From Wikipedia, the free encyclopedia
κ-Weibull distribution
Probability density function
Cumulative distribution function
Parameters
rate shape ( real)
rate ( real)
Support
PDF
CDF
Quantile
Median
Mode
Method of moments

The Kaniadakis Weibull distribution (or κ-Weibull distribution) is a probability distribution arising as a generalization of the Weibull distribution. [1] [2] It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.

Definitions

Probability density function

The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function: [3]

valid for , where is the entropic index associated with the Kaniadakis entropy, is the scale parameter, and is the shape parameter or Weibull modulus.

The Weibull distribution is recovered as

Cumulative distribution function

The cumulative distribution function of κ-Weibull distribution is given by

valid for . The cumulative Weibull distribution is recovered in the classical limit .

Survival distribution and hazard functions

The survival distribution function of κ-Weibull distribution is given by

valid for . The survival Weibull distribution is recovered in the classical limit .

Comparison between the Kaniadakis κ-Weibull probability function and its cumulative.

The hazard function of the κ-Weibull distribution is obtained through the solution of the κ-rate equation:

with , where is the hazard function:

The cumulative κ-Weibull distribution is related to the κ-hazard function by the following expression:

where

is the cumulative κ-hazard function. The cumulative hazard function of the Weibull distribution is recovered in the classical limit : .

Properties

Moments, median and mode

The κ-Weibull distribution has moment of order given by

The median and the mode are:

Quantiles

The quantiles are given by the following expression

with .

Gini coefficient

The Gini coefficient is: [3]

Asymptotic behavior

The κ-Weibull distribution II behaves asymptotically as follows: [3]

Related distributions

  • The κ-Weibull distribution is a generalization of:
  • A κ-Weibull distribution corresponds to a κ-deformed Rayleigh distribution when and a Rayleigh distribution when and .

Applications

The κ-Weibull distribution has been applied in several areas, such as:

  • In economy, for analyzing personal income models, in order to accurately describing simultaneously the income distribution among the richest part and the great majority of the population. [1] [4] [5]
  • In seismology, the κ-Weibull represents the statistical distribution of magnitude of the earthquakes distributed across the Earth, generalizing the Gutenberg–Richter law, [6] and the interval distributions of seismic data, modeling extreme-event return intervals. [7] [8]
  • In epidemiology, the κ-Weibull distribution presents a universal feature for epidemiological analysis. [9]

See also

References

  1. ^ a b Clementi, F.; Gallegati, M.; Kaniadakis, G. (2007). "κ-generalized statistics in personal income distribution". The European Physical Journal B. 57 (2): 187–193. arXiv: physics/0607293. Bibcode: 2007EPJB...57..187C. doi: 10.1140/epjb/e2007-00120-9. ISSN  1434-6028. S2CID  15777288.
  2. ^ Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G. (2008). "The -generalized distribution: A new descriptive model for the size distribution of incomes". Physica A: Statistical Mechanics and Its Applications. 387 (13): 3201–3208. arXiv: 0710.3645. doi: 10.1016/j.physa.2008.01.109. S2CID  2590064.
  3. ^ a b c Kaniadakis, G. (2021-01-01). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv: 2203.01743. Bibcode: 2021EL....13310002K. doi: 10.1209/0295-5075/133/10002. ISSN  0295-5075. S2CID  234144356.
  4. ^ Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (October 2010). "A model of personal income distribution with application to Italian data". Empirical Economics. 39 (2): 559–591. doi: 10.1007/s00181-009-0318-2. ISSN  0377-7332. S2CID  154273794.
  5. ^ Clementi, F; Gallegati, M; Kaniadakis, G (2012-12-06). "A generalized statistical model for the size distribution of wealth". Journal of Statistical Mechanics: Theory and Experiment. 2012 (12): P12006. arXiv: 1209.4787. Bibcode: 2012JSMTE..12..006C. doi: 10.1088/1742-5468/2012/12/P12006. ISSN  1742-5468. S2CID  18961951.
  6. ^ da Silva, Sérgio Luiz E.F. (2021). "κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes". Chaos, Solitons & Fractals. 143: 110622. Bibcode: 2021CSF...14310622D. doi: 10.1016/j.chaos.2020.110622. S2CID  234063959.
  7. ^ Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014-05-28). "Finite-size effects on return interval distributions for weakest-link-scaling systems". Physical Review E. 89 (5): 052142. arXiv: 1308.1881. Bibcode: 2014PhRvE..89e2142H. doi: 10.1103/PhysRevE.89.052142. ISSN  1539-3755. PMID  25353774. S2CID  22310350.
  8. ^ Hristopulos, Dionissios; Petrakis, Manolis; Kaniadakis, Giorgio (2015-03-09). "Weakest-Link Scaling and Extreme Events in Finite-Sized Systems". Entropy. 17 (3): 1103–1122. Bibcode: 2015Entrp..17.1103H. doi: 10.3390/e17031103. ISSN  1099-4300.
  9. ^ Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020). "The κ-statistics approach to epidemiology". Scientific Reports. 10 (1): 19949. Bibcode: 2020NatSR..1019949K. doi: 10.1038/s41598-020-76673-3. ISSN  2045-2322. PMC  7673996. PMID  33203913.

External links

From Wikipedia, the free encyclopedia
κ-Weibull distribution
Probability density function
Cumulative distribution function
Parameters
rate shape ( real)
rate ( real)
Support
PDF
CDF
Quantile
Median
Mode
Method of moments

The Kaniadakis Weibull distribution (or κ-Weibull distribution) is a probability distribution arising as a generalization of the Weibull distribution. [1] [2] It is one example of a Kaniadakis κ-distribution. The κ-Weibull distribution has been adopted successfully for describing a wide variety of complex systems in seismology, economy, epidemiology, among many others.

Definitions

Probability density function

The Kaniadakis κ-Weibull distribution is exhibits power-law right tails, and it has the following probability density function: [3]

valid for , where is the entropic index associated with the Kaniadakis entropy, is the scale parameter, and is the shape parameter or Weibull modulus.

The Weibull distribution is recovered as

Cumulative distribution function

The cumulative distribution function of κ-Weibull distribution is given by

valid for . The cumulative Weibull distribution is recovered in the classical limit .

Survival distribution and hazard functions

The survival distribution function of κ-Weibull distribution is given by

valid for . The survival Weibull distribution is recovered in the classical limit .

Comparison between the Kaniadakis κ-Weibull probability function and its cumulative.

The hazard function of the κ-Weibull distribution is obtained through the solution of the κ-rate equation:

with , where is the hazard function:

The cumulative κ-Weibull distribution is related to the κ-hazard function by the following expression:

where

is the cumulative κ-hazard function. The cumulative hazard function of the Weibull distribution is recovered in the classical limit : .

Properties

Moments, median and mode

The κ-Weibull distribution has moment of order given by

The median and the mode are:

Quantiles

The quantiles are given by the following expression

with .

Gini coefficient

The Gini coefficient is: [3]

Asymptotic behavior

The κ-Weibull distribution II behaves asymptotically as follows: [3]

Related distributions

  • The κ-Weibull distribution is a generalization of:
  • A κ-Weibull distribution corresponds to a κ-deformed Rayleigh distribution when and a Rayleigh distribution when and .

Applications

The κ-Weibull distribution has been applied in several areas, such as:

  • In economy, for analyzing personal income models, in order to accurately describing simultaneously the income distribution among the richest part and the great majority of the population. [1] [4] [5]
  • In seismology, the κ-Weibull represents the statistical distribution of magnitude of the earthquakes distributed across the Earth, generalizing the Gutenberg–Richter law, [6] and the interval distributions of seismic data, modeling extreme-event return intervals. [7] [8]
  • In epidemiology, the κ-Weibull distribution presents a universal feature for epidemiological analysis. [9]

See also

References

  1. ^ a b Clementi, F.; Gallegati, M.; Kaniadakis, G. (2007). "κ-generalized statistics in personal income distribution". The European Physical Journal B. 57 (2): 187–193. arXiv: physics/0607293. Bibcode: 2007EPJB...57..187C. doi: 10.1140/epjb/e2007-00120-9. ISSN  1434-6028. S2CID  15777288.
  2. ^ Clementi, F.; Di Matteo, T.; Gallegati, M.; Kaniadakis, G. (2008). "The -generalized distribution: A new descriptive model for the size distribution of incomes". Physica A: Statistical Mechanics and Its Applications. 387 (13): 3201–3208. arXiv: 0710.3645. doi: 10.1016/j.physa.2008.01.109. S2CID  2590064.
  3. ^ a b c Kaniadakis, G. (2021-01-01). "New power-law tailed distributions emerging in κ-statistics (a)". Europhysics Letters. 133 (1): 10002. arXiv: 2203.01743. Bibcode: 2021EL....13310002K. doi: 10.1209/0295-5075/133/10002. ISSN  0295-5075. S2CID  234144356.
  4. ^ Clementi, Fabio; Gallegati, Mauro; Kaniadakis, Giorgio (October 2010). "A model of personal income distribution with application to Italian data". Empirical Economics. 39 (2): 559–591. doi: 10.1007/s00181-009-0318-2. ISSN  0377-7332. S2CID  154273794.
  5. ^ Clementi, F; Gallegati, M; Kaniadakis, G (2012-12-06). "A generalized statistical model for the size distribution of wealth". Journal of Statistical Mechanics: Theory and Experiment. 2012 (12): P12006. arXiv: 1209.4787. Bibcode: 2012JSMTE..12..006C. doi: 10.1088/1742-5468/2012/12/P12006. ISSN  1742-5468. S2CID  18961951.
  6. ^ da Silva, Sérgio Luiz E.F. (2021). "κ -generalised Gutenberg–Richter law and the self-similarity of earthquakes". Chaos, Solitons & Fractals. 143: 110622. Bibcode: 2021CSF...14310622D. doi: 10.1016/j.chaos.2020.110622. S2CID  234063959.
  7. ^ Hristopulos, Dionissios T.; Petrakis, Manolis P.; Kaniadakis, Giorgio (2014-05-28). "Finite-size effects on return interval distributions for weakest-link-scaling systems". Physical Review E. 89 (5): 052142. arXiv: 1308.1881. Bibcode: 2014PhRvE..89e2142H. doi: 10.1103/PhysRevE.89.052142. ISSN  1539-3755. PMID  25353774. S2CID  22310350.
  8. ^ Hristopulos, Dionissios; Petrakis, Manolis; Kaniadakis, Giorgio (2015-03-09). "Weakest-Link Scaling and Extreme Events in Finite-Sized Systems". Entropy. 17 (3): 1103–1122. Bibcode: 2015Entrp..17.1103H. doi: 10.3390/e17031103. ISSN  1099-4300.
  9. ^ Kaniadakis, Giorgio; Baldi, Mauro M.; Deisboeck, Thomas S.; Grisolia, Giulia; Hristopulos, Dionissios T.; Scarfone, Antonio M.; Sparavigna, Amelia; Wada, Tatsuaki; Lucia, Umberto (2020). "The κ-statistics approach to epidemiology". Scientific Reports. 10 (1): 19949. Bibcode: 2020NatSR..1019949K. doi: 10.1038/s41598-020-76673-3. ISSN  2045-2322. PMC  7673996. PMID  33203913.

External links


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook