From Wikipedia, the free encyclopedia

In computability theory, index sets describe classes of computable functions; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.

Definition

Let be a computable enumeration of all partial computable functions, and be a computable enumeration of all c.e. sets.

Let be a class of partial computable functions. If then is the index set of . In general is an index set if for every with (i.e. they index the same function), we have . Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.

Index sets and Rice's theorem

Most index sets are non-computable, aside from two trivial exceptions. This is stated in Rice's theorem:

Let be a class of partial computable functions with its index set . Then is computable if and only if is empty, or is all of .

Rice's theorem says "any nontrivial property of partial computable functions is undecidable". [1]

Completeness in the arithmetical hierarchy

Index sets provide many examples of sets which are complete at some level of the arithmetical hierarchy. Here, we say a set is -complete if, for every set , there is an m-reduction from to . -completeness is defined similarly. Here are some examples: [2]

  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete, where is the halting problem.

Empirically, if the "most obvious" definition of a set is [resp. ], we can usually show that is -complete [resp. -complete].

Notes

  1. ^ Odifreddi, P. G. Classical Recursion Theory, Volume 1.; page 151
  2. ^ Soare, Robert I. (2016), "Turing Reducibility", Turing Computability, Theory and Applications of Computability, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 51–78, doi: 10.1007/978-3-642-31933-4_3, ISBN  978-3-642-31932-7, retrieved 2021-04-21

References

  • Odifreddi, P. G. (1992). Classical Recursion Theory, Volume 1. Elsevier. p. 668. ISBN  0-444-89483-7.
  • Rogers Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability. MIT Press. p. 482. ISBN  0-262-68052-1.
From Wikipedia, the free encyclopedia

In computability theory, index sets describe classes of computable functions; specifically, they give all indices of functions in a certain class, according to a fixed Gödel numbering of partial computable functions.

Definition

Let be a computable enumeration of all partial computable functions, and be a computable enumeration of all c.e. sets.

Let be a class of partial computable functions. If then is the index set of . In general is an index set if for every with (i.e. they index the same function), we have . Intuitively, these are the sets of natural numbers that we describe only with reference to the functions they index.

Index sets and Rice's theorem

Most index sets are non-computable, aside from two trivial exceptions. This is stated in Rice's theorem:

Let be a class of partial computable functions with its index set . Then is computable if and only if is empty, or is all of .

Rice's theorem says "any nontrivial property of partial computable functions is undecidable". [1]

Completeness in the arithmetical hierarchy

Index sets provide many examples of sets which are complete at some level of the arithmetical hierarchy. Here, we say a set is -complete if, for every set , there is an m-reduction from to . -completeness is defined similarly. Here are some examples: [2]

  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete.
  • is -complete, where is the halting problem.

Empirically, if the "most obvious" definition of a set is [resp. ], we can usually show that is -complete [resp. -complete].

Notes

  1. ^ Odifreddi, P. G. Classical Recursion Theory, Volume 1.; page 151
  2. ^ Soare, Robert I. (2016), "Turing Reducibility", Turing Computability, Theory and Applications of Computability, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 51–78, doi: 10.1007/978-3-642-31933-4_3, ISBN  978-3-642-31932-7, retrieved 2021-04-21

References

  • Odifreddi, P. G. (1992). Classical Recursion Theory, Volume 1. Elsevier. p. 668. ISBN  0-444-89483-7.
  • Rogers Jr., Hartley (1987). Theory of Recursive Functions and Effective Computability. MIT Press. p. 482. ISBN  0-262-68052-1.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook