From Wikipedia, the free encyclopedia
Hirzebruchā€“Riemannā€“Roch theorem
Field Algebraic geometry
First proof by Friedrich Hirzebruch
First proof in1954
Generalizations Atiyahā€“Singer index theorem
Grothendieckā€“Riemannā€“Roch theorem
Consequences Riemannā€“Roch theorem
Riemannā€“Roch theorem for surfaces

In mathematics, the Hirzebruchā€“Riemannā€“Roch theorem, named after Friedrich Hirzebruch, Bernhard Riemann, and Gustav Roch, is Hirzebruch's 1954 result generalizing the classical Riemannā€“Roch theorem on Riemann surfaces to all complex algebraic varieties of higher dimensions. The result paved the way for the Grothendieckā€“Hirzebruchā€“Riemannā€“Roch theorem proved about three years later.

Statement of Hirzebruchā€“Riemannā€“Roch theorem

The Hirzebruchā€“Riemannā€“Roch theorem applies to any holomorphic vector bundle E on a compact complex manifold X, to calculate the holomorphic Euler characteristic of E in sheaf cohomology, namely the alternating sum

of the dimensions as complex vector spaces, where n is the complex dimension of X.

Hirzebruch's theorem states that χ(X, E) is computable in terms of the Chern classes ck(E) of E, and the Todd classes of the holomorphic tangent bundle of X. These all lie in the cohomology ring of X; by use of the fundamental class (or, in other words, integration over X) we can obtain numbers from classes in The Hirzebruch formula asserts that

where the sum is taken over all relevant j (so 0 ≤ jn), using the Chern character ch(E) in cohomology. In other words, the products are formed in the cohomology ring of all the 'matching' degrees that add up to 2n. Formulated differently, it gives the equality

where is the Todd class of the tangent bundle of X.

Significant special cases are when E is a complex line bundle, and when X is an algebraic surface (Noether's formula). Weil's Riemannā€“Roch theorem for vector bundles on curves, and the Riemannā€“Roch theorem for algebraic surfaces (see below), are included in its scope. The formula also expresses in a precise way the vague notion that the Todd classes are in some sense reciprocals of the Chern Character.

Riemann Roch theorem for curves

For curves, the Hirzebruchā€“Riemannā€“Roch theorem is essentially the classical Riemannā€“Roch theorem. To see this, recall that for each divisor D on a curve there is an invertible sheaf O(D) (which corresponds to a line bundle) such that the linear system of D is more or less the space of sections of O(D). For curves the Todd class is and the Chern character of a sheaf O(D) is just 1+c1(O(D)), so the Hirzebruchā€“Riemannā€“Roch theorem states that

(integrated over X).

But h0(O(D)) is just l(D), the dimension of the linear system of D, and by Serre duality h1(O(D)) = h0(O(K āˆ’ D)) = l(K āˆ’ D) where K is the canonical divisor. Moreover, c1(O(D)) integrated over X is the degree of D, and c1(T(X)) integrated over X is the Euler class 2 āˆ’ 2g of the curve X, where g is the genus. So we get the classical Riemann Roch theorem

For vector bundles V, the Chern character is rank(V) + c1(V), so we get Weil's Riemann Roch theorem for vector bundles over curves:

Riemann Roch theorem for surfaces

For surfaces, the Hirzebruchā€“Riemannā€“Roch theorem is essentially the Riemannā€“Roch theorem for surfaces

combined with the Noether formula.

If we want, we can use Serre duality to express h2(O(D)) as h0(O(K āˆ’ D)), but unlike the case of curves there is in general no easy way to write the h1(O(D)) term in a form not involving sheaf cohomology (although in practice it often vanishes).

Asymptotic Riemannā€“Roch

Let D be an ample Cartier divisor on an irreducible projective variety X of dimension n. Then

More generally, if is any coherent sheaf on X then

See also

References

  • Friedrich Hirzebruch,Topological Methods in Algebraic Geometry ISBN  3-540-58663-6
From Wikipedia, the free encyclopedia
Hirzebruchā€“Riemannā€“Roch theorem
Field Algebraic geometry
First proof by Friedrich Hirzebruch
First proof in1954
Generalizations Atiyahā€“Singer index theorem
Grothendieckā€“Riemannā€“Roch theorem
Consequences Riemannā€“Roch theorem
Riemannā€“Roch theorem for surfaces

In mathematics, the Hirzebruchā€“Riemannā€“Roch theorem, named after Friedrich Hirzebruch, Bernhard Riemann, and Gustav Roch, is Hirzebruch's 1954 result generalizing the classical Riemannā€“Roch theorem on Riemann surfaces to all complex algebraic varieties of higher dimensions. The result paved the way for the Grothendieckā€“Hirzebruchā€“Riemannā€“Roch theorem proved about three years later.

Statement of Hirzebruchā€“Riemannā€“Roch theorem

The Hirzebruchā€“Riemannā€“Roch theorem applies to any holomorphic vector bundle E on a compact complex manifold X, to calculate the holomorphic Euler characteristic of E in sheaf cohomology, namely the alternating sum

of the dimensions as complex vector spaces, where n is the complex dimension of X.

Hirzebruch's theorem states that χ(X, E) is computable in terms of the Chern classes ck(E) of E, and the Todd classes of the holomorphic tangent bundle of X. These all lie in the cohomology ring of X; by use of the fundamental class (or, in other words, integration over X) we can obtain numbers from classes in The Hirzebruch formula asserts that

where the sum is taken over all relevant j (so 0 ≤ jn), using the Chern character ch(E) in cohomology. In other words, the products are formed in the cohomology ring of all the 'matching' degrees that add up to 2n. Formulated differently, it gives the equality

where is the Todd class of the tangent bundle of X.

Significant special cases are when E is a complex line bundle, and when X is an algebraic surface (Noether's formula). Weil's Riemannā€“Roch theorem for vector bundles on curves, and the Riemannā€“Roch theorem for algebraic surfaces (see below), are included in its scope. The formula also expresses in a precise way the vague notion that the Todd classes are in some sense reciprocals of the Chern Character.

Riemann Roch theorem for curves

For curves, the Hirzebruchā€“Riemannā€“Roch theorem is essentially the classical Riemannā€“Roch theorem. To see this, recall that for each divisor D on a curve there is an invertible sheaf O(D) (which corresponds to a line bundle) such that the linear system of D is more or less the space of sections of O(D). For curves the Todd class is and the Chern character of a sheaf O(D) is just 1+c1(O(D)), so the Hirzebruchā€“Riemannā€“Roch theorem states that

(integrated over X).

But h0(O(D)) is just l(D), the dimension of the linear system of D, and by Serre duality h1(O(D)) = h0(O(K āˆ’ D)) = l(K āˆ’ D) where K is the canonical divisor. Moreover, c1(O(D)) integrated over X is the degree of D, and c1(T(X)) integrated over X is the Euler class 2 āˆ’ 2g of the curve X, where g is the genus. So we get the classical Riemann Roch theorem

For vector bundles V, the Chern character is rank(V) + c1(V), so we get Weil's Riemann Roch theorem for vector bundles over curves:

Riemann Roch theorem for surfaces

For surfaces, the Hirzebruchā€“Riemannā€“Roch theorem is essentially the Riemannā€“Roch theorem for surfaces

combined with the Noether formula.

If we want, we can use Serre duality to express h2(O(D)) as h0(O(K āˆ’ D)), but unlike the case of curves there is in general no easy way to write the h1(O(D)) term in a form not involving sheaf cohomology (although in practice it often vanishes).

Asymptotic Riemannā€“Roch

Let D be an ample Cartier divisor on an irreducible projective variety X of dimension n. Then

More generally, if is any coherent sheaf on X then

See also

References

  • Friedrich Hirzebruch,Topological Methods in Algebraic Geometry ISBN  3-540-58663-6

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook