience/giz114. PMC  6755253. PMID  31544214.
  150. ^ Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V, et al. (April 2010). "The genome of the Western clawed frog Xenopus tropicalis". Science. 328 (5978): 633–6. Bibcode: 2010Sci...328..633H. doi: 10.1126/science.1183670. PMC  2994648. PMID  20431018.
  151. ^ a b c St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, et al. (January 2012). "Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes". Genome Biology. 13 (1): 415. doi: 10.1186/gb-2012-13-1-415. PMC  3334581. PMID  22293439.
  152. ^ Wan QH, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, et al. (September 2013). "Genome analysis and signature discovery for diving and sensory properties of the endangered Chinese alligator". Cell Research. 23 (9): 1091–105. doi: 10.1038/cr.2013.104. PMC  3760627. PMID  23917531.
  153. ^ Wan QH, Pan SK, Hu L, Zhu Y, Xu PW, Xia JQ, et al. (March 28, 2014). "Genomic data of the Chinese alligator (Alligator sinensis)". GigaScience Database. doi: 10.5524/100077.
  154. ^ Gemmell NJ, Rutherford K, Prost S, Tollis M, Winter D, Macey JR, et al. (August 2020). "The tuatara genome reveals ancient features of amniote evolution". Nature. 584 (7821): 403–409. doi: 10.1038/s41586-020-2561-9. PMC  7116210. PMID  32760000.
  155. ^ Tang CY, Zhang X, Xu X, Sun S, Peng C, Song MH, et al. (March 2023). "Genetic mapping and molecular mechanism behind color variation in the Asian vine snake". Genome Biology. 24 (1): 46. doi: 10.1186/s13059-023-02887-z. PMC  9999515. PMID  36895044.
  156. ^ Gower DJ, Fleming JF, Pisani D, Vonk FJ, Kerkkamp HM, Peichl L, et al. (December 2021). "Eye-Transcriptome and Genome-Wide Sequencing for Scolecophidia: Implications for Inferring the Visual System of the Ancestral Snake". Genome Biology and Evolution. 13 (12). doi: 10.1093/gbe/evab253. PMC  8643396. PMID  34791190.
  157. ^ Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, et al. (August 2011). "The genome of the green anole lizard and a comparative analysis with birds and mammals". Nature. 477 (7366): 587–91. Bibcode: 2011Natur.477..587A. doi: 10.1038/nature10390. PMC  3184186. PMID  21881562.
  158. ^ Wood DA, Richmond JQ, Escalona M, Marimuthu MP, Nguyen O, Sacco S, et al. (November 2022). "Reference genome of the California glossy snake, Arizona elegans occidentalis: A declining California Species of Special Concern". The Journal of Heredity. 113 (6): 632–640. doi: 10.1093/jhered/esac040. PMC  9923794. PMID  35939354.
  159. ^ Myers EA, Strickland JL, Rautsaw RM, Mason AJ, Schramer TD, Nystrom GS, et al. (July 2022). "De Novo Genome Assembly Highlights the Role of Lineage-Specific Gene Duplications in the Evolution of Venom in Fea's Viper (Azemiops feae)". Genome Biology and Evolution. 14 (7). doi: 10.1093/gbe/evac082. PMC  9256536. PMID  35670514.
  160. ^ Card DC, Adams RH, Schield DR, Perry BW, Corbin AB, Pasquesi GI, et al. (November 2019). "Genomic Basis of Convergent Island Phenotypes in Boa Constrictors". Genome Biology and Evolution. 11 (11): 3123–3143. doi: 10.1093/gbe/evz226. PMC  6836717. PMID  31642474.
  161. ^ Almeida DD, Viala VL, Nachtigall PG, Broe M, Gibbs HL, de Toledo Serrano SM, Moura-da-Silva AM, Ho PL, Nishiyama MY Jr, Junqueira-de-Azevedo IL (2021). "Tracking the recruitment and evolution of snake toxins using the evolutionary context provided by the Bothrops jararaca genome". Proceedings of the National Academy of Sciences of the United States of America. 118 (20): e2015159118. Bibcode: 2021PNAS..11815159A. doi: 10.1073/pnas.2015159118. PMC  8157943. PMID  33972420.
  162. ^ Zhang ZY, Lv Y, Wu W, Yan C, Tang CY, Peng C, Li JT (July 2022). "The structural and functional divergence of a neglected three-finger toxin subfamily in lethal elapids". Cell Reports. 40 (2): 111079. doi: 10.1016/j.celrep.2022.111079. PMID  35830808. S2CID  250511576.
  163. ^ Xu J, Guo S, Yin X, Li M, Su H, Liao X, et al. (May 2023). "Genomic, transcriptomic, and epigenomic analysis of a medicinal snake, Bungarus multicinctus, to provides insights into the origin of Elapidae neurotoxins". Acta Pharmaceutica Sinica B. 13 (5): 2234–2249. doi: 10.1016/j.apsb.2022.11.015. PMC  10213816. PMID  37250171.
  164. ^ Liu B, Cui L, Deng Z, Ma Y, Yang D, Gong Y, et al. (2023-06-29). "The genome assembly and annotation of the many-banded krait, Bungarus multicinctus". Gigabyte. 2023: gigabyte82. doi: 10.46471/gigabyte.82. ISSN  2709-4715. PMC  10315667. PMID  37404266. S2CID  259321695.
  165. ^ Grismer JL, Escalona M, Miller C, Beraut E, Fairbairn CW, Marimuthu MP, et al. (November 2022). "Reference genome of the rubber boa, Charina bottae (Serpentes: Boidae)". The Journal of Heredity. 113 (6): 641–648. doi: 10.1093/jhered/esac048. PMC  9709994. PMID  36056886.
  166. ^ Dinesh D, Mitra I, Roy S (2023-05-14). "The Complete Genome Sequence of Chyrsopelea ornata, Ornate Flying Snake". Biodiversity Genomes. doi: 10.56179/001c.75385.
  167. ^ Hogan MP, Whittington AC, Broe MB, Ward MJ, Gibbs HL, Rokyta DR (June 2021). "The Chemosensory Repertoire of the Eastern Diamondback Rattlesnake (Crotalus adamanteus) Reveals Complementary Genetics of Olfactory and Vomeronasal-Type Receptors". Journal of Molecular Evolution. 89 (4–5): 313–328. Bibcode: 2021JMolE..89..313H. doi: 10.1007/s00239-021-10007-3. PMID  33881604. S2CID  233326982.
  168. ^ Gilbert C, Meik JM, Dashevsky D, Card DC, Castoe TA, Schaack S (September 2014). "Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes". Proceedings. Biological Sciences. 281 (1791): 20141122. doi: 10.1098/rspb.2014.1122. PMC  4132678. PMID  25080342.
  169. ^ Margres MJ, Rautsaw RM, Strickland JL, Mason AJ, Schramer TD, Hofmann EP, et al. (January 2021). "The Tiger Rattlesnake genome reveals a complex genotype underlying a simple venom phenotype". Proceedings of the National Academy of Sciences of the United States of America. 118 (4). Bibcode: 2021PNAS..11814634M. doi: 10.1073/pnas.2014634118. PMC  7848695. PMID  33468678.
  170. ^ Pasquesi GI, Adams RH, Card DC, Schield DR, Corbin AB, Perry BW, et al. (July 2018). "Squamate reptiles challenge paradigms of genomic repeat element evolution set by birds and mammals". Nature Communications. 9 (1): 2774. Bibcode: 2018NatCo...9.2774P. doi: 10.1038/s41467-018-05279-1. PMC  6050309. PMID  30018307.
  171. ^ Saethang T, Somparn P, Payungporn S, Sriswasdi S, Yee KT, Hodge K, et al. (July 2022). "Identification of Daboia siamensis venome using integrated multi-omics data". Scientific Reports. 12 (1): 13140. Bibcode: 2022NatSR..1213140S. doi: 10.1038/s41598-022-17300-1. PMC  9338987. PMID  35907887.
  172. ^ Yin W, Wang ZJ, Li QY, Lian JM, Zhou Y, Lu BZ, et al. (October 2016). "Evolutionary trajectories of snake genes and genomes revealed by comparative analyses of five-pacer viper". Nature Communications. 7 (1): 13107. Bibcode: 2016NatCo...713107Y. doi: 10.1038/ncomms13107. PMC  5059746. PMID  27708285.
  173. ^ Song B, Cheng S, Sun Y, Zhong X, Jin J, Guan R, Murphy RW, Che J, Zhang Y, Liu X (2015). "A genome draft of the legless anguid lizard, Ophisaurus gracilis". GigaScience. 4: 17. doi: 10.1186/s13742-015-0056-7. PMC  4391233. PMID  25859342.
  174. ^ Mahtani-Williams S, Fulton W, Desvars-Larrive A, Lado S, Elbers JP, Halpern B, et al. (October 2020). "Landscape Genomics of a Widely Distributed Snake, Dolichophis caspius (Gmelin, 1789) across Eastern Europe and Western Asia". Genes. 11 (10): 1218. doi: 10.3390/genes11101218. PMC  7603136. PMID  33080926.
  175. ^ a b c d Kishida T, Go Y, Tatsumoto S, Tatsumi K, Kuraku S, Toda M (2019). "Loss of olfaction in sea snakes provides new perspectives on the aquatic adaptation of amniotes". Proceedings of the Royal Society B: Biological Sciences. 286 (1910): 20191828. doi: 10.1098/rspb.2019.1828. PMC  6742997. PMID  31506057.
  176. ^ Xiong Z, Li F, Li Q, Zhou L, Gamble T, Zheng J, et al. (October 2016). "Draft genome of the leopard gecko, Eublepharis macularius". GigaScience. 5 (1): 47. doi: 10.1186/s13742-016-0151-4. PMC  5080775. PMID  27784328.
  177. ^ Shibata H, Chijiwa T, Oda-Ueda N, Nakamura H, Yamaguchi K, Hattori S, et al. (July 2018). "The habu genome reveals accelerated evolution of venom protein genes". Scientific Reports. 8 (1): 11300. Bibcode: 2018NatSR...811300S. doi: 10.1038/s41598-018-28749-4. PMC  6062510. PMID  30050104.
  178. ^ Aird SD, Arora J, Barua A, Qiu L, Terada K, Mikheyev AS (October 2017). "Population Genomic Analysis of a Pitviper Reveals Microevolutionary Forces Underlying Venom Chemistry". Genome Biology and Evolution. 9 (10): 2640–2649. doi: 10.1093/gbe/evx199. PMC  5737360. PMID  29048530.
  179. ^ Dyson CJ, Pfennig A, Ariano-Sánchez D, Lachance J, Mendelson Iii JR, Goodisman MA (December 2022). "Genome of the endangered Guatemalan Beaded Lizard, Heloderma charlesbogerti, reveals evolutionary relationships of squamates and declines in effective population sizes". G3: Genes, Genomes, Genetics. 12 (12). doi: 10.1093/g3journal/jkac276. PMC  9713440. PMID  36226801.
  180. ^ Leitão HG, Diedericks G, Broeckhoven C, Baeckens S, Svardal H (February 2023). "Chromosome-Level Genome Assembly of the Cape Cliff Lizard (Hemicordylus capensis)". Genome Biology and Evolution. 15 (2). doi: 10.1093/gbe/evad001. PMC  9907493. PMID  36624992.
  181. ^ Peng C, Ren JL, Deng C, Jiang D, Wang J, Qu J, et al. (June 2020). "The Genome of Shaw's Sea Snake (Hydrophis curtus) Reveals Secondary Adaptation to Its Marine Environment". Molecular Biology and Evolution. 37 (6): 1744–1760. doi: 10.1093/molbev/msaa043. PMID  32077944.
  182. ^ Li A, Wang J, Sun K, Wang S, Zhao X, Wang T, et al. (October 2021). "Two Reference-Quality Sea Snake Genomes Reveal Their Divergent Evolution of Adaptive Traits and Venom Systems". Molecular Biology and Evolution. 38 (11): 4867–4883. doi: 10.1093/molbev/msab212. PMC  8557462. PMID  34320652.
  183. ^ Khedkar G, Kambayashi C, Tabata H, Takemura I, Minei R, Ogura A, Kurabayashi A (July 2022). "The draft genome sequence of the Brahminy blindsnake Indotyphlops braminus". Scientific Data. 9 (1): 410. Bibcode: 2022NatSD...9..410K. doi: 10.1038/s41597-022-01530-z. PMC  9287396. PMID  35840572.
  184. ^ Morrill BH, Bessell IS, Pirro S (2022-12-27). "The Complete Genome Sequence of Morelia viridis, the Green Tree Python". Biodiversity Genomes. 2022: 18–19. doi: 10.56179/001c.66204. PMC  9835526. PMID  36644785.
  185. ^ Köhler G, Khaing KP, Than NL, Baranski D, Schell T, Greve C, et al. (January 2021). "A new genus and species of mud snake from Myanmar (Reptilia, Squamata, Homalopsidae)". Zootaxa. 4915 (3): zootaxa.4915.3.1. doi: 10.11646/zootaxa.4915.3.1. PMID  33756559. S2CID  232339097.
  186. ^ Suryamohan K, Krishnankutty SP, Guillory J, Jevit M, Schröder MS, Wu M, et al. (January 2020). "The Indian cobra reference genome and transcriptome enables comprehensive identification of venom toxins". Nature Genetics. 52 (1): 106–117. doi: 10.1038/s41588-019-0559-8. PMC  8075977. PMID  31907489.
  187. ^ a b Galbraith JD, Ludington AJ, Sanders KL, Amos TG, Thomson VA, Enosi Tuipulotu D, et al. (January 2022). "Horizontal Transposon Transfer and Its Implications for the Ancestral Ecology of Hydrophiine Snakes". Genes. 13 (2): 217. doi: 10.3390/genes13020217. PMC  8872380. PMID  35205262.
  188. ^ Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, et al. (December 2013). "The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system". Proceedings of the National Academy of Sciences of the United States of America. 110 (51): 20651–6. Bibcode: 2013PNAS..11020651V. doi: 10.1073/pnas.1314702110. PMC  3870661. PMID  24297900.
  189. ^ Ullate-Agote A, Milinkovitch MC, Tzika AC (2015-07-02). "The genome sequence of the corn snake (Pantherophis guttatus), a valuable resource for EvoDevo studies in squamates". The International Journal of Developmental Biology. 58 (10–12): 881–8. doi: 10.1387/ijdb.150060at. PMID  26154328.
  190. ^ Ullate-Agote, Asier; Tzika, Athanasia C. (2021). "Characterization of the Leucistic Texas Rat Snake Pantherophis obsoletus". Frontiers in Ecology and Evolution. 9. doi: 10.3389/fevo.2021.583136. ISSN  2296-701X.
  191. ^ Georges A, Li Q, Lian J, O'Meally D, Deakin J, Wang Z, et al. (2015-12-01). "High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps". GigaScience. 4 (1): 45. doi: 10.1186/s13742-015-0085-2. PMC  4585809. PMID  26421146.
  192. ^ Farleigh K, Vladimirova SA, Blair C, Bracken JT, Koochekian N, Schield DR, et al. (September 2021). "The effects of climate and demographic history in shaping genomic variation across populations of the Desert Horned Lizard (Phrynosoma platyrhinos)". Molecular Ecology. 30 (18): 4481–4496. Bibcode: 2021MolEc..30.4481F. doi: 10.1111/mec.16070. PMID  34245067. S2CID  235786119.
  193. ^ Finger N, Farleigh K, Bracken JT, Leaché AD, François O, Yang Z, et al. (January 2022). "Genome-Scale Data Reveal Deep Lineage Divergence and a Complex Demographic History in the Texas Horned Lizard (Phrynosoma cornutum) throughout the Southwestern and Central United States". Genome Biology and Evolution. 14 (1). doi: 10.1093/gbe/evab260. PMC  8735750. PMID  34849831.
  194. ^ Castoe TA, de Koning AP, Hall KT, Card DC, Schield DR, Fujita MK, et al. (December 2013). "The Burmese python genome reveals the molecular basis for extreme adaptation in snakes". Proceedings of the National Academy of Sciences of the United States of America. 110 (51): 20645–50. Bibcode: 2013PNAS..11020645C. doi: 10.1073/pnas.1314475110. PMC  3870669. PMID  24297902.
  195. ^ Roscito JG, Sameith K, Pippel M, Francoijs KJ, Winkler S, Dahl A, et al. (December 2018). "The genome of the tegu lizard Salvator merianae: combining Illumina, PacBio, and optical mapping data to generate a highly contiguous assembly". GigaScience. 7 (12). doi: 10.1093/gigascience/giy141. PMC  6304105. PMID  30481296.
  196. ^ Westfall AK, Telemeco RS, Grizante MB, Waits DS, Clark AD, Simpson DY, et al. (October 2021). "A chromosome-level genome assembly for the eastern fence lizard (Sceloporus undulatus), a reptile model for physiological and evolutionary ecology". GigaScience. 10 (10). doi: 10.1093/gigascience/giab066 (inactive 31 January 2024). PMC  8486681. PMID  34599334.{{ cite journal}}: CS1 maint: DOI inactive as of January 2024 ( link)
  197. ^ Gao J, Li Q, Wang Z, Zhou Y, Martelli P, Li F, et al. (July 2017). "Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus". GigaScience. 6 (7): 1–6. doi: 10.1093/gigascience/gix041. PMC  5569961. PMID  28595343.
  198. ^ Morrill BH, MacKnight HP, Flagle AR, Pirro S (2022-09-06). "The Complete Genome Sequence of the Simalia boeleni, the Boelen's Python". Biodiversity Genomes. 2022. doi: 10.56179/001c.38128. PMC  9681057. PMID  36420082.
  199. ^ Perry BW, Card DC, McGlothlin JW, Pasquesi GI, Adams RH, Schield DR, et al. (August 2018). "Molecular Adaptations for Sensing and Securing Prey and Insight into Amniote Genome Diversity from the Garter Snake Genome". Genome Biology and Evolution. 10 (8): 2110–2129. doi: 10.1093/gbe/evy157. PMC  6110522. PMID  30060036.
  200. ^ Li JT, Gao YD, Xie L, Deng C, Shi P, Guan ML, et al. (August 2018). "Comparative genomic investigation of high-elevation adaptation in ectothermic snakes". Proceedings of the National Academy of Sciences of the United States of America. 115 (33): 8406–8411. Bibcode: 2018PNAS..115.8406L. doi: 10.1073/pnas.1805348115. PMC  6099860. PMID  30065117.
  201. ^ Yurchenko AA, Recknagel H, Elmer KR (November 2020). "Chromosome-Level Assembly of the Common Lizard (Zootoca vivipara) Genome". Genome Biology and Evolution. 12 (11): 1953–1960. doi: 10.1093/gbe/evaa161. PMC  7643610. PMID  32835354.
  202. ^ Todd BD, Jenkinson TS, Escalona M, Beraut E, Nguyen O, Sahasrabudhe R, et al. (November 2022). "Reference Genome of the Northwestern Pond Turtle, Actinemys marmorata". The Journal of Heredity. 113 (6): 624–631. doi: 10.1093/jhered/esac021. PMC  9709993. PMID  35665811.
  203. ^ a b Quesada V, Freitas-Rodríguez S, Miller J, Pérez-Silva JG, Jiang ZF, Tapia W, et al. (January 2019). "Giant tortoise genomes provide insights into longevity and age-related disease". Nature Ecology & Evolution. 3 (1): 87–95. doi: 10.1038/s41559-018-0733-x. PMC  6314442. PMID  30510174.
  204. ^ Çilingir FG, A'Bear L, Hansen D, Davis LR, Bunbury N, Ozgul A, et al. (October 2022). "Chromosome-level genome assembly for the Aldabra giant tortoise enables insights into the genetic health of a threatened population". GigaScience. 11. doi: 10.1093/gigascience/giac090. PMC  9553416. PMID  36251273.
  205. ^ a b Wang Z, Pascual-Anaya J, Zadissa A, Li W, Niimura Y, Huang Z, et al. (June 2013). "The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle-specific body plan". Nature Genetics. 45 (6): 701–706. doi: 10.1038/ng.2615. PMC  4000948. PMID  23624526.
  206. ^ Jensen EL, Gaughran SJ, Fusco NA, Poulakakis N, Tapia W, Sevilla C, et al. (June 2022). "The Galapagos giant tortoise Chelonoidis phantasticus is not extinct". Communications Biology. 5 (1): 546. doi: 10.1038/s42003-022-03483-w. PMC  9184544. PMID  35681083.
  207. ^ Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, et al. (March 2013). "The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage". Genome Biology. 14 (3): R28. doi: 10.1186/gb-2013-14-3-r28. PMC  4054807. PMID  23537068.
  208. ^ Liu J, Liu S, Zheng K, Tang M, Gu L, Young J, et al. (May 2022). "Chromosome-level genome assembly of the Chinese three-keeled pond turtle (Mauremys reevesii) provides insights into freshwater adaptation". Molecular Ecology Resources. 22 (4): 1596–1605. doi: 10.1111/1755-0998.13563. PMID  34845835. S2CID  244730411.
  209. ^ Cao D, Wang M, Ge Y, Gong S (May 2019). "Draft genome of the big-headed turtle Platysternon megacephalum". Scientific Data. 6 (1): 60. Bibcode: 2019NatSD...6...60C. doi: 10.1038/s41597-019-0067-9. PMC  6522511. PMID  31097710.
  210. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. (December 2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–31. Bibcode: 2014Sci...346.1320J. doi: 10.1126/science.1253451. PMC  4405904. PMID  25504713.
  211. ^ Chung O, Jin S, Cho YS, Lim J, Kim H, Jho S, et al. (October 2015). "The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures". Genome Biology. 16 (1): 215. doi: 10.1186/s13059-015-0780-4. PMC  4618389. PMID  26486310.
  212. ^ "Golden Eagle Genome Sequenced".
  213. ^ Huang Y, Li Y, Burt DW, Chen H, Zhang Y, Qian W, et al. (July 2013). "The duck genome and transcriptome provide insight into an avian influenza virus reservoir species". Nature Genetics. 45 (7): 776–783. doi: 10.1038/ng.2657. PMC  4003391. PMID  23749191.
  214. ^ Mueller RC, Ellström P, Howe K, Uliano-Silva M, Kuo RI, Miedzinska K, et al. (December 2021). "A high-quality genome and comparison of short- versus long-read transcriptome of the palaearctic duck Aythya fuligula (tufted duck)". GigaScience. 10 (12): giab081. doi: 10.1093/gigascience/giab081. PMC  8685854. PMID  34927191.
  215. ^ Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L, Prohaska SJ, et al. (July 2015). "Kiwi genome provides insights into evolution of a nocturnal lifestyle". Genome Biology. 16 (1): 147. doi: 10.1186/s13059-015-0711-4. PMC  4511969. PMID  26201466.
  216. ^ a b c d Galla SJ, Forsdick NJ, Brown L, Hoeppner MP, Knapp M, Maloney RF, et al. (December 2018). "Reference Genomes from Distantly Related Species Can Be Used for Discovery of Single Nucleotide Polymorphisms to Inform Conservation Management". Genes. 10 (1): 9. doi: 10.3390/genes10010009. PMC  6356778. PMID  30583569.
  217. ^ Li S, Li B, Cheng C, Xiong Z, Liu Q, Lai J, et al. (2014-12-11). "Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species". Genome Biology. 15 (12): 557. doi: 10.1186/s13059-014-0557-1. PMC  4290368. PMID  25496777.
  218. ^ a b Zhan X, Pan S, Wang J, Dixon A, He J, Muller MG, et al. (May 2013). "Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle". Nature Genetics. 45 (5): 563–6. doi: 10.1038/ng.2588. PMID  23525076. S2CID  10858993.
  219. ^ Zhou C, Tu H, Yu H, Zheng S, Dai B, Price M, et al. (September 2019). "The Draft Genome of the Endangered Sichuan Partridge (Arborophila rufipectus) with Evolutionary Implications". Genes. 10 (9): 677. doi: 10.3390/genes10090677. PMC  6770966. PMID  31491910.
  220. ^ International Chicken Genome Sequencing Consortium. (December 2004). "Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution". Nature. 432 (7018): 695–716. Bibcode: 2004Natur.432..695C. doi: 10.1038/nature03154. PMID  15592404. S2CID  4405203.
  221. ^ Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg L, et al. (September 2010). "Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis". PLOS Biology. 8 (9): e10000475. doi: 10.1371/journal.pbio.1000475. PMC  2935454. PMID  20838655.
  222. ^ Vignal A, Boitard S, Thébault N, Dayo GK, Yapi-Gnaore V, Youssao Abdou Karim I, et al. (July 2019). "A guinea fowl genome assembly provides new evidence on evolution following domestication and selection in galliformes". Molecular Ecology Resources. 19 (4): 997–1014. doi: 10.1111/1755-0998.13017. PMC  6579635. PMID  30945415.
  223. ^ Jaiswal SK, Gupta A, Saxena R (5 May 2018). "Genome Sequence of Indian Peacock Reveals the Peculiar Case of a Glittering Bird". bioRxiv. doi: 10.1101/315457. S2CID  196632443.
  224. ^ Zhang X, Lin C, Li H, Liu S, Wang Q, Yang S, et al. (February 2022). "Chromosome-Level Genome Assembly of the Green Peafowl (Pavo muticus)". Genome Biology and Evolution. 14 (2): evac015. doi: 10.1093/gbe/evac015. PMC  8857919. PMID  35106558.
  225. ^ Liu Y, Liu S, Zhang N, Que P, Liu N, Höglund J, et al. (December 2019). "Genome Assembly of the Common Pheasant Phasianus colchicus: A Model for Speciation and Ecological Genomics". Genome Biology and Evolution. 11 (12): 3326–3331. doi: 10.1093/gbe/evz249. PMC  7145668. PMID  31713630.
  226. ^ Lee CY, Hsieh PH, Chiang LM, Chattopadhyay A, Li KY, Lee YF, et al. (May 2018). "Whole-genome de novo sequencing reveals unique genes that contributed to the adaptive evolution of the Mikado pheasant". GigaScience. 7 (5). doi: 10.1093/gigascience/giy044. PMC  5941149. PMID  29722814.
  227. ^ Wang B, Ekblom R, Bunikis I, Siitari H, Höglund J (March 2014). "Whole genome sequencing of the black grouse (Tetrao tetrix): reference guided assembly suggests faster-Z and MHC evolution". BMC Genomics. 15 (1): 180. doi: 10.1186/1471-2164-15-180. PMC  4022176. PMID  24602261.
  228. ^ Sutton JT, Helmkampf M, Steiner CC, Bellinger MR, Korlach J, Hall R, et al. (August 2018). "A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii's Last Remaining Crow Species". Genes. 9 (8): 393. doi: 10.3390/genes9080393. PMC  6115840. PMID  30071683.
  229. ^ Gan HM, Falk S, Morales HE, Austin CM, Sunnucks P, Pavlova A (September 2019). "Genomic evidence of neo-sex chromosomes in the eastern yellow robin". GigaScience. 8 (9). doi: 10.1093/gigascience/giz111. PMC  6736294. PMID  31494668.
  230. ^ a b Ellegren H, Smeds L, Burri R, Olason PI, Backström N, Kawakami T, et al. (November 2012). "The genomic landscape of species divergence in Ficedula flycatchers". Nature. 491 (7426): 756–60. Bibcode: 2012Natur.491..756E. doi: 10.1038/nature11584. PMID  23103876. S2CID  4414084.
  231. ^ Formenti G, Chiara M, Poveda L, Francoijs KJ, Bonisoli-Alquati A, Canova L, et al. (January 2019). "SMRT long reads and Direct Label and Stain optical maps allow the generation of a high-quality genome assembly for the European barn swallow (Hirundo rustica rustica)". GigaScience. 8 (1). doi: 10.1093/gigascience/giy142. PMC  6324554. PMID  30496513.
  232. ^ Colquitt BM, Mets DG, Brainard MS (March 2018). "Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning". GigaScience. 7 (3): 1–6. doi: 10.1093/gigascience/giy008. PMC  5861438. PMID  29618046.
  233. ^ Prost S, Armstrong EE, Nylander J, Thomas GW, Suh A, Petersen B, et al. (2019). "GigaDB Dataset - Genome data of the bird of paradise, Lycocorax pyrrhopterus". GigaScience Database. doi: 10.5524/102158. Retrieved 2019-06-14.
  234. ^ a b c d Prost S, Armstrong EE, Nylander J, Thomas GW, Suh A, Petersen B, et al. (May 2019). "Comparative analyses identify genomic features potentially involved in the evolution of birds-of-paradise". GigaScience. 8 (5). doi: 10.1093/gigascience/giz003. PMC  6497032. PMID  30689847.
  235. ^ Peona V, Blom MP, Xu L, Burri R, Sullivan S, Bunikis I, et al. (January 2021). "Identifying the causes and consequences of assembly gaps using a multiplatform genome assembly of a bird-of-paradise". Molecular Ecology Resources. 21 (1): 263–286. doi: 10.1111/1755-0998.13252. PMC  7757076. PMID  32937018.
  236. ^ Peñalba JV, Deng Y, Fang Q, Joseph L, Moritz C, Cockburn A (March 2020). "Genome of an iconic Australian bird: High-quality assembly and linkage map of the superb fairy-wren (Malurus cyaneus)". Molecular Ecology Resources. 20 (2): 560–578. doi: 10.1111/1755-0998.13124. hdl: 1885/206161. PMID  31821695. S2CID  209317246.
  237. ^ de Villemereuil P, Rutschmann A, Lee KD, Ewen JG, Brekke P, Santure AW (March 2019). "Little Adaptive Potential in a Threatened Passerine Bird". Current Biology. 29 (5): 889–894.e3. Bibcode: 2019CBio...29E.889D. doi: 10.1016/j.cub.2019.01.072. PMID  30799244. S2CID  72334429.
  238. ^ Prost S, Armstrong EE, Nylander J, Thomas GW, Suh A, Petersen B, et al. (2019). "Genome data of the bird of paradise, Ptiloris paradiseus". GigaScience Database. doi: 10.5524/102159.
  239. ^ Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Künstner A, et al. (April 2010). "The genome of a songbird". Nature. 464 (7289): 757–62. Bibcode: 2010Natur.464..757W. doi: 10.1038/nature08819. PMC  3187626. PMID  20360741.
  240. ^ a b Kolchanova S, Kliver S, Komissarov A, Dobrinin P, Tamazian G, Grigorev K, et al. (January 2019). "Genomes of Three Closely Related Caribbean Amazons Provide Insight for Species History and Conservation". Genes. 10 (1): 54. doi: 10.3390/genes10010054. PMC  6356210. PMID  30654561.
  241. ^ Oleksyk TK, Pombert JF, Siu D, Mazo-Vargas A, Ramos B, Guiblet W, et al. (September 2012). "A locally funded Puerto Rican parrot (Amazona vittata) genome sequencing project increases avian data and advances young researcher education". GigaScience. 1 (1): 14. doi: 10.1186/2047-217X-1-14. PMC  3626513. PMID  23587420.
  242. ^ Seabury CM, Dowd SE, Seabury PM, Raudsepp T, Brightsmith DJ, Liboriussen P, et al. (2013-05-08). "A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao)". PLOS ONE. 8 (5): e62415. Bibcode: 2013PLoSO...862415S. doi: 10.1371/journal.pone.0062415. PMC  3648530. PMID  23667475.
  243. ^ Galla SJ, Moraga R, Brown L, Cleland S, Hoeppner MP, Maloney RF, et al. (May 2020). "A comparison of pedigree, genetic and genomic estimates of relatedness for informing pairing decisions in two critically endangered birds: Implications for conservation breeding programmes worldwide". Evolutionary Applications. 13 (5): 991–1008. Bibcode: 2020EvApp..13..991G. doi: 10.1111/eva.12916. PMC  7232769. PMID  32431748.
  244. ^ Guhlin, Joseph; Le Lec, Marissa F.; Wold, Jana; Koot, Emily; Winter, David; Biggs, Patrick J.; Galla, Stephanie J.; Urban, Lara; Foster, Yasmin; Cox, Murray P.; Digby, Andrew; Uddstrom, Lydia R.; Eason, Daryl; Vercoe, Deidre; Davis, Tāne (2023-08-28). "Species-wide genomics of kākāpō provides tools to accelerate recovery". Nature Ecology & Evolution. 7 (10): 1693–1705. Bibcode: 2023NatEE...7.1693G. doi: 10.1038/s41559-023-02165-y. ISSN  2397-334X. PMID  37640765. S2CID  261324540.
  245. ^ a b c d e f g h i j k l m n o p q r s Pan H, Cole TL, Bi X, Fang M, Zhou C, Yang Z, et al. (September 2019). "High-coverage genomes to elucidate the evolution of penguins". GigaScience. 8 (9). doi: 10.1093/gigascience/giz117. PMC  6904868. PMID  31531675.
  246. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from King penguin (Aptenodytes patagonicus)". GigaScience Database. doi: 10.5524/102182.
  247. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Western rockhopper penguin (Eudyptes chrysocome)". GigaScience Database. doi: 10.5524/102170.
  248. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Macaroni penguin (Eudyptes chrysolophus chrysolophus)". GigaScience Database. doi: 10.5524/102165.
  249. ^ Alan DT, Andrew RH, McKinlay B, Charles-André B, Chengran Z, Daniel KT, et al. (2019). "Genomic data from Royal penguin (Eudyptes chrysolophus schlegeli)". GigaScience Database. doi: 10.5524/102164.
  250. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Eastern rockhopper penguin (Eudyptes filholi)". GigaScience Database. doi: 10.5524/102169.
  251. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Northern rockhopper penguin (Eudyptes moseleyi)". GigaScience Database. doi: 10.5524/102171.
  252. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Fiordland-crested penguin (Eudyptes pachyrhynchus)". GigaScience Database. doi: 10.5524/102166.
  253. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Snares-crested penguin (Eudyptes robustus)". GigaScience Database. doi: 10.5524/102167.
  254. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Erect-crested penguin (Eudyptes sclateri)". GigaScience Database. doi: 10.5524/102168.
  255. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from White-flippered penguin (Eudyptula minor albosignata)". GigaScience Database. doi: 10.5524/102177.
  256. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Little blue penguin (Eudyptula minor minor)". GigaScience Database. doi: 10.5524/102178.
  257. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Fairy penguin (Eudyptula novaehollandiae)". GigaScience Database. doi: 10.5524/102179.
  258. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Yellow-eyed penguin (Megadyptes antipodes antipodes)". GigaScience Database. doi: 10.5524/102172.
  259. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Chinstrap penguin (Pygoscelis antarctica)". GigaScience Database. doi: 10.5524/102181.
  260. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Gentoo penguin (Pygoscelis papua)". GigaScience Database. doi: 10.5524/102180.
  261. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Humboldt penguin (Spheniscus humboldti)". GigaScience Database. doi: 10.5524/102176.
  262. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Magellanic penguin (Spheniscus magellanicus)". GigaScience Database. doi: 10.5524/102173.
  263. ^ Pan H, Cole T, Couto A, Bi X, Machado AM, Brejova B, et al. (2019). "Genomic data from Galápagos penguin (Spheniscus mendiculus)". GigaScience Database. doi: 10.5524/102175.
  264. ^ a b Hanna ZR, Henderson JB, Wall JD, Emerling CA, Fuchs J, Runckel C, et al. (October 2017). "Northern Spotted Owl (Strix occidentalis caurina) Genome: Divergence with the Barred Owl (Strix varia) and Characterization of Light-Associated Genes". Genome Biology and Evolution. 9 (10): 2522–2545. doi: 10.1093/gbe/evx158. PMC  5629816. PMID  28992302.
  265. ^ a b c d Burga A, Wang W, Ben-David E, Wolf PC, Ramey AM, Verdugo C, Lyons K, Parker PG, Kruglyak L (June 2017). "A genetic signature of the evolution of loss of flight in the Galapagos cormorant". Science. 356 (6341): eaal3345. doi: 10.1126/science.aal3345. PMC  5567675. PMID  28572335.
  266. ^ Warren WC, Hillier LW, Marshall Graves JA, Birney E, Ponting CP, Grützner F, et al. (May 2008). "Genome analysis of the platypus reveals unique signatures of evolution". Nature. 453 (7192): 175–83. Bibcode: 2008Natur.453..175W. doi: 10.1038/nature06936. PMC  2803040. PMID  18464734.
  267. ^ a b Y. Zhou et al. Platypus and echidna genomes reveal mammalian biology and evolution. Nature, published online January 6, 2021; doi: 10.1038/s41586-020-03039-0
  268. ^ Mikkelsen TS, Wakefield MJ, Aken B, Amemiya CT, Chang JL, Duke S, et al. (May 2007). "Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences". Nature. 447 (7141): 167–77. Bibcode: 2007Natur.447..167M. doi: 10.1038/nature05805. PMID  17495919. S2CID  4337232.
  269. ^ Brandies PA, Tang S, Johnson RS, Hogg CJ, Belov K (2020). "The first Antechinus reference genome provides a resource for investigating the genetic basis of semelparity and age-related neuropathologies". Gigabyte. 2020: 1–22. doi: 10.46471/gigabyte.7. PMC  9631953. PMID  36824596. S2CID  228895349. Retrieved 2020-11-17.
  270. ^ Miller W, Hayes VM, Ratan A, Petersen DC, Wittekindt NE, Miller J, et al. (July 2011). "Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil)". Proceedings of the National Academy of Sciences of the United States of America. 108 (30): 12348–12353. Bibcode: 2011PNAS..10812348M. doi: 10.1073/pnas.1102838108. PMC  3145710. PMID  21709235.
  271. ^ "Fat-tailed dunnart genome". Oz Mammals Genomics.
  272. ^ "Northern quoll genome". Oz Mammals Genomics.
  273. ^ "Numbat genome". Oz Mammals Genomics.
  274. ^ Feigin CY, Newton AH, Doronina L, Schmitz J, Hipsley CA, Mitchell KJ, et al. (January 2018). "Genome of the Tasmanian tiger provides insights into the evolution and demography of an extinct marsupial carnivore". Nature Ecology & Evolution. 2 (1): 182–192. doi: 10.1038/s41559-017-0417-y. PMID  29230027. S2CID  4630578.
  275. ^ "Eastern barred bandicoot genome".
  276. ^ "Greater bilby genome". Oz Mammals Genomics.
  277. ^ "Marsupial mole genome". Oz Mammals Genomics.
  278. ^ Renfree MB, Papenfuss AT, Deakin JE, Lindsay J, Heider T, Belov K, et al. (August 2011). "Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development". Genome Biology. 12 (8): R81. doi: 10.1186/gb-2011-12-8-r81. PMC  3277949. PMID  21854559.
  279. ^ "Brush-tailed rock-wallaby genome". Oz Mammals Genomics.
  280. ^ "Eastern bettong genome". Oz Mammals Genomics.
  281. ^ Peel E, Silver L, Brandies P, Hogg CJ, Belov K (2021-12-10). "A reference genome for the critically endangered woylie, Bettongia penicillata ogilbyi". Gigabyte. 2021: 1–15. doi: 10.46471/gigabyte.35. PMC  9650285. PMID  36824341. S2CID  245097228.
  282. ^ "Leadbeater's possum genome". Oz Mammals Genomics.
  283. ^ "Mountain pygmy-possum genome". Oz Mammals Genomics.
  284. ^ "Bare-nosed wombat genome". Oz Mammals Genomics.
  285. ^ Davey, M. (10 April 2013). "Australians crack the code of koala's genetic blueprint". The Age. Retrieved 25 June 2013.
  286. ^ a b "Mammalian Genome Project". MIT. Archived from the original on 2009-01-06. Retrieved 2012-05-23.
  287. ^ Grigorev K, Kliver S, Dobrynin P, Komissarov A, Wolfsberger W, Krasheninnikova K, et al. (June 2018). "Innovative assembly strategy contributes to understanding the evolution and conservation genetics of the endangered Solenodon paradoxus from the island of Hispaniola". GigaScience. 7 (6). doi: 10.1093/gigascience/giy025. PMC  6009670. PMID  29718205.
  288. ^ a b c d Parker J, Tsagkogeorga G, Cotton JA, Liu Y, Provero P, Stupka E, Rossiter SJ (October 2013). "Genome-wide signatures of convergent evolution in echolocating mammals". Nature. 502 (7470): 228–31. Bibcode: 2013Natur.502..228P. doi: 10.1038/nature12511. PMC  3836225. PMID  24005325.
  289. ^ a b Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, et al. (October 2011). "A high-resolution map of human evolutionary constraint using 29 mammals". Nature. 478 (7370): 476–82. Bibcode: 2011Natur.478..476.. doi: 10.1038/nature10530. PMC  3207357. PMID  21993624.
  290. ^ "Little Brown Bat Genome Project". Broad Institute. 23 September 2008.
  291. ^ a b c d e Gutiérrez-Guerrero YT, Ibarra-Laclette E, Martínez Del Río C, Barrera-Redondo J, Rebollar EA, Ortega J, et al. (June 2020). "Genomic consequences of dietary diversification and parallel evolution due to nectarivory in leaf-nosed bats". GigaScience. 9 (6). doi: 10.1093/gigascience/giaa059. PMC  7276932. PMID  32510151.
  292. ^ "Otolemur garnettii". e!Ensembl.
  293. ^ Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, et al. (April 2007). "Evolutionary and biomedical insights from the rhesus macaque genome". Science. 316 (5822): 222–34. Bibcode: 2007Sci...316..222.. doi: 10.1126/science.1139247. PMID  17431167. S2CID  10535839.
  294. ^ a b Yan G, Zhang G, Fang X, Zhang Y, Li C, Ling F, et al. (October 2011). "Genome sequencing and comparison of two nonhuman primate animal models, the cynomolgus and Chinese rhesus macaques". Nature Biotechnology. 29 (11): 1019–23. doi: 10.1038/nbt.1992. PMID  22002653. S2CID  9218360.
  295. ^ Batra SS, Levy-Sakin M, Robinson J, Guillory J, Durinck S, Vilgalys TP, et al. (December 2020). "Accurate assembly of the olive baboon (Papio anubis) genome using long-read and Hi-C data". GigaScience. 9 (12). doi: 10.1093/gigascience/giaa134. PMC  7719865. PMID  33283855.
  296. ^ Wall JD, Schlebusch SA, Alberts SC, Cox LA, Snyder-Mackler N, Nevonen KA, et al. (July 2016). "Genomewide ancestry and divergence patterns from low-coverage sequencing data reveal a complex history of admixture in wild baboons". Molecular Ecology. 25 (14): 3469–83. Bibcode: 2016MolEc..25.3469W. doi: 10.1111/mec.13684. PMC  5306399. PMID  27145036.
  297. ^ Wang L, Wu J, Liu X, Di D, Liang Y, Feng Y, et al. (August 2019). "A high-quality genome assembly for the endangered golden snub-nosed monkey (Rhinopithecus roxellana)". GigaScience. 8 (8). doi: 10.1093/gigascience/giz098. PMC  6705546. PMID  31437279.
  298. ^ Locke DP, Hillier LW, Warren WC, Worley KC, Nazareth LV, Muzny DM, et al. (January 2011). "Comparative and demographic analysis of orang-utan genomes". Nature. 469 (7331): 529–33. Bibcode: 2011Natur.469..529L. doi: 10.1038/nature09687. PMC  3060778. PMID  21270892.
  299. ^ Scally A, Dutheil JY, Hillier LW, Jordan GE, Goodhead I, Herrero J, et al. (March 2012). "Insights into hominid evolution from the gorilla genome sequence". Nature. 483 (7388): 169–75. Bibcode: 2012Natur.483..169S. doi: 10.1038/nature10842. PMC  3303130. PMID  22398555.
  300. ^ McPherson JD, Marra M, Hillier L, Waterston RH, Chinwalla A, Wallis J, et al. (February 2001). "A physical map of the human genome". Nature. 409 (6822): 934–41. Bibcode: 2001Natur.409..934M. doi: 10.1038/35057157. PMID  11237014. S2CID  186244510.
  301. ^ Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. (February 2001). "The sequence of the human genome". Science. 291 (5507): 1304–51. Bibcode: 2001Sci...291.1304V. doi: 10.1126/science.1058040. PMID  11181995. S2CID  85981305.
  302. ^ Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. (April 2022). "The complete sequence of a human genome" (PDF). Science. 376 (6588): 44–53. Bibcode: 2022Sci...376...44N. doi: 10.1126/science.abj6987. PMC  9186530. PMID  35357919. S2CID  247854936.
  303. ^ Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. (May 2010). "A draft sequence of the Neandertal genome". Science. 328 (5979): 710–722. Bibcode: 2010Sci...328..710G. doi: 10.1126/science.1188021. PMC  5100745. PMID  20448178.
  304. ^ Chimpanzee Sequencing and Analysis Consortium. (September 2005). "Initial sequence of the chimpanzee genome and comparison with the human genome". Nature. 437 (7055): 69–87. Bibcode: 2005Natur.437...69.. doi: 10.1038/nature04072. PMID  16136131. S2CID  2638825.
  305. ^ Prüfer K, Munch K, Hellmann I, Akagi K, Miller JR, Walenz B, et al. (June 2012). "The bonobo genome compared with the chimpanzee and human genomes". Nature. 486 (7404): 527–31. Bibcode: 2012Natur.486..527P. doi: 10.1038/nature11128. PMC  3498939. PMID  22722832.
  306. ^ "allithrix jacchus". e!Ensembl.
  307. ^ Worley KC, Warren WC, Rogers J, Locke D, Muzny DM, Mardis ER, et al. (Marmoset Genome Sequencing and Analysis Consortium) (August 2014). "The common marmoset genome provides insight into primate biology and evolution". Nature Genetics. 46 (8): 850–7. doi: 10.1038/ng.3042. PMC  4138798. PMID  25038751.
  308. ^ Dobrynin P, Liu S, Tamazian G, Xiong Z, Yurchenko AA, Krasheninnikova K, et al. (December 2015). "Genomic legacy of the African cheetah, Acinonyx jubatus". Genome Biology. 16 (1): 277. doi: 10.1186/s13059-015-0837-4. PMC  4676127. PMID  26653294.
  309. ^ Pontius JU, Mullikin JC, Smith DR, Lindblad-Toh K, Gnerre S, Clamp M, et al. (November 2007). "Initial sequence and comparative analysis of the cat genome". Genome Research. 17 (11): 1675–89. doi: 10.1101/gr.6380007. PMC  2045150. PMID  17975172.
  310. ^ a b c d Cho YS, Hu L, Hou H, Lee H, Xu J, Kwon S, et al. (2013). "The tiger genome and comparative analysis with lion and snow leopard genomes". Nature Communications. 4: 2433. Bibcode: 2013NatCo...4.2433C. doi: 10.1038/ncomms3433. PMC  3778509. PMID  24045858.
  311. ^ a b Kim S, Cho YS, Kim HM, Chung O, Kim H, Jho S, et al. (October 2016). "Comparison of carnivore, omnivore, and herbivore mammalian genomes with a new leopard assembly". Genome Biology. 17 (1): 211. doi: 10.1186/s13059-016-1071-4. PMC  5090899. PMID  27802837.
  312. ^ Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. (December 2005). "Genome sequence, comparative analysis and haplotype structure of the domestic dog". Nature. 438 (7069): 803–19. Bibcode: 2005Natur.438..803L. doi: 10.1038/nature04338. PMID  16341006. S2CID  4338513.
  313. ^ Gopalakrishnan S, Samaniego Castruita JA, Sinding MS, Kuderna LF, Räikkönen J, Petersen B, et al. (June 2017). "The wolf reference genome sequence (Canis lupus lupus) and its implications for Canis spp. population genomics". BMC Genomics. 18 (1): 495. doi: 10.1186/s12864-017-3883-3. PMC  5492679. PMID  28662691.
  314. ^ Armstrong EE, Taylor RW, Prost S, Blinston P, van der Meer E, Madzikanda H, et al. (February 2019). "Cost-effective assembly of the African wild dog (Lycaon pictus) genome using linked reads". GigaScience. 8 (2). doi: 10.1093/gigascience/giy124. PMC  6350039. PMID  30346553.
  315. ^ Li R, Fan W, Tian G, Zhu H, He L, Cai J, et al. (January 2010). "The sequence and de novo assembly of the giant panda genome". Nature. 463 (7279): 311–7. Bibcode: 2010Natur.463..311L. doi: 10.1038/nature08696. PMC  3951497. PMID  20010809.
  316. ^ Taylor GA, Kirk H, Coombe L, Jackman SD, Chu J, Tse K, et al. (November 2018). "The Genome of the North American Brown Bear or Grizzly: Ursus arctos ssp. horribilis". Genes. 9 (12): 598. doi: 10.3390/genes9120598. PMC  6315469. PMID  30513700.
  317. ^ Srivastava A, Kumar Sarsani V, Fiddes I, Sheehan SM, Seger RL, Barter ME, et al. (February 2019). "Genome assembly and gene expression in the American black bear provides new insights into the renal response to hibernation". DNA Research. 26 (1): 37–44. doi: 10.1093/dnares/dsy036. PMC  6379037. PMID  30395234.
  318. ^ Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, et al. (May 2014). "Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears". Cell. 157 (4): 785–94. doi: 10.1016/j.cell.2014.03.054. PMC  4089990. PMID  24813606.
  319. ^ Li B, Zhang G, Willersleve E, Wang J, Wang J (2011). "Genomic data from the polar bear (Ursus maritimus)". GigaScience Database. doi: 10.5524/100008. Retrieved 2019-06-21.
  320. ^ a b c Foote AD, Liu Y, Thomas GW, Vinař T, Alföldi J, Deng J, et al. (March 2015). "Convergent evolution of the genomes of marine mammals". Nature Genetics. 47 (3): 272–5. doi: 10.1038/ng.3198. PMC  4644735. PMID  25621460.
  321. ^ Jones SJ, Haulena M, Taylor GA, Chan S, Bilobram S, Warren RL, et al. (December 2017). "The Genome of the Northern Sea Otter (Enhydra lutris kenyoni)". Genes. 8 (12): 379. doi: 10.3390/genes8120379. PMC  5748697. PMID  29232880.
  322. ^ Colella JP, Lan T, Schuster SC, Talbot SL, Cook JA, Lindqvist C (2018-05-31). "Mustela erminea finds that pulsed hybridization impacts evolution at highlatitudes". Communications Biology. 1 (1): 51. doi: 10.1038/s42003-018-0058-y. PMC  6123727. PMID  30271934.
  323. ^ Peng X, Alföldi J, Gori K, Eisfeld AJ, Tyler SR, Tisoncik-Go J, et al. (December 2014). "The draft genome sequence of the ferret (Mustela putorius furo) facilitates study of human respiratory disease". Nature Biotechnology. 32 (12): 1250–5. doi: 10.1038/nbt.3079. PMC  4262547. PMID  25402615.
  324. ^ Beichman AC, Koepfli KP, Li G, Murphy W, Dobrynin P, Kilver S, et al. (June 2019). "Aquatic adaptation and depleted diversity: a deep dive into the genomes of the sea otter and giant otter". Molecular Biology and Evolution. 36 (12): 2631–2655. doi: 10.1093/molbev/msz101. PMC  7967881. PMID  31212313.
  325. ^ Dastjerdi A, Robert C, Watson M (2014). "Low coverage sequencing of two Asian elephant (Elephas maximus) genomes". GigaScience. 3: 12. doi: 10.1186/2047-217X-3-12. PMC  4106201. PMID  25053995.
  326. ^ "Loxodonta africana". UCSC browser entry.
  327. ^ Palkopoulou E, Lipson M, Mallick S, Nielsen S, Rohland N, Baleka S, et al. (March 2018). "A comprehensive genomic history of extinct and living elephants". Proceedings of the National Academy of Sciences of the United States of America. 115 (11): E2566–E2574. Bibcode: 2018PNAS..115E2566P. doi: 10.1073/pnas.1720554115. PMC  5856550. PMID  29483247.
  328. ^ Wade CM, Giulotto E, Sigurdsson S, Zoli M, Gnerre S, Imsland F, et al. (November 2009). "Genome sequence, comparative analysis, and population genetics of the domestic horse". Science. 326 (5954): 865–7. Bibcode: 2009Sci...326..865W. doi: 10.1126/science.1178158. PMC  3785132. PMID  19892987.
  329. ^ Kalbfleisch TS, Rice ES, DePriest MS, Walenz BP, Hestand MS, Vermeesch JR, et al. (2018-11-16). "Improved reference genome for the domestic horse increases assembly contiguity and composition". Communications Biology. 1 (1): 197. doi: 10.1038/s42003-018-0199-z. PMC  6240028. PMID  30456315.
  330. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z, et al. (June 2019). "Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits". Science. 364 (6446): eaav6202. Bibcode: 2019Sci...364.6202C. doi: 10.1126/science.aav6202. PMID  31221828. S2CID  195191415.
  331. ^ Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T, et al. (January 2015). "Insights into the evolution of longevity from the bowhead whale genome". Cell Reports. 10 (1): 112–22. doi: 10.1016/j.celrep.2014.12.008. PMC  4536333. PMID  25565328.
  332. ^ a b c d e Árnason Ú, Lammers F, Kumar V, Nilsson MA, Janke A (April 2018). "Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow". Science Advances. 4 (4): eaap9873. Bibcode: 2018SciA....4.9873A. doi: 10.1126/sciadv.aap9873. PMC  5884691. PMID  29632892.
  333. ^ a b c Yim HS, Cho YS, Guang X, Kang SG, Jeong JY, Cha SS, et al. (January 2014). "Minke whale genome and aquatic adaptation in cetaceans". Nature Genetics. 46 (1): 88–92. doi: 10.1038/ng.2835. PMC  4079537. PMID  24270359.
  334. ^ Wang K, Wang L, Lenstra JA, Jian J, Yang Y, Hu Q, et al. (April 2017). "The genome sequence of the wisent (Bison bonasus)". GigaScience. 6 (4): 1–5. doi: 10.1093/gigascience/gix016. PMC  5530314. PMID  28327911.
  335. ^ Dong J, Hu Z, Wu C, Guo H, Zhou B, Lv J, et al. (July 2012). "Association analyses identify multiple new lung cancer susceptibility loci and their interactions with smoking in the Chinese population". Nature Genetics. 44 (8): 895–9. doi: 10.1038/ng.2351. PMC  6628171. PMID  22797725.
  336. ^ Canavez FC, Luche DD, Stothard P, Leite KR, Sousa-Canavez JM, Plastow G, et al. (2012). "Genome sequence and assembly of Bos indicus". The Journal of Heredity. 103 (3): 342–8. doi: 10.1093/jhered/esr153. PMID  22315242.
  337. ^ Elsik CG, Tellam RL, Worley KC, Gibbs RA, Muzny DM, Weinstock GM, et al. (April 2009). "The genome sequence of taurine cattle: a window to ruminant biology and evolution". Science. 324 (5926): 522–8. Bibcode: 2009Sci...324..522A. doi: 10.1126/science.1169588. PMC  2943200. PMID  19390049.
  338. ^ Williams JL, Iamartino D, Pruitt KD, Sonstegard T, Smith TP, Low WY, et al. (October 2017). "Genome assembly and transcriptome resource for river buffalo, Bubalus bubalis (2n = 50)". GigaScience. 6 (10): 1–6. doi: 10.1093/gigascience/gix088. PMC  5737279. PMID  29048578.
  339. ^ Koepfli KP, Tamazian G, Wildt D, Dobrynin P, Kim C, Frandsen PB, et al. (June 2019). "in Situ Populations". G3: Genes, Genomes, Genetics. 9 (6): 1785–1793. doi: 10.1534/g3.119.400084. PMC  6553546. PMID  31000506.
  340. ^ Farré M, Li Q, Zhou Y, Damas J, Chemnick LG, Kim J, et al. (February 2019). "A near-chromosome-scale genome assembly of the gemsbok (Oryx gazella): an iconic antelope of the Kalahari desert". GigaScience. 8 (2). doi: 10.1093/gigascience/giy162. PMC  6351727. PMID  30649288.
  341. ^ Yang Y, Wang Y, Zhao Y, Zhang X, Li R, Chen L, et al. (December 2017). "Draft genome of the Marco Polo Sheep (Ovis ammon polii)". GigaScience. 6 (12): 1–7. doi: 10.1093/gigascience/gix106. PMC  5740985. PMID  29112761.
  342. ^ Cui, Peng; Ji, Rimutu; Ding, Feng; Qi, Dan; Gao, Hongwei; Meng, He; Yu, Jun; Hu, Songnian; Zhang, Heping (2007-01-01). "A complete mitochondrial genome sequence of the wild two-humped camel (Camelus bactrianus ferus): an evolutionary history of camelidae". BMC Genomics. 8: 241. doi: 10.1186/1471-2164-8-241. ISSN  1471-2164. PMC  1939714. PMID  17640355.
  343. ^ Zhang C, Chen L, Zhou Y, Wang K, Chemnick LG, Ryder OA, et al. (February 2018). "Draft genome of the milu (Elaphurus davidianus)". GigaScience. 7 (2). doi: 10.1093/gigascience/gix130. PMC  5824821. PMID  29267854.
  344. ^ Lamb S, Taylor AM, Hughes TA, McMillan BR, Larsen RT, Khan R, et al. (2021-11-22). "De novo chromosome-length assembly of the mule deer (Odocoileus hemionus) genome". Gigabyte. 2021: 1–13. doi: 10.46471/gigabyte.34. PMC  9650288. PMID  36824347. S2CID  244421049.
  345. ^ Li Z, Lin Z, Ba H, Chen L, Yang Y, Wang K, et al. (December 2017). "Draft genome of the reindeer (Rangifer tarandus)". GigaScience. 6 (12): 1–5. doi: 10.1093/gigascience/gix102. PMC  5726476. PMID  29099922.
  346. ^ Ming Y, Jian J, Yu X, Wang J, Liu W (May 2019). "The genome resources for conservation of Indo-Pacific humpback dolphin, Sousa chinensis". Scientific Data. 6 (1): 68. Bibcode: 2019NatSD...6...68M. doi: 10.1038/s41597-019-0078-6. PMC  6531461. PMID  31118413.
  347. ^ Farré M, Li Q, Darolti I, Zhou Y, Damas J, Proskuryakova AA, et al. (August 2019). "An integrated chromosome-scale genome assembly of the Masai giraffe (Giraffa camelopardalis tippelskirchi)". GigaScience. 8 (8). doi: 10.1093/gigascience/giz090. PMC  6669057. PMID  31367745.
  348. ^ Ip S (12 December 2017). "Beluga whale genome sequenced for the first time in Vancouver". Vancouver Sun.
  349. ^ Fan Z, Li W, Jin J, Cui K, Yan C, Peng C, et al. (April 2018). "The draft genome sequence of forest musk deer (Moschus berezovskii)". GigaScience. 7 (4). doi: 10.1093/gigascience/giy038. PMC  5906906. PMID  29635287.
  350. ^ Yin D, Chen C, Lin D, Zhang J, Ying C, Liu Y, et al. (December 2022). "Gapless genome assembly of East Asian finless porpoise". Scientific Data. 9 (1): 765. Bibcode: 2022NatSD...9..765Y. doi: 10.1038/s41597-022-01868-4. PMC  9747978. PMID  36513679.
  351. ^ Fan G, Zhang Y, Liu X, Wang J, Sun Z, Sun S, et al. (July 2019). "The first chromosome-level genome for a marine mammal as a resource to study ecology and evolution" (PDF). Molecular Ecology Resources. 19 (4): 944–956. doi: 10.1111/1755-0998.13003. PMID  30735609. S2CID  73451140.
  352. ^ Groenen MA, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild MF, et al. (November 2012). "Analyses of pig genomes provide insight into porcine demography and evolution". Nature. 491 (7424): 393–8. Bibcode: 2012Natur.491..393G. doi: 10.1038/nature11622. PMC  3566564. PMID  23151582.
  353. ^ Herrera-Alvarez S, Karlsson E, Ryder OA, Lindblad-Toh K, Crawford AJ (2018-09-23). "How to make a rodent giant: Genomic basis and tradeoffs of gigantism in the capybara, the world's largest rodent". bioRxiv  10.1101/424606.
  354. ^ a b Duckett DJ, Sullivan J, Pirro S, Carstens BC (May 2021). "Genomic Resources for the North American Water Vole (Microtus richardsoni) and the Montane Vole (Microtus montanus)". Gigabyte. 1: 1–13. doi: 10.46471/gigabyte.19. PMC  9631978. PMID  36824326. S2CID  236550254.
  355. ^ Duckett DJ, Sullivan J, Pirro S, Carstens BC (2021). "Genomic data for the montane vole (Microtus montanus)". GigaScience Database. doi: 10.5524/100885.
  356. ^ Duckett DJ, Sullivan J, Pirro S, Carstens BC (2021). "Genomic data for the North American water vole (Microtus richardsoni)". GigaScience Database. doi: 10.5524/100886.
  357. ^ Long AD, Baldwin-Brown J, Tao Y, Cook VJ, Balderrama-Gutierrez G, Crobett-Detig R, Mortazavi R, Barbour AG (July 2019). "The genome of Peromyscus leucopus, natural host for Lyme disease and other emerging infections". Science Advances. 5 (7): eaaw6441. Bibcode: 2019SciA....5.6441L. doi: 10.1126/sciadv.aaw6441. PMC  6656541. PMID  31355335.
  358. ^ Wilder AP, Dudchenko O, Curry C, Korody M, Turbek SP, Daly M, et al. (August 2022). "A Chromosome-Length Reference Genome for the Endangered Pacific Pocket Mouse Reveals Recent Inbreeding in a Historically Large Population". Genome Biology and Evolution. 14 (8). doi: 10.1093/gbe/evac122. PMC  9348616. PMID  35894178.
  359. ^ Hardin A, Nevonen KA, Eckalbar WL, Carbone L, Ahituv N (Aug 2019). "Comparative genomic characterization of the multimammate mouse Mastomys coucha". Molecular Biology and Evolution. 36 (12): 2805–2812. doi: 10.1093/molbev/msz188. PMC  6878952. PMID  31424545.
  360. ^ Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, et al. (December 2002). "Initial sequencing and comparative analysis of the mouse genome". Nature. 420 (6915): 520–62. Bibcode: 2002Natur.420..520W. doi: 10.1038/nature01262. PMID  12466850.
  361. ^ Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, et al. (April 2004). "Genome sequence of the Brown Norway rat yields insights into mammalian evolution". Nature. 428 (6982): 493–521. Bibcode: 2004Natur.428..493G. doi: 10.1038/nature02426. PMID  15057822. S2CID  4415600.
  362. ^ "Oryctolagus cuniculus". e!Ensembl.
  363. ^ a b Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, et al. (March 2018). "Hemimetabolous genomes reveal molecular basis of termite eusociality". Nature Ecology & Evolution. 2 (3): 557–566. Bibcode: 2018NatEE...2..557H. doi: 10.1038/s41559-017-0459-1. PMC  6482461. PMID  29403074.
  364. ^ Li S, Zhu S, Jia Q, Yuan D, Ren C, Li K, et al. (March 2018). "The genomic and functional landscapes of developmental plasticity in the American cockroach". Nature Communications. 9 (1): 1008. Bibcode: 2018NatCo...9.1008L. doi: 10.1038/s41467-018-03281-1. PMC  5861062. PMID  29559629.
  365. ^ Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, et al. (May 2014). "Molecular traces of alternative social organization in a termite genome". Nature Communications. 5: 3636. Bibcode: 2014NatCo...5.3636T. doi: 10.1038/ncomms4636. hdl: 11858/00-001M-0000-0017-9F85-9. PMID  24845553. S2CID  12087886.
  366. ^ Poulsen M, Hu H, Li C, Chen Z, Xu L, Otani S, et al. (October 2014). "Complementary symbiont contributions to plant decomposition in a fungus-farming termite". Proceedings of the National Academy of Sciences of the United States of America. 111 (40): 14500–5. Bibcode: 2014PNAS..11114500P. doi: 10.1073/pnas.1319718111. PMC  4209977. PMID  25246537.
  367. ^ Keeling CI, Yuen MM, Liao NY, Docking TR, Chan SK, Taylor GA, et al. (March 2013). "Draft genome of the mountain pine beetle, Dendroctonus ponderosae Hopkins, a major forest pest". Genome Biology. 14 (3): R27. doi: 10.1186/gb-2013-14-3-r27. PMC  4053930. PMID  23537049.
  368. ^ a b Fallon TR, Lower SE, Chang CH, Bessho-Uehara M, Martin GJ, Bewick AJ, et al. (October 2018). Tautz R, Waterhouse D (eds.). "Firefly genomes illuminate parallel origins of bioluminescence in beetles". eLife. 7: e36495. doi: 10.7554/eLife.36495. PMC  6191289. PMID  30324905.
  369. ^ Wang K, Li P, Gao Y, Liu C, Wang Q, Yin J, et al. (April 2019). "De novo genome assembly of the white-spotted flower chafer (Protaetia brevitarsis)". GigaScience. 8 (4). doi: 10.1093/gigascience/giz019. PMC  6449472. PMID  30949689.
  370. ^ Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, et al. (April 2008). "The genome of the model beetle and pest Tribolium castaneum" (PDF). Nature. 452 (7190): 949–55. Bibcode: 2008Natur.452..949R. doi: 10.1038/nature06784. PMID  18362917. S2CID  4402128.
  371. ^ Wang Q, Liu L, Zhang S, Wu H, Huang J (June 2022). "A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability". GigaScience. 11. doi: 10.1093/gigascience/giac059. PMC  9239855. PMID  35764601.
  372. ^ a b Schneider C, Woehle C, Greve C, D'Haese CA, Wolf M, Hiller M, et al. (May 2021). "Two high-quality de novo genomes from single ethanol-preserved specimens of tiny metazoans (Collembola)". GigaScience. 10 (5). doi: 10.1093/gigascience/giab035. PMC  8138834. PMID  34018554.
  373. ^ Schneider C, Woehle C, Greve C, D'Haese CA, Wolf M, Hiller M, et al. (2021). "High-quality de novo genome from an ethanol-preserved specimen of Desoria tigrina". GigaScience Database. doi: 10.5524/100897.
  374. ^ Schneider C, Woehle C, Greve C, D'Haese CA, Wolf M, Hiller M, et al. (2021). "High-quality de novo genome from an ethanol-preserved specimen of Sminthurides aquaticus". GigaScience Database. doi: 10.5524/100871.
  375. ^ Meng F, Liu Z, Han H, Finkelbergs D, Jiang Y, Zhu M, et al. (March 2020). "Chromosome-level genome assembly of Aldrichina grahami, a forensically important blowfly". GigaScience. 9 (3). doi: 10.1093/gigascience/giaa020. PMC  7081965. PMID  32191812.
  376. ^ Drukewitz SH, Bokelmann L, Undheim EA, von Reumont BM (July 2019). "Toxins from scratch? Diverse, multimodal gene origins in the predatory robber fly Dasypogon diadema indicate a dynamic venom evolution in dipteran insects". GigaScience. 8 (7). doi: 10.1093/gigascience/giz081. PMC  6615979. PMID  31289835.
  377. ^ Kim S, Oh M, Jung W, Park J, Choi HG, Shin SC (March 2017). "Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula". GigaScience. 6 (3): 1–8. doi: 10.1093/gigascience/giw009. PMC  5467013. PMID  28327954.
  378. ^ Dikow RB, Frandsen PB, Turcatel M, Dikow T (2017-01-31). "Proctacanthus coquilletti (Insecta: Diptera: Asilidae) and 16 representative transcriptomes". PeerJ. 5: e2951. doi: 10.7717/peerj.2951. PMC  5289110. PMID  28168115.
  379. ^ Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, et al. (June 2007). "Genome sequence of Aedes aegypti, a major arbovirus vector". Science. 316 (5832): 1718–23. Bibcode: 2007Sci...316.1718N. doi: 10.1126/science.1138878. PMC  2868357. PMID  17510324.
  380. ^ Chen XG, Jiang X, Gu J, Xu M, Wu Y, Deng Y, et al. (November 2015). "Genome sequence of the Asian Tiger mosquito, Aedes albopictus, reveals insights into its biology, genetics, and evolution". Proceedings of the National Academy of Sciences of the United States of America. 112 (44): E5907-15. Bibcode: 2015PNAS..112E5907C. doi: 10.1073/pnas.1516410112. PMC  4640774. PMID  26483478.
  381. ^ Holt RA, Subramanian GM, Halpern A, Sutton GG, Charlab R, Nusskern DR, et al. (October 2002). "The genome sequence of the malaria mosquito Anopheles gambiae". Science. 298 (5591): 129–49. Bibcode: 2002Sci...298..129H. doi: 10.1126/science.1076181. PMID  12364791. S2CID  4512225.H
  382. ^ a b Lawniczak MK, Emrich SJ, Holloway AK, Regier AP, Olson M, White B, et al. (October 2010). "Widespread divergence between incipient Anopheles gambiae species revealed by whole genome sequences". Science. 330 (6003): 512–4. Bibcode: 2010Sci...330..512L. doi: 10.1126/science.1195755. PMC  3674514. PMID  20966253.
  383. ^ Zhou D, Zhang D, Ding G, Shi L, Hou Q, Ye Y, et al. (January 2014). "Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites". BMC Genomics. 15 (1): 42. doi: 10.1186/1471-2164-15-42. PMC  3901762. PMID  24438588.
  384. ^ a b c d e f g h i j k l m n o Neafsey DE, Waterhouse RM, Abai MR, Aganezov SS, Alekseyev MA, Allen JE, et al. (January 2015). "Mosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoes". Science. 347 (6217): 1258522. doi: 10.1126/science.1258522. PMC  4380271. PMID  25554792.
  385. ^ Ghurye J, Koren S, Small ST, Redmond S, Howell P, Phillippy AM, Besansky NJ (June 2019). "A chromosome-scale assembly of the major African malaria vector Anopheles funestus". GigaScience. 8 (6). doi: 10.1093/gigascience/giz063. PMC  6545970. PMID  31157884.
  386. ^ Arensburger P, Megy K, Waterhouse RM, Abrudan J, Amedeo P, Antelo B, et al. (October 2010). "Sequencing of Culex quinquefasciatus establishes a platform for mosquito comparative genomics". Science. 330 (6000): 86–8. Bibcode: 2010Sci...330...86A. doi: 10.1126/science.1191864. PMC  3740384. PMID  20929810.
  387. ^ Zhou Q, Zhu HM, Huang QF, Zhao L, Zhang GJ, Roy SW, et al. (March 2012). "Deciphering neo-sex and B chromosome evolution by the draft genome of Drosophila albomicans". BMC Genomics. 13: 109. doi: 10.1186/1471-2164-13-109. PMC  3353239. PMID  22439699.
  388. ^ a b c d e f g h i j Clark AG, Eisen MB, Smith DR, Bergman CM, Oliver B, Markow TA, et al. (November 2007). "Evolution of genes and genomes on the Drosophila phylogeny". Nature. 450 (7167): 203–18. Bibcode: 2007Natur.450..203C. doi: 10.1038/nature06341. PMID  17994087. S2CID  2416812.
  389. ^ a b c d e f g h "Drosophila modENCODE Project BCM-HGSC". Baylor College of Medicine, Human Genome Sequencing Center.
  390. ^ Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, Amanatides PG, et al. (March 2000). "The genome sequence of Drosophila melanogaster". Science. 287 (5461): 2185–95. Bibcode: 2000Sci...287.2185.. doi: 10.1126/science.287.5461.2185. PMID  10731132.
  391. ^ Hamilton PT, Leong JS, Koop BF, Perlman SJ (March 2014). "Transcriptional responses in a Drosophila defensive symbiosis". Molecular Ecology. 23 (6): 1558–70. Bibcode: 2014MolEc..23.1558H. doi: 10.1111/mec.12603. PMID  24274471. S2CID  2964885.
  392. ^ Richards S, Liu Y, Bettencourt BR, Hradecky P, Letovsky S, Nielsen R, et al. (January 2005). "Comparative genome sequencing of Drosophila pseudoobscura: chromosomal, gene, and cis-element evolution". Genome Research. 15 (1): 1–18. doi: 10.1101/gr.3059305. PMC  540289. PMID  15632085.
  393. ^ "The Drosophila santomea genome - release 1.0". Andolfatto Lab. Princeton University. Archived from the original on 2018-10-22. Retrieved 2012-05-23.
  394. ^ a b Jiménez-Guri E, Huerta-Cepas J, Cozzuto L, Wotton KR, Kang H, Himmelbauer H, et al. (February 2013). "Comparative transcriptomics of early dipteran development". BMC Genomics. 14: 123. doi: 10.1186/1471-2164-14-123. PMC  3616871. PMID  23432914.
  395. ^ Martinson EO, Peyton J, Kelkar YD, Jennings EC, Benoit JB, Werren JH, Denlinger DL (May 2019). "Sarcophaga bullata". G3: Genes, Genomes, Genetics. 9 (5): 1313–1320. doi: 10.1534/g3.119.400148. PMC  6505164. PMID  30926723.
  396. ^ Lemke S, Antonopoulos DA, Meyer F, Domanus MH, Schmidt-Ott U (May 2011). "BMP signaling components in embryonic transcriptomes of the hover fly Episyrphus balteatus (Syrphidae)". BMC Genomics. 12: 278. doi: 10.1186/1471-2164-12-278. PMC  3224130. PMID  21627820.
  397. ^ International Aphid Genomics Consortium (February 2010). "Genome sequence of the pea aphid Acyrthosiphon pisum". PLOS Biology. 8 (2): e1000313. doi: 10.1371/journal.pbio.1000313. PMC  2826372. PMID  20186266.
  398. ^ Yang P, Yu S, Hao J, Liu W, Zhao Z, Zhu Z, et al. (September 2019). "Genome sequence of the Chinese white wax scale insect Ericerus pela: the first draft genome for the Coccidae family of scale insects". GigaScience. 8 (9). doi: 10.1093/gigascience/giz113. PMC  6743827. PMID  31518402.
  399. ^ Zhu J, Jiang F, Wang X, Yang P, Bao Y, Zhao W, et al. (December 2017). "Genome sequence of the small brown planthopper, Laodelphax striatellus". GigaScience. 6 (12): 1–12. doi: 10.1093/gigascience/gix109. PMC  5740986. PMID  29136191.
  400. ^ Kingan SB, Urban J, Lambert CC, Baybayan P, Childers AK, Coates B, et al. (October 2019). "A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system". GigaScience. 8 (10). doi: 10.1093/gigascience/giz122. PMC  6791401. PMID  31609423.
  401. ^ Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R, Monteiro FA, Minx P, et al. (December 2015). "Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection". Proceedings of the National Academy of Sciences of the United States of America. 112 (48): 14936–41. Bibcode: 2015PNAS..11214936M. doi: 10.1073/pnas.1506226112. PMC  4672799. PMID  26627243.
  402. ^ Chen W, Shakir S, Bigham M, Richter A, Fei Z, Jander G (April 2019). "Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch)". GigaScience. 8 (4). doi: 10.1093/gigascience/giz033. PMC  6451198. PMID  30953568.
  403. ^ Chen J, Fan J, Zhang Y, Li Q, Zhang S, Yin H, et al. (2019-08-01). "A chromosome-level draft genome of the grain aphid Sitobion miscanthi". GigaScience. 8 (8). doi: 10.1093/gigascience/giz101. PMC  6701489. PMID  31430367.
  404. ^ Liu Q, Guo Y, Zhang Y, Hu W, Li Y, Zhu D, et al. (August 2019). "A chromosomal-level genome assembly for the insect vector for Chagas disease, Triatoma rubrofasciata". GigaScience. 8 (8). doi: 10.1093/gigascience/giz089. PMC  6699579. PMID  31425588.
  405. ^ Nygaard S, Zhang G, Schiøtt M, Li C, Wurm Y, Hu H, et al. (August 2011). "The genome of the leaf-cutting ant Acromyrmex echinatior suggests key adaptations to advanced social life and fungus farming". Genome Research. 21 (8): 1339–48. doi: 10.1101/gr.121392.111. PMC  3149500. PMID  21719571.
  406. ^ Honeybee Genome Sequencing Consortium (October 2006). "Insights into social insects from the genome of the honeybee Apis mellifera". Nature. 443 (7114): 931–49. Bibcode: 2006Natur.443..931T. doi: 10.1038/nature05260. PMC  2048586. PMID  17073008.
  407. ^ Suen G, Teiling C, Li L, Holt C, Abouheif E, Bornberg-Bauer E, et al. (February 2011). Copenhaver G (ed.). "The genome sequence of the leaf-cutter ant Atta cephalotes reveals insights into its obligate symbiotic lifestyle". PLOS Genetics. 7 (2): e1002007. doi: 10.1371/journal.pgen.1002007. PMC  3037820. PMID  21347285.
  408. ^ a b Bonasio R, Zhang G, Ye C, Mutti NS, Fang X, Qin N, et al. (August 2010). "Genomic comparison of the ants Camponotus floridanus and Harpegnathos saltator". Science. 329 (5995): 1068–71. Bibcode: 2010Sci...329.1068B. doi: 10.1126/science.1192428. PMC  3772619. PMID  20798317.
  409. ^ Oxley PR, Ji L, Fetter-Pruneda I, McKenzie SK, Li C, Hu H, Zhang G, Kronauer DJ (February 2014). "The genome of the clonal raider ant Cerapachys biroi". Current Biology. 24 (4): 451–8. Bibcode: 2014CBio...24..451O. doi: 10.1016/j.cub.2014.01.018. PMC  3961065. PMID  24508170.
  410. ^ Brand P, Saleh N, Pan H, Li C, Kapheim KM, Ramírez SR (September 2017). "The Nuclear and Mitochondrial Genomes of the Facultatively Eusocial Orchid Bee Euglossa dilemma". G3: Genes, Genomes, Genetics. 7 (9): 2891–2898. doi: 10.1534/g3.117.043687. PMC  5592917. PMID  28701376.
  411. ^ Konorov EA, Nikitin MA, Mikhailov KV, Lysenkov SN, Belenky M, Chang PL, Nuzhdin SV, Scobeyeva VA (February 2017). "Genomic exaptation enables Lasius niger adaptation to urban environments". BMC Evolutionary Biology. 17 (Suppl 1): 39. Bibcode: 2017BMCEE..17S..39K. doi: 10.1186/s12862-016-0867-x. PMC  5333191. PMID  28251870.
  412. ^ Smith CD, Zimin A, Holt C, Abouheif E, Benton R, Cash E, et al. (April 2011). "Draft genome of the globally widespread and invasive Argentine ant (Linepithema humile)". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5673–8. Bibcode: 2011PNAS..108.5673S. doi: 10.1073/pnas.1008617108. PMC  3078359. PMID  21282631.
  413. ^ a b c Werren JH, Richards S, Desjardins CA, Niehuis O, Gadau J, Colbourne JK, et al. (January 2010). "Functional and evolutionary insights from the genomes of three parasitoid Nasonia species". Science. 327 (5963): 343–8. Bibcode: 2010Sci...327..343.. doi: 10.1126/science.1178028. PMC  2849982. PMID  20075255.
  414. ^ Kapheim KM, Pan H, Li C, Blatti C, Harpur BA, Ioannidis P, et al. (March 2019). "Nomia melanderi)". G3: Genes, Genomes, Genetics. 9 (3): 625–634. doi: 10.1534/g3.118.200865. PMC  6404593. PMID  30642875.
  415. ^ Smith CR, Smith CD, Robertson HM, Helmkampf M, Zimin A, Yandell M, et al. (April 2011). "Draft genome of the red harvester ant Pogonomyrmex barbatus". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5667–72. Bibcode: 2011PNAS..108.5667S. doi: 10.1073/pnas.1007901108. PMC  3078412. PMID  21282651.
  416. ^ Wurm Y, Wang J, Riba-Grognuz O, Corona M, Nygaard S, Hunt BG, et al. (April 2011). "The genome of the fire ant Solenopsis invicta". Proceedings of the National Academy of Sciences of the United States of America. 108 (14): 5679–84. Bibcode: 2011PNAS..108.5679W. doi: 10.1073/pnas.1009690108. PMC  3078418. PMID  21282665.
  417. ^ Shen J, Cong Q, Borek D, Otwinowski Z, Grishin NV (July 2017). "Complete Genome of Achalarus lyciades, The First Representative of the Eudaminae Subfamily of Skippers". Current Genomics. 18 (4): 366–374. doi: 10.2174/1389202918666170426113315. PMC  5635620. PMID  29081692.
  418. ^ Kim SR, Kwak W, Kim H, Caetano-Anolles K, Kim KY, Kim SB, et al. (January 2018). "Genome sequence of the Japanese oak silk moth, Antheraea yamamai: the first draft genome in the family Saturniidae". GigaScience. 7 (1): 1–11. doi: 10.1093/gigascience/gix113. PMC  5774507. PMID  29186418.
  419. ^ Yen EC, McCarthy SA, Galarza JA, Generalovic TN, Pelan S, Nguyen P, et al. (August 2020). "A haplotype-resolved, de novo genome assembly for the wood tiger moth (Arctia plantaginis) through trio binning". GigaScience. 9 (8). doi: 10.1093/gigascience/giaa088. PMC  7433188. PMID  32808665.
  420. ^ Nowell RW, Elsworth B, Oostra V, Zwaan BJ, Wheat CW, Saastamoinen M, et al. (July 2017). "A high-coverage draft genome of the mycalesine butterfly Bicyclus anynana". GigaScience. 6 (7): 1–7. doi: 10.1093/gigascience/gix035. PMC  5493746. PMID  28486658.
  421. ^ Mita K, Kasahara M, Sasaki S, Nagayasu Y, Yamada T, Kanamori H, Namiki N, Kitagawa M, Yamashita H, Yasukochi Y, Kadono-Okuda K, Yamamoto K, Ajimura M, Ravikumar G, Shimomura M, Nagamura Y, Shin-I T, Abe H, Shimada T, Morishita S, Sasaki T (February 2004). "The genome sequence of silkworm, Bombyx mori". DNA Research. 11 (1): 27–35. doi: 10.1093/dnares/11.1.27. PMID  15141943.
  422. ^ a b Cong Q, Shen J, Borek D, Robbins RK, Otwinowski Z, Grishin NV (April 2016). "Complete genomes of Hairstreak butterflies, their speciation and nucleo-mitochondrial incongruence". Scientific Reports. 6 (24863): 24863. Bibcode: 2016NatSR...624863C. doi: 10.1038/srep24863. PMC  4848470. PMID  27120974.
  423. ^ Wan F, Yin C, Tang R, Chen M, Wu Q, Huang C, et al. (September 2019). "A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance". Nature Communications. 10 (1): 4237. Bibcode: 2019NatCo..10.4237W. doi: 10.1038/s41467-019-12175-9. PMC  6748993. PMID  31530873.
  424. ^ Zhan S, Merlin C, Boore JL, Reppert SM (November 2011). "The monarch butterfly genome yields insights into long-distance migration". Cell. 147 (5): 1171–85. doi: 10.1016/j.cell.2011.09.052. PMC  3225893. PMID  22118469.
  425. ^ Dasmahapatra KK (July 2012). "Butterfly genome reveals promiscuous exchange of mimicry adaptations among species". Nature. 487 (7405): 94–8. Bibcode: 2012Natur.487...94T. doi: 10.1038/nature11041. PMC  3398145. PMID  22722851.
  426. ^ Ahola V, Lehtonen R, Somervuo P, Salmela L, Koskinen P, Rastas P, et al. (September 2014). "The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera". Nature Communications. 5 (1): 4737. Bibcode: 2014NatCo...5.4737A. doi: 10.1038/ncomms5737. PMC  4164777. PMID  25189940.
  427. ^ Smolander OP, Blande D, Ahola V, Rastas P, Tanskanen J, Kammonen JI, et al. (January 2022). "Improved chromosome-level genome assembly of the Glanville fritillary butterfly (Melitaea cinxia) integrating Pacific Biosciences long reads and a high-density linkage map". GigaScience. 11 (1): giab097. doi: 10.1093/gigascience/giab097. PMC  8756199. PMID  35022701.
  428. ^ Cong Q, Li W, Borek D, Otwinowski Z, Grishin NV (February 2019). "The Bear Giant-Skipper genome suggests genetic adaptations to living inside yucca roots". Molecular Genetics and Genomics. 294 (1): 211–226. doi: 10.1007/s00438-018-1494-6. PMC  6436644. PMID  30293092.
  429. ^ a b c Bastide H, López-Villavicencio M, Ogereau D, Lledo J, Dutrillaux AM, Debat V, Llaurens V (December 2022). "Genome assembly of 3 Amazonian Morpho butterfly species reveals Z-chromosome rearrangements between closely related species living in sympatry". GigaScience. 12. doi: 10.1093/gigascience/giad033. PMC  10202424. PMID  37216769.
  430. ^ Héloïse, Bastide; Manuela, López-Villavicencio; David, Ogereau; Joanna, Lledo; Dutrillaux Anne-Marie; Vincent, Debat; Violaine, Llaurens (2023). "GigaDB Dataset - DOI 10.5524/102367 - Genomic data of the Amazonian blue butterfly, Morpho helenor". gigadb.org. doi: 10.5524/102367. Retrieved 2023-07-10.
  431. ^ Héloïse, Bastide; Manuela, López-Villavicencio; David, Ogereau; Joanna, Lledo; Dutrillaux Anne-Marie; Vincent, Debat; Violaine, Llaurens (2023). "GigaDB Dataset - DOI 10.5524/102366 - Genomic data of the Amazonian blue butterfly, Morpho achilles". gigadb.org. doi: 10.5524/102366. Retrieved 2023-07-10.
  432. ^ Héloïse, Bastide; Manuela, López-Villavicencio; David, Ogereau; Joanna, Lledo; Dutrillaux Anne-Marie; Vincent, Debat; Violaine, Llaurens (2023). "GigaDB Dataset - DOI 10.5524/102366 - Genomic data of the Amazonian blue butterfly, Morpho achilles". gigadb.org. doi: 10.5524/102366. Retrieved 2023-07-10.
  433. ^ Lu S, Yang J, Dai X, Xie F, He J, Dong Z, et al. (November 2019). "Chromosomal-level reference genome of Chinese peacock butterfly (Papilio bianor) based on third-generation DNA sequencing and Hi-C analysis". GigaScience. 8 (11). doi: 10.1093/gigascience/giz128. PMC  6827417. PMID  31682256.
  434. ^ Shen J, Cong Q, Kinch LN, Borek D, Otwinowski Z, Grishin NV (2016-11-03). "Pieris rapae, a resilient alien, a cabbage pest, and a source of anti-cancer proteins". F1000Research. 5: 2631. doi: 10.12688/f1000research.9765.1. PMC  5247789. PMID  28163896.
  435. ^ a b Kawahara AY, Storer CG, Markee A, Heckenhauer J, Powell A, Plotkin D, et al. (2022). "Long-read HiFi sequencing correctly assembles repetitive heavy fibroin silk genes in new moth and caddisfly genomes". GigaByte. 2022: 1–14. doi: 10.46471/gigabyte.64. PMC  9693786. PMID  36824508.
  436. ^ Akito KY, Caroline SG, Amanda M, Jacqueline H, Ashlyn P, David P, et al. (2022). "GigaDB Dataset - Chromosome-scale assembly of the Indianmeal moth Plodia interpunctella". GigaDB. doi: 10.5524/102231.
  437. ^ You M, Yue Z, He W, Yang X, Yang G, Xie M, et al. (February 2013). "A heterozygous moth genome provides insights into herbivory and detoxification". Nature Genetics. 45 (2): 220–5. doi: 10.1038/ng.2524. hdl: 2440/80359. PMID  23313953. S2CID  645600.
  438. ^ Gouin A, Bretaudeau A, Nam K, Gimenez S, Aury JM, Duvic B, et al. (September 2017). "Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges". Scientific Reports. 7 (1): 11816. Bibcode: 2017NatSR...711816G. doi: 10.1038/s41598-017-10461-4. PMC  5613006. PMID  28947760.
  439. ^ Kakumani PK, Malhotra P, Mukherjee SK, Bhatnagar RK (August 2014). "A draft genome assembly of the army worm, Spodoptera frugiperda". Genomics. 104 (2): 134–43. doi: 10.1016/j.ygeno.2014.06.005. PMID  24984256.
  440. ^ Sivasankaran K, Mathew P, Anand S, Ceasar SA, Mariapackiam S, Ignacimuthu S (December 2017). "Complete mitochondrial genome sequence of fruit-piercing moth Eudocima phalonia (Linnaeus, 1763) (Lepidoptera: Noctuoidea)". Genomics Data. 14: 66–81. doi: 10.1016/j.gdata.2017.09.004. PMC  5633087. PMID  29021958.
  441. ^ Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. (14 January 2014). "The locust genome provides insight into swarm formation and long-distance flight". Nature Communications. 5 (1): 2957. Bibcode: 2014NatCo...5.2957W. doi: 10.1038/ncomms3957. PMC  3896762. PMID  24423660.
  442. ^ Verlinden H, Sterck L, Li J, Li Z, Yssel A, Gansemans Y, et al. (27 July 2020). "First draft genome assembly of the desert locust, Schistocerca gregaria". F1000Research. 9: 775. doi: 10.12688/f1000research.25148.1. PMC  7607483. PMID  33163158.
  443. ^ Ylla G, Nakamura T, Itoh T, Kajitani R, Toyoda A, Tomonari S, et al. (June 2021). "Insights into the genomic evolution of insects from cricket genomes". Communications Biology. 4 (1): 733. doi: 10.1038/s42003-021-02197-9. PMC  8203789. PMID  34127782.
  444. ^ Kirkness EF, Haas BJ, Sun W, Braig HR, Perotti MA, Clark JM, et al. (July 2010). "Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle". Proceedings of the National Academy of Sciences of the United States of America. 107 (27): 12168–73. Bibcode: 2010PNAS..10712168K. doi: 10.1073/pnas.1003379107. PMC  2901460. PMID  20566863.
  445. ^ Feng S, Opit G, Deng W, Stejskal V, Li Z (July 2022). "A chromosome-level genome of the booklouse, Liposcelis brunnea, provides insight into louse evolution and environmental stress adaptation". GigaScience. 11. doi: 10.1093/gigascience/giac062. PMC  9295366. PMID  35852419.
  446. ^ Wolf, Magnus; Greve, Carola; Schell, Tilman; Janke, Axel; Schmitt, Thomas; Pauls, Steffen U.; Aspöck, Horst; Aspöck, Ulrike (2024). "The de novo genome of the Black-necked Snakefly ( Venustoraphidia nigricollis Albarda, 1891): A resource to study the evolution of living fossils". Journal of Heredity. 115 (1): 112–119. doi: 10.1093/jhered/esad074. PMC  10838129. PMID  37988623.
  447. ^ Akito KY, Caroline SG, Amanda M, Jacqueline H, Ashlyn P, David P, et al. (2022). "GigaDB Dataset - Chromosome-scale assembly of the caddisfly Eubasilissa regina". GigaDB. doi: 10.5524/102230.
  448. ^ Luo S, Tang M, Frandsen PB, Stewart RJ, Zhou X (December 2018). "The genome of an underwater architect, the caddisfly Stenopsyche tienmushanensis Hwang (Insecta: Trichoptera)". GigaScience. 7 (12). doi: 10.1093/gigascience/giy143. PMC  6302954. PMID  30476205.
  449. ^ Jørgensen TS, Petersen B, Petersen HC, Browne PD, Prost S, Stillman JH, et al. (May 2019). "The Genome and mRNA Transcriptome of the Cosmopolitan Calanoid Copepod Acartia tonsa Dana Improve the Understanding of Copepod Genome Size Evolution". Genome Biology and Evolution. 11 (5): 1440–1450. doi: 10.1093/gbe/evz067. PMC  6526698. PMID  30918947.
  450. ^ Tan MH, Gan HM, Lee YP, Grandjean F, Croft LJ, Austin CM (2020). "A Giant Genome for a Giant Crayfish (Cherax quadricarinatus) With Insights Into cox1 Pseudogenes in Decapod Genomes". Frontiers in Genetics. 11: 201. doi: 10.3389/fgene.2020.00201. PMC  7069360. PMID  32211032.
  451. ^ "The Daphnia Genomics Consortium". Archived from the original on 2010-01-09. Retrieved 2012-05-23.
  452. ^ "Daphnia pulex v1.0". DOE Joint Genome Institute. Retrieved 2009-11-29.
  453. ^ Colbourne JK, Pfrender ME, Gilbert D, Thomas WK, Tucker A, Oakley TH, et al. (February 2011). "The ecoresponsive genome of Daphnia pulex". Science. 331 (6017): 555–61. Bibcode: 2011Sci...331..555C. doi: 10.1126/science.1197761. PMC  3529199. PMID  21292972.
  454. ^ Baldwin-Brown JG, Weeks SC, Long AD (January 2018). "A New Standard for Crustacean Genomes: The Highly Contiguous, Annotated Genome Assembly of the Clam Shrimp Eulimnadia texana Reveals HOX Gene Order and Identifies the Sex Chromosome". Genome Biology and Evolution. 10 (1): 143–156. doi: 10.1093/gbe/evx280. PMC  5765565. PMID  29294012.
  455. ^ Jin S, Bian C, Jiang S, Han K, Xiong Y, Zhang W, et al. (January 2021). "A chromosome-level genome assembly of the oriental river prawn, Macrobrachium nipponense". GigaScience. 10 (1). doi: 10.1093/gigascience/giaa160. PMC  7812440. PMID  33459341.
  456. ^ Kenny NJ, Sin YW, Shen X, Zhe Q, Wang W, Chan TF, et al. (March 2014). "Genomic sequence and experimental tractability of a new decapod shrimp model, Neocaridina denticulata". Marine Drugs. 12 (3): 1419–37. doi: 10.3390/md12031419. PMC  3967219. PMID  24619275.
  457. ^ Kao D, Lai AG, Stamataki E, Rosic S, Konstantinides N, Jarvis E, et al. (November 2016). "Parhyale hawaiensis, a model for animal development, regeneration, immunity and lignocellulose digestion". eLife. 5: e20062. doi: 10.7554/eLife.20062. PMC  5111886. PMID  27849518.
  458. ^ Bernot JP, Avdeyev P, Zamyatin A, Dreyer N, Alexeev N, Pérez-Losada M, Crandall KA (March 2022). "Chromosome-level genome assembly, annotation, and phylogenomics of the gooseneck barnacle Pollicipes pollicipes". GigaScience. 11: giac021. doi: 10.1093/gigascience/giac021. PMC  8917513. PMID  35277961.
  459. ^ Tang B, Zhang D, Li H, Jiang S, Zhang H, Xuan F, et al. (January 2020). "Chromosome-level genome assembly reveals the unique genome evolution of the swimming crab (Portunus trituberculatus)". GigaScience. 9 (1). doi: 10.1093/gigascience/giz161. PMC  6944217. PMID  31904811.
  460. ^ Gutekunst J, Andriantsoa R, Falckenhayn C, Hanna K, Stein W, Rasamy J, Lyko F (March 2018). "Clonal genome evolution and rapid invasive spread of the marbled crayfish". Nature Ecology & Evolution. 2 (3): 567–573. Bibcode: 2018NatEE...2..567G. doi: 10.1038/s41559-018-0467-9. PMID  29403072. S2CID  3354026.
  461. ^ Kang S, Ahn DH, Lee JH, Lee SG, Shin SC, Lee J, et al. (January 2017). "The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis". GigaScience. 6 (1): 1–9. doi: 10.1093/gigascience/giw010. PMC  5467011. PMID  28369352.
  462. ^ Nossa CW, Havlak P, Yue JX, Lv J, Vincent KY, Brockmann HJ, et al. (2014). "Joint assembly and genetic mapping of the Atlantic horseshoe crab genome reveals ancient whole genome duplication". GigaScience. 3: 9. doi: 10.1186/2047-217X-3-9. PMC  4066314. PMID  24987520.
  463. ^ Shingate P, Ravi V, Prasad A, Tay BH, Garg KM, Chattopadhyay B, et al. (May 2020). "Chromosome-level assembly of the horseshoe crab genome provides insights into its genome evolution". Nature Communications. 11 (1): 2322. Bibcode: 2020NatCo..11.2322S. doi: 10.1038/s41467-020-16180-1. PMC  7210998. PMID  32385269.
  464. ^ a b Sanggaard KW, Bechsgaard JS, Fang X, Duan J, Dyrlund TF, Gupta V, et al. (May 2014). "Spider genomes provide insight into composition and evolution of venom and silk". Nature Communications. 5: 3765. Bibcode: 2014NatCo...5.3765S. doi: 10.1038/ncomms4765. PMC  4273655. PMID  24801114.
  465. ^ Sheffer MM, Hoppe A, Krehenwinkel H, Uhl G, Kuss AW, Jensen L, et al. (January 2021). "Chromosome-level reference genome of the European wasp spider Argiope bruennichi: a resource for studies on range expansion and evolutionary adaptation". GigaScience. 10 (1). doi: 10.1093/gigascience/giaa148. PMC  7788392. PMID  33410470.
  466. ^ Sánchez-Herrero JF, Frías-López C, Escuer P, Hinojosa-Alvarez S, Arnedo MA, Sánchez-Gracia A, Rozas J (August 2019). "The draft genome sequence of the spider Dysdera silvatica (Araneae, Dysderidae): A valuable resource for functional and evolutionary genomic studies in chelicerates". GigaScience. 8 (8). doi: 10.1093/gigascience/giz099. PMC  6701490. PMID  31430368.
  467. ^ Gulia-Nuss M, Nuss AB, Meyer JM, Sonenshine DE, Roe RM, Waterhouse RM, et al. (February 2016). "Genomic insights into the Ixodes scapularis tick vector of Lyme disease". Nature Communications. 7: 10507. Bibcode: 2016NatCo...710507G. doi: 10.1038/ncomms10507. PMC  4748124. PMID  26856261.
  468. ^ Wang Z, Zhu K, Li H, Gao L, Huang H, Ren Y, Xiang H (May 2022). "Chromosome-level genome assembly of the black widow spider Latrodectus elegans illuminates composition and evolution of venom and silk proteins". GigaScience. 11: giac049. doi: 10.1093/gigascience/giac049. PMC  9154082. PMID  35639632.
  469. ^ Cao Z, Yu Y, Wu Y, Hao P, Di Z, He Y, et al. (2013). "The genome of Mesobuthus martensii reveals a unique adaptation model of arthropods". Nature Communications. 4: 2602. Bibcode: 2013NatCo...4.2602C. doi: 10.1038/ncomms3602. PMC  3826648. PMID  24129506.
  470. ^ Babb PL, Lahens NF, Correa-Garhwal SM, Nicholson DN, Kim EJ, Hogenesch JB, et al. (May 2017). "The Nephila clavipes genome highlights the diversity of spider silk genes and their complex expression". Nature Genetics. 49 (6): 895–903. doi: 10.1038/ng.3852. PMID  28459453. S2CID  1221097.
  471. ^ Schwager EE, Sharma PP, Clarke T, Leite DJ, Wierschin T, Pechmann M, et al. (July 2017). "The house spider genome reveals an ancient whole-genome duplication during arachnid evolution". BMC Biology. 15 (1): 62. doi: 10.1186/s12915-017-0399-x. PMC  5535294. PMID  28756775.
  472. ^ Grbić M, Van Leeuwen T, Clark RM, Rombauts S, Rouzé P, Grbić V, et al. (November 2011). "The genome of Tetranychus urticae reveals herbivorous pest adaptations". Nature. 479 (7374): 487–92. Bibcode: 2011Natur.479..487G. doi: 10.1038/nature10640. PMC  4856440. PMID  22113690.
  473. ^ Dong X, Armstrong SD, Xia D, Makepeace BL, Darby AC, Kadowaki T (1 March 2017). "Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history". GigaScience. 6 (3): 1–17. doi: 10.1093/gigascience/gix008. PMC  5467014. PMID  28327890.
  474. ^ Miller J, Zimin AV, Gordus A (December 2022). "Chromosome-level genome and the identification of sex chromosomes in Uloborus diversus". GigaScience. 12. doi: 10.1093/gigascience/giad002. PMC  9912274. PMID  36762707.
  475. ^ Chipman AD, Ferrier DE, Brena C, Qu J, Hughes DS, Schröder R, et al. (November 2014). "The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima". PLOS Biology. 12 (11): e1002005. doi: 10.1371/journal.pbio.1002005. PMC  4244043. PMID  25423365.
  476. ^ Boothby TC, Tenlen JR, Smith FW, Wang JR, Patanella KA, Nishimura EO, et al. (December 2015). "Evidence for extensive horizontal gene transfer from the draft genome of a tardigrade". Proceedings of the National Academy of Sciences of the United States of America. 112 (52): 15976–81. Bibcode: 2015PNAS..11215976B. doi: 10.1073/pnas.1510461112. PMC  4702960. PMID  26598659.
  477. ^ Koutsovoulos G, Kumar S, Laetsch DR, Stevens L, Daub J, Conlon C, Maroon H, Thomas F, Aboobaker AA, Blaxter M (2015). "The genome of the tardigrade Hypsibius dujardini". bioRxiv  10.1101/033464.
  478. ^ Varney RM, Speiser DI, McDougall C, Degnan BM, Kocot KM (December 2020). "The iron-responsive genome of the chiton Acanthopleura Granulata". Genome Biology and Evolution. 13 (1). evaa263. doi: 10.1093/gbe/evaa263. PMC  7850002. PMID  33320175.
  479. ^ Guo Y, Zhang Y, Liu Q, Huang Y, Mao G, Yue Z, et al. (October 2019). "A chromosomal-level genome assembly for the giant African snail Achatina fulica". GigaScience. 8 (10). doi: 10.1093/gigascience/giz124. PMC  6802634. PMID  31634388.
  480. ^ Brejova B, Albertin CB, Silva F, Gardner P, Baril T, Hayward A, et al. (2020-01-01). "A draft genome sequence of the elusive giant squid, Architeuthis dux". GigaScience. 9 (1). doi: 10.1093/gigascience/giz152. PMC  6962438. PMID  31942620.
  481. ^ Li C, Liu X, Liu B, Ma B, Liu F, Liu G, et al. (April 2018). "Draft genome of the Peruvian scallop Argopecten purpuratus". GigaScience. 7 (4). doi: 10.1093/gigascience/giy031. PMC  5905365. PMID  29617765.
  482. ^ a b Sun J, Zhang Y, Xu T, Zhang Y, Mu H, Zhang Y, et al. (April 2017). "Adaptation to deep-sea chemosynthetic environments as revealed by mussel genomes". Nature Ecology & Evolution. 1 (5): 121. Bibcode: 2017NatEE...1..121S. doi: 10.1038/s41559-017-0121. PMID  28812709. S2CID  26405671.
  483. ^ Adema CM, Hillier LW, Jones CS, Loker ES, Knight M, Minx P, et al. (May 2017). "Whole genome analysis of a schistosomiasis-transmitting freshwater snail". Nature Communications. 8: 15451. Bibcode: 2017NatCo...815451A. doi: 10.1038/ncomms15451. PMC  5440852. PMID  28508897.
  484. ^ Nong W, Yu Y, Aase-Remedios ME, Xie Y, So WL, Li Y, et al. (February 2022). "Genome of the ramshorn snail Biomphalaria straminea-an obligate intermediate host of schistosomiasis". GigaScience. 11: giac012. doi: 10.1093/gigascience/giac012 (inactive 31 January 2024). PMC  8848322. PMID  35166339.{{ cite journal}}: CS1 maint: DOI inactive as of January 2024 ( link)
  485. ^ Chueca LJ, Schell T, Pfenninger M (August 2021). "De novo genome assembly of the land snail Candidula unifasciata (Mollusca: Gastropoda)". G3: Genes, Genomes, Genetics. 11 (8). doi: 10.1093/g3journal/jkab180. PMC  8496239. PMID  34849805.
  486. ^ Li Y, Sun X, Hu X, Xun X, Zhang J, Guo X, et al. (November 2017). "Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins". Nature Communications. 8 (1): 1721. Bibcode: 2017NatCo...8.1721L. doi: 10.1038/s41467-017-01927-0. PMC  5700196. PMID  29167427.
  487. ^ Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, et al. (October 2012). "The oyster genome reveals stress adaptation and complexity of shell formation". Nature. 490 (7418): 49–54. Bibcode: 2012Natur.490...49Z. doi: 10.1038/nature11413. hdl: 10722/251007. PMID  22992520. S2CID  52853995.
  488. ^ Calcino AD, Luiz de Oliveira A, Simakov O, Schwaha T, Zieger E, Wollesen T, et al. (October 2019). "The quagga mussel genome and the evolution of freshwater tolerance". DNA Research. 26 (5): 411–422. doi: 10.1093/dnares/dsz019. PMC  6796509. PMID  31504356.
  489. ^ Belcaid M, Casaburi G, McAnulty SJ, Schmidbaur H, Suria AM, Moriano-Gutierrez S, et al. (February 2019). "Symbiotic organs shaped by distinct modes of genome evolution in cephalopods". Proceedings of the National Academy of Sciences of the United States of America. 116 (8): 3030–3035. Bibcode: 2019PNAS..116.3030B. doi: 10.1073/pnas.1817322116. PMC  6386654. PMID  30635418.
  490. ^ Cai H, Li Q, Fang X, Li J, Curtis NE, Altenburger A, et al. (February 2019). "A draft genome assembly of the solar-powered sea slug Elysia chlorotica". Scientific Data. 6 (1): 190022. Bibcode: 2019NatSD...690022C. doi: 10.1038/sdata.2019.22. PMC  6380222. PMID  30778257.
  491. ^ Nam BH, Kwak W, Kim YO, Kim DG, Kong HJ, Kim WJ, et al. (May 2017). "Genome sequence of pacific abalone (Haliotis discus hannai): the first draft genome in family Haliotidae". GigaScience. 6 (5): 1–8. doi: 10.1093/gigascience/gix014. PMC  5439488. PMID  28327967.
  492. ^ Whitelaw BL, Cooke IR, Finn J, da Fonseca RR, Ritschard EA, Gilbert MT, et al. (November 2020). "Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss". GigaScience. 9 (11). doi: 10.1093/gigascience/giaa120. PMC  7656900. PMID  33175168.
  493. ^ Pardos-Blas JR, Irisarri I, Abalde S, Afonso CM, Tenorio MJ, Zardoya R (May 2021). "The genome of the venomous snail Lautoconus ventricosus sheds light on the origin of conotoxin diversity". GigaScience. 10 (5). doi: 10.1093/gigascience/giab037. PMC  8152183. PMID  34037232.
  494. ^ a b c Simakov O, Marletaz F, Cho SJ, Edsinger-Gonzales E, Havlak P, Hellsten U, et al. (January 2013). "Insights into bilaterian evolution from three spiralian genomes". Nature. 493 (7433): 526–31. Bibcode: 2013Natur.493..526S. doi: 10.1038/nature11696. PMC  4085046. PMID  23254933.
  495. ^ Uliano-Silva M, Dondero F, Dan Otto T, Costa I, Lima NC, Americo JA, et al. (February 2018). "A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel, Limnoperna fortunei". GigaScience. 7 (2). doi: 10.1093/gigascience/gix128. PMC  5836269. PMID  29267857.
  496. ^ Gomes-Dos-Santos A, Lopes-Lima M, Machado AM, Forest T, Achaz G, Teixeira A, et al. (2023-05-15). "The Crown Pearl V2: an improved genome assembly of the European freshwater pearl mussel Margaritifera margaritifera (Linnaeus, 1758)". GigaByte. 2023: 1–14. doi: 10.46471/gigabyte.81. PMC  10189783. PMID  37207176.
  497. ^ Murgarella M, Puiu D, Novoa B, Figueras A, Posada D, Canchaya C (2016-03-15). "A First Insight into the Genome of the Filter-Feeder Mussel Mytilus galloprovincialis". PLOS ONE. 11 (3): e0151561. Bibcode: 2016PLoSO..1151561M. doi: 10.1371/journal.pone.0151561. PMC  4792442. PMID  26977809.
  498. ^ Albertin CB, Simakov O, Mitros T, Wang ZY, Pungor JR, Edsinger-Gonzales E, et al. (August 2015). "The octopus genome and the evolution of cephalopod neural and morphological novelties". Nature. 524 (7564): 220–4. Bibcode: 2015Natur.524..220A. doi: 10.1038/nature14668. PMC  4795812. PMID  26268193.
  499. ^ Kim BM, Kang S, Ahn DH, Jung SH, Rhee H, Yoo JS, et al. (November 2018). "The genome of common long-arm octopus Octopus minor". GigaScience. 7 (11). doi: 10.1093/gigascience/giy119. PMC  6279123. PMID  30256935.
  500. ^ Zarrella I, Herten K, Maes GE, Tai S, Yang M, Seuntjens E, et al. (April 2019). "The survey and reference assisted assembly of the Octopus vulgaris genome". Scientific Data. 6 (1): 13. Bibcode: 2019NatSD...6...13Z. doi: 10.1038/s41597-019-0017-6. PMC  6472339. PMID  30931949.
  501. ^ Wang S, Zhang J, Jiao W, Li J, Xun X, Sun Y, et al. (April 2017). "Scallop genome provides insights into evolution of bilaterian karyotype and development". Nature Ecology & Evolution. 1 (5): 120. Bibcode: 2017NatEE...1..120W. doi: 10.1038/s41559-017-0120. PMC  10970998. PMID  28812685. S2CID  10331741.
  502. ^ Kenny NJ, McCarthy SA, Dudchenko O, James K, Betteridge E, Corton C, et al. (May 2020). "The gene-rich genome of the scallop Pecten maximus". GigaScience. 9 (5). doi: 10.1093/gigascience/giaa037. PMC  7191990. PMID  32352532.
  503. ^ Takeuchi T, Kawashima T, Koyanagi R, Gyoja F, Tanaka M, Ikuta T, et al. (April 2012). "Draft genome of the pearl oyster Pinctada fucata: a platform for understanding bivalve biology". DNA Research. 19 (2): 117–30. doi: 10.1093/dnares/dss005. PMC  3325083. PMID  22315334.
  504. ^ Maeda T, Takahashi S, Yoshida T, Shimamura S, Takaki Y, Nagai Y, Toyoda A, Suzuki Y, Arimoto A, Ishii H, Satoh N, Nishiyama T, Hasebe M, Maruyama T, Minagawa J, Obokata J, Shigenobu S (April 2021). "Chloroplast acquisition without the gene transfer in kleptoplastic sea slugs, Plakobranchus ocellatus". eLife. 10 (e60176). doi: 10.7554/eLife.60176. PMC  8079154. PMID  33902812.
  505. ^ Liu C, Zhang Y, Ren Y, Wang H, Li S, Jiang F, et al. (September 2018). "The genome of the golden apple snail Pomacea canaliculata provides insight into stress tolerance and invasive adaptation". GigaScience. 7 (9). doi: 10.1093/gigascience/giy101. PMC  6129957. PMID  30107526.
  506. ^ Mun S, Kim YJ, Markkandan K, Shin W, Oh S, Woo J, et al. (June 2017). "The Whole-Genome and Transcriptome of the Manila Clam (Ruditapes philippinarum)". Genome Biology and Evolution. 9 (6): 1487–1498. doi: 10.1093/gbe/evx096. PMC  5499747. PMID  28505302.
  507. ^ Powell D, Subramanian S, Suwansa-Ard S, Zhao M, O'Connor W, Raftos D, Elizur A (December 2018). "The genome of the oyster Saccostrea offers insight into the environmental resilience of bivalves". DNA Research. 25 (6): 655–665. doi: 10.1093/dnares/dsy032. PMC  6289776. PMID  30295708.
  508. ^ Bai CM, Xin LS, Rosani U, Wu B, Wang QC, Duan XK, et al. (July 2019). "Chromosomal-level assembly of the blood clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C". GigaScience. 8 (7). doi: 10.1093/gigascience/giz067. PMC  6615981. PMID  31289832.
  509. ^ Renaut S, Guerra D, Hoeh WR, Stewart DT, Bogan AE, Ghiselli F, et al. (July 2018). "Genome Survey of the Freshwater Mussel Venustaconcha ellipsiformis (Bivalvia: Unionida) Using a Hybrid De Novo Assembly Approach". Genome Biology and Evolution. 10 (7): 1637–1646. doi: 10.1093/gbe/evy117. PMC  6054159. PMID  29878181.
  510. ^ Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, et al. (October 2011). "The draft genome of the carcinogenic human liver fluke Clonorchis sinensis". Genome Biology. 12 (10): R107. doi: 10.1186/gb-2011-12-10-r107. PMC  3333777. PMID  22023798.
  511. ^ a b c d Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sánchez-Flores A, Brooks KL, et al. (April 2013). "The genomes of four tapeworm species reveal adaptations to parasitism". Nature. 496 (7443): 57–63. Bibcode: 2013Natur.496...57.. doi: 10.1038/nature12031. PMC  3964345. PMID  23485966.
  512. ^ Zheng H, Zhang W, Zhang L, Zhang Z, Li J, Lu G, et al. (October 2013). "The genome of the hydatid tapeworm Echinococcus granulosus". Nature Genetics. 45 (10): 1168–75. doi: 10.1038/ng.2757. PMID  24013640. S2CID  205347630.
  513. ^ Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, et al. (January 2012). "Whole-genome sequence of Schistosoma haematobium". Nature Genetics. 44 (2): 221–5. doi: 10.1038/ng.1065. hdl: 10072/45821. PMID  22246508. S2CID  13309839.
  514. ^ Stroehlein AJ, Korhonen PK, Chong TM, Lim YL, Chan KG, Webster B, et al. (September 2019). "High-quality Schistosoma haematobium genome achieved by single-molecule and long-range sequencing". GigaScience. 8 (9). doi: 10.1093/gigascience/giz108. PMC  6736295. PMID  31494670.
  515. ^ The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (July 2009). "The Schistosoma japonicum genome reveals features of host-parasite interplay". Nature. 460 (7253): 345–51. Bibcode: 2009Natur.460..345Z. doi: 10.1038/nature08140. PMC  3747554. PMID  19606140.
  516. ^ Berriman M, Haas BJ, LoVerde PT, Wilson RA, Dillon GP, Cerqueira GC, et al. (July 2009). "The genome of the blood fluke Schistosoma mansoni". Nature. 460 (7253): 352–8. Bibcode: 2009Natur.460..352B. doi: 10.1038/nature08160. PMC  2756445. PMID  19606141.
  517. ^ Protasio AV, Tsai IJ, Babbage A, Nichol S, Hunt M, Aslett MA, et al. (January 2012). "A systematically improved high quality genome and transcriptome of the human blood fluke Schistosoma mansoni". PLOS Neglected Tropical Diseases. 6 (1): e1455. doi: 10.1371/journal.pntd.0001455. PMC  3254664. PMID  22253936.
  518. ^ "Schmidtea mediterranea". The Genome Institute. Washington University in St. Louis. Archived from the original on 2012-03-08. Retrieved 2012-05-23.
  519. ^ Schwarz EM, Hu Y, Antoshechkin I, Miller MM, Sternberg PW, Aroian RV (April 2015). "The genome and transcriptome of the zoonotic hookworm Ancylostoma ceylanicum identify infection-specific gene families". Nature Genetics. 47 (4): 416–22. doi: 10.1038/ng.3237. PMC  4617383. PMID  25730766.
  520. ^ Han L, Liu T, He F, Hou Z (2023-03-27). "The first genome assembly of the amphibian nematode parasite (Aplectana chamaeleonis)". Gigabyte. 2023: 1–8. doi: 10.46471/gigabyte.79. ISSN  2709-4715. PMC  10043924. PMID  36999120.
  521. ^ Jex AR, Liu S, Li B, Young ND, Hall RS, Li Y, et al. (October 2011). "Ascaris suum draft genome". Nature. 479 (7374): 529–33. Bibcode: 2011Natur.479..529J. doi: 10.1038/nature10553. PMID  22031327. S2CID  205226683.
  522. ^ Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, et al. (September 2007). "Draft genome of the filarial nematode parasite Brugia malayi". Science. 317 (5845): 1756–60. Bibcode: 2007Sci...317.1756G. doi: 10.1126/science.1145406. PMC  2613796. PMID  17885136.
  523. ^ Kikuchi T, Cotton JA, Dalzell JJ, Hasegawa K, Kanzaki N, McVeigh P, et al. (September 2011). "Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus". PLOS Pathogens. 7 (9): e1002219. doi: 10.1371/journal.ppat.1002219. PMC  3164644. PMID  21909270.
  524. ^ Mortazavi A, Schwarz EM, Williams B, Schaeffer L, Antoshechkin I, Wold BJ, et al. (December 2010). "Scaffolding a Caenorhabditis nematode genome with RNA-seq". Genome Research. 20 (12): 1740–7. doi: 10.1101/gr.111021.110. PMC  2990000. PMID  20980554.
  525. ^ "GSC: Caenorhabditis n. sp. PB2801". Archived from the original on 18 August 2007. Retrieved 28 April 2007.
  526. ^ "Wormbase". Retrieved 4 September 2015.
  527. ^ Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, et al. (November 2003). "The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics". PLOS Biology. 1 (2): E45. doi: 10.1371/journal.pbio.0000045. PMC  261899. PMID  14624247.
  528. ^ C. elegans Sequencing Consortium. (December 1998). "Genome sequence of the nematode C. elegans: a platform for investigating biology". Science. 282 (5396): 2012–8. Bibcode: 1998Sci...282.2012.. doi: 10.1126/science.282.5396.2012. PMID  9851916.
  529. ^ "GSC: Caenorhabditis remanei". Archived from the original on 13 March 2007. Retrieved 28 April 2007.
  530. ^ Haag ES, Chamberlin H, Coghlan A, Fitch DH, Peters AD, Schulenburg H (March 2007). "Caenorhabditis evolution: if they all look alike, you aren't looking hard enough" (PDF). Trends in Genetics. 23 (3): 101–4. doi: 10.1016/j.tig.2007.01.002. PMID  17275130.
  531. ^ Godel C, Kumar S, Koutsovoulos G, Ludin P, Nilsson D, Comandatore F, et al. (November 2012). "The genome of the heartworm, Dirofilaria immitis, reveals drug and vaccine targets". FASEB Journal. 26 (11): 4650–61. doi: 10.1096/fj.12-205096. PMC  3475251. PMID  22889830.
  532. ^ Cotton JA, Lilley CJ, Jones LM, Kikuchi T, Reid AJ, Thorpe P, et al. (March 2014). "The genome and life-stage specific transcriptomes of Globodera pallida elucidate key aspects of plant parasitism by a cyst nematode". Genome Biology. 15 (3): R43. doi: 10.1186/gb-2014-15-3-r43. PMC  4054857. PMID  24580726.
  533. ^ Laing R, Kikuchi T, Martinelli A, Tsai IJ, Beech RN, Redman E, et al. (August 2013). "The genome and transcriptome of Haemonchus contortus, a key model parasite for drug and vaccine discovery". Genome Biology. 14 (8): R88. doi: 10.1186/gb-2013-14-8-r88. PMC  4054779. PMID  23985316.
  534. ^ Masonbrink R, Maier TR, Muppirala U, Seetharam AS, Lord E, Juvale PS, et al. (9 February 2019). "The genome of the soybean cyst nematode (Heterodera glycines) reveals complex patterns of duplications involved in the evolution of parasitism genes". BMC Genomics. 20 (1): 119. doi: 10.1186/s12864-019-5485-8. PMC  6367775. PMID  30732586.
  535. ^ Bai X, Adams BJ, Ciche TA, Clifton S, Gaugler R, Kim KS, et al. (18 July 2013). "A lover and a fighter: the genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora". PLOS ONE. 8 (7): e69618. Bibcode: 2013PLoSO...869618B. doi: 10.1371/journal.pone.0069618. PMC  3715494. PMID  23874975.
  536. ^ Desjardins CA, Cerqueira GC, Goldberg JM, Dunning Hotopp JC, Haas BJ, Zucker J, et al. (May 2013). "Genomics of Loa loa, a Wolbachia-free filarial parasite of humans". Nature Genetics. 45 (5): 495–500. doi: 10.1038/ng.2585. PMC  4238225. PMID  23525074.
  537. ^ Opperman CH, Bird DM, Williamson VM, Rokhsar DS, Burke M, Cohn J, et al. (September 2008). "Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism". Proceedings of the National Academy of Sciences of the United States of America. 105 (39): 14802–7. Bibcode: 2008PNAS..10514802O. doi: 10.1073/pnas.0805946105. PMC  2547418. PMID  18809916.
  538. ^ Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG, Deleury E, et al. (August 2008). "Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita". Nature Biotechnology. 26 (8): 909–15. doi: 10.1038/nbt.1482. hdl: 1912/2392. PMID  18660804. S2CID  8836601.
  539. ^ Tang YT, Gao X, Rosa BA, Abubucker S, Hallsworth-Pepin K, Martin J, et al. (March 2014). "Genome of the human hookworm Necator americanus". Nature Genetics. 46 (3): 261–269. doi: 10.1038/ng.2875. PMC  3978129. PMID  24441737.
  540. ^ a b "Filarial worms Database". 2015-06-04. Retrieved 5 June 2015.
  541. ^ Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I, et al. (October 2008). "The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism". Nature Genetics. 40 (10): 1193–8. doi: 10.1038/ng.227. PMC  3816844. PMID  18806794.
  542. ^ Schiffer PH, Kroiher M, Kraus C, Koutsovoulos GD, Kumar S, Camps JI, et al. (December 2013). "The genome of Romanomermis culicivorax: revealing fundamental changes in the core developmental genetic toolkit in Nematoda". BMC Genomics. 14 (1): 923. doi: 10.1186/1471-2164-14-923. PMC  3890508. PMID  24373391.
  543. ^ Jex AR, Nejsum P, Schwarz EM, Hu L, Young ND, Hall RS, et al. (July 2014). "Genome and transcriptome of the porcine whipworm Trichuris suis". Nature Genetics. 46 (7): 701–6. doi: 10.1038/ng.3012. PMC  4105696. PMID  24929829.
  544. ^ a b Foth BJ, Tsai IJ, Reid AJ, Bancroft AJ, Nichol S, Tracey A, et al. (July 2014). "Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction". Nature Genetics. 46 (7): 693–700. doi: 10.1038/ng.3010. PMC  5012510. PMID  24929830.
  545. ^ "Capitella teleta". The Joint Genome Institute. Berkeley National Laboratory.
  546. ^ "J Helobdella robusta". The Joint Genome Institute. Berkeley National Laboratory.
  547. ^ "Eisenia fetida". WhitneyLab.
  548. ^ Zwarycz AS, Nossa CW, Putnam NH, Ryan JF (December 2015). "Timing and Scope of Genomic Expansion within Annelida: Evidence from Homeoboxes in the Genome of the Earthworm Eisenia fetida". Genome Biology and Evolution. 8 (1): 271–81. doi: 10.1093/gbe/evv243. PMC  4758240. PMID  26659921.
  549. ^ Sun Y, Sun J, Yang Y, Lan Y, Ip J, Wong WC, Kwan YH, Zhang Y, Han Z, Qiu JW, Qian PY (13 July 2021). "Genomic Signatures Supporting the Symbiosis and Formation of Chitinous Tube in the Deep-Sea Tubeworm Paraescarpia echinospica". Molecular Biology and Evolution. 38 (10): 4116–4134. doi: 10.1093/molbev/msab203. PMC  8476170. PMID  34255082.
  550. ^ a b c Zheng J, Wang X, Feng T, Rehman SU, Yan X, Shan H, et al. (December 2022). "Molecular mechanisms underlying hematophagia revealed by comparative analyses of leech genomes". GigaScience. 12. doi: 10.1093/gigascience/giad023. PMC  10087013. PMID  37039117.
  551. ^ Jinghui, Zheng; Xiaobo, Wang; Tong, Feng; Saif, Rehman Ur; Xiuying, Yan; Huiquan, Shan; Xiaocong, Ma; Weiguan, Zhou; Wenhua, Xu; Liying, Lu; Jiasheng, Liu; Xier, Luo; Kuiqing, Cui; Chaobin, Qin; Weihua, Chen; Jun, Yu; Zhipeng, Li; Jue, Ruan; Qingyou, Liu (2023). "GigaDB Dataset - DOI 10.5524/102363 - Genomic data of non-bloodsucking leech, Whitmania pigra". gigadb.org. doi: 10.5524/102363. Retrieved 2023-07-10.
  552. ^ Jinghui, Zheng; Xiaobo, Wang; Tong, Feng; Saif, Rehman Ur; Xiuying, Yan; Huiquan, Shan; Xiaocong, Ma; Weiguan, Zhou; Wenhua, Xu; Liying, Lu; Jiasheng, Liu; Xier, Luo; Kuiqing, Cui; Chaobin, Qin; Weihua, Chen; Jun, Yu; Zhipeng, Li; Jue, Ruan; Qingyou, Liu (2023). "GigaDB Dataset - DOI 10.5524/102364 - Genomic data of bloodsucking leech, Hirudo nipponia". gigadb.org. doi: 10.5524/102364. Retrieved 2023-07-10.
  553. ^ Jinghui, Zheng; Xiaobo, Wang; Tong, Feng; Saif, Rehman Ur; Xiuying, Yan; Huiquan, Shan; Xiaocong, Ma; Weiguan, Zhou; Wenhua, Xu; Liying, Lu; Jiasheng, Liu; Xier, Luo; Kuiqing, Cui; Chaobin, Qin; Weihua, Chen; Jun, Yu; Zhipeng, Li; Jue, Ruan; Qingyou, Liu (2023). "GigaDB Dataset - DOI 10.5524/102363 - Genomic data of non-bloodsucking leech, Whitmania pigra". gigadb.org. doi: 10.5524/102363. Retrieved 2023-07-10.
  554. ^ Rayko M, Komissarov A, Lim-Fong G, Rhodes AC, Kwan JC, Kliver S, Chesnokova P, O'Brien SJ, Lopez JV (September 2020). "Draft genome of Bryozoan Bugula neritina – a colonial animal packing powerful symbionts and potential medicines". Scientific Data. 7 (1): 356. doi: 10.1038/s41597-020-00684-y. PMC  7576161. PMID  33082320.
  555. ^ Luo YJ, Takeuchi T, Koyanagi R, Yamada L, Kanda M, Khalturina M, et al. (September 2015). "The Lingula genome provides insights into brachiopod evolution and the origin of phosphate biomineralization". Nature Communications. 6: 8301. Bibcode: 2015NatCo...6.8301L. doi: 10.1038/ncomms9301. PMC  4595640. PMID  26383154.
  556. ^ Flot JF, Hespeels B, Li X, Noel B, Arkhipova I, Danchin EG, et al. (August 2013). "Genomic evidence for ameiotic evolution in the bdelloid rotifer Adineta vaga". Nature. 500 (7463): 453–7. Bibcode: 2013Natur.500..453F. doi: 10.1038/nature12326. hdl: 1721.1/87072. PMID  23873043. S2CID  1706158.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook