From Wikipedia, the free encyclopedia

The Kramers–Heisenberg dispersion formula is an expression for the cross section for scattering of a photon by an atomic electron. It was derived before the advent of quantum mechanics by Hendrik Kramers and Werner Heisenberg in 1925, [1] based on the correspondence principle applied to the classical dispersion formula for light. The quantum mechanical derivation was given by Paul Dirac in 1927. [2] [3] [4]

The Kramers–Heisenberg formula was an important achievement when it was published, explaining the notion of "negative absorption" ( stimulated emission), the Thomas–Reiche–Kuhn sum rule, and inelastic scattering — where the energy of the scattered photon may be larger or smaller than that of the incident photon — thereby anticipating the discovery of the Raman effect. [5]

Equation

The Kramers–Heisenberg (KH) formula for second order processes is [1] [6]

It represents the probability of the emission of photons of energy in the solid angle (centered in the direction), after the excitation of the system with photons of energy . are the initial, intermediate and final states of the system with energy respectively; the delta function ensures the energy conservation during the whole process. is the relevant transition operator. is the intrinsic linewidth of the intermediate state.

References

  1. ^ a b Kramers, H. A.; Heisenberg, W. (Feb 1925). "Über die Streuung von Strahlung durch Atome". Z. Phys. 31 (1): 681–708. Bibcode: 1925ZPhy...31..681K. doi: 10.1007/BF02980624.
  2. ^ Dirac, P. A. M. (1927). "The Quantum Theory of the Emission and Absorption of Radiation". Proc. R. Soc. Lond. A. 114 (769): 243–265. Bibcode: 1927RSPSA.114..243D. doi: 10.1098/rspa.1927.0039.
  3. ^ Dirac, P. A. M. (1927). "The Quantum Theory of Dispersion". Proc. R. Soc. Lond. A. 114 (769): 710–728. Bibcode: 1927RSPSA.114..710D. doi: 10.1098/rspa.1927.0071.
  4. ^ Forbes, Kayn A.; Salam, A. (2019-11-21). "Kramers-Heisenberg dispersion formula for scattering of twisted light". Physical Review A. 100 (5): 053413. doi: 10.1103/PhysRevA.100.053413. S2CID  214221551.
  5. ^ Breit, G. (1932). "Quantum Theory of Dispersion". Rev. Mod. Phys. 4 (3): 504–576. Bibcode: 1932RvMP....4..504B. doi: 10.1103/RevModPhys.4.504. S2CID  4133208.
  6. ^ Sakurai, J. J. (1967). Advanced Quantum Mechanics. Reading, Mass.: Addison-Wesley. p. 56. ISBN  978-0201067101. OCLC  869733.


From Wikipedia, the free encyclopedia

The Kramers–Heisenberg dispersion formula is an expression for the cross section for scattering of a photon by an atomic electron. It was derived before the advent of quantum mechanics by Hendrik Kramers and Werner Heisenberg in 1925, [1] based on the correspondence principle applied to the classical dispersion formula for light. The quantum mechanical derivation was given by Paul Dirac in 1927. [2] [3] [4]

The Kramers–Heisenberg formula was an important achievement when it was published, explaining the notion of "negative absorption" ( stimulated emission), the Thomas–Reiche–Kuhn sum rule, and inelastic scattering — where the energy of the scattered photon may be larger or smaller than that of the incident photon — thereby anticipating the discovery of the Raman effect. [5]

Equation

The Kramers–Heisenberg (KH) formula for second order processes is [1] [6]

It represents the probability of the emission of photons of energy in the solid angle (centered in the direction), after the excitation of the system with photons of energy . are the initial, intermediate and final states of the system with energy respectively; the delta function ensures the energy conservation during the whole process. is the relevant transition operator. is the intrinsic linewidth of the intermediate state.

References

  1. ^ a b Kramers, H. A.; Heisenberg, W. (Feb 1925). "Über die Streuung von Strahlung durch Atome". Z. Phys. 31 (1): 681–708. Bibcode: 1925ZPhy...31..681K. doi: 10.1007/BF02980624.
  2. ^ Dirac, P. A. M. (1927). "The Quantum Theory of the Emission and Absorption of Radiation". Proc. R. Soc. Lond. A. 114 (769): 243–265. Bibcode: 1927RSPSA.114..243D. doi: 10.1098/rspa.1927.0039.
  3. ^ Dirac, P. A. M. (1927). "The Quantum Theory of Dispersion". Proc. R. Soc. Lond. A. 114 (769): 710–728. Bibcode: 1927RSPSA.114..710D. doi: 10.1098/rspa.1927.0071.
  4. ^ Forbes, Kayn A.; Salam, A. (2019-11-21). "Kramers-Heisenberg dispersion formula for scattering of twisted light". Physical Review A. 100 (5): 053413. doi: 10.1103/PhysRevA.100.053413. S2CID  214221551.
  5. ^ Breit, G. (1932). "Quantum Theory of Dispersion". Rev. Mod. Phys. 4 (3): 504–576. Bibcode: 1932RvMP....4..504B. doi: 10.1103/RevModPhys.4.504. S2CID  4133208.
  6. ^ Sakurai, J. J. (1967). Advanced Quantum Mechanics. Reading, Mass.: Addison-Wesley. p. 56. ISBN  978-0201067101. OCLC  869733.



Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook