From Wikipedia, the free encyclopedia

In mathematics, more specifically in algebraic geometry, the Griffiths group of a projective complex manifold X measures the difference between homological equivalence and algebraic equivalence, which are two important equivalence relations of algebraic cycles.

More precisely, it is defined as

where denotes the group of algebraic cycles of some fixed codimension k and the subscripts indicate the groups that are homologically trivial, respectively algebraically equivalent to zero. [1]

This group was introduced by Phillip Griffiths who showed that for a general quintic in (projective 4-space), the group is not a torsion group.

Notes

  1. ^ ( Voisin 2003, ch.8)

References

  • Carlson, James; Müller-Stach, Stefan; Peters, Chris (2017). Period Mappings and Period Domains. doi: 10.1017/9781316995846. ISBN  9781107189867.
  • Griffiths, Philip A. (1969). "On the Periods of Certain Rational Integrals: I". Annals of Mathematics. 90 (3): 460–495. doi: 10.2307/1970746. JSTOR  1970746.
  • Griffiths, Phillip A. (1969). "On the Periods of Certain Rational Integrals: II". Annals of Mathematics. 90 (3): 496–541. doi: 10.2307/1970747. JSTOR  1970747.
  • Voisin, Claire (2000). "The Griffiths group of a general Calabi-Yau threefold is not finitely generated". Duke Mathematical Journal. 102. CiteSeerX  10.1.1.643.5313. doi: 10.1215/S0012-7094-00-10216-5. S2CID  16342989.
  • Voisin, Claire (2003). "Nori's Work". Hodge Theory and Complex Algebraic Geometry II. pp. 215–242. doi: 10.1017/CBO9780511615177.009. ISBN  9780521802833.
  • Voisin, Claire (2019). "Birational Invariants and Decomposition of the Diagonal". Birational Geometry of Hypersurfaces. Lecture Notes of the Unione Matematica Italiana. Vol. 26. pp. 3–71. doi: 10.1007/978-3-030-18638-8_1. ISBN  978-3-030-18637-1. S2CID  164209404.
  • Murre, Jacob (2014). "Lectures on Algebraic Cycles and Chow Groups". Hodge Theory (MN-49). Princeton University Press. pp. 410–448. ISBN  9780691161341. JSTOR  j.ctt6wpzdg.13.
From Wikipedia, the free encyclopedia

In mathematics, more specifically in algebraic geometry, the Griffiths group of a projective complex manifold X measures the difference between homological equivalence and algebraic equivalence, which are two important equivalence relations of algebraic cycles.

More precisely, it is defined as

where denotes the group of algebraic cycles of some fixed codimension k and the subscripts indicate the groups that are homologically trivial, respectively algebraically equivalent to zero. [1]

This group was introduced by Phillip Griffiths who showed that for a general quintic in (projective 4-space), the group is not a torsion group.

Notes

  1. ^ ( Voisin 2003, ch.8)

References

  • Carlson, James; Müller-Stach, Stefan; Peters, Chris (2017). Period Mappings and Period Domains. doi: 10.1017/9781316995846. ISBN  9781107189867.
  • Griffiths, Philip A. (1969). "On the Periods of Certain Rational Integrals: I". Annals of Mathematics. 90 (3): 460–495. doi: 10.2307/1970746. JSTOR  1970746.
  • Griffiths, Phillip A. (1969). "On the Periods of Certain Rational Integrals: II". Annals of Mathematics. 90 (3): 496–541. doi: 10.2307/1970747. JSTOR  1970747.
  • Voisin, Claire (2000). "The Griffiths group of a general Calabi-Yau threefold is not finitely generated". Duke Mathematical Journal. 102. CiteSeerX  10.1.1.643.5313. doi: 10.1215/S0012-7094-00-10216-5. S2CID  16342989.
  • Voisin, Claire (2003). "Nori's Work". Hodge Theory and Complex Algebraic Geometry II. pp. 215–242. doi: 10.1017/CBO9780511615177.009. ISBN  9780521802833.
  • Voisin, Claire (2019). "Birational Invariants and Decomposition of the Diagonal". Birational Geometry of Hypersurfaces. Lecture Notes of the Unione Matematica Italiana. Vol. 26. pp. 3–71. doi: 10.1007/978-3-030-18638-8_1. ISBN  978-3-030-18637-1. S2CID  164209404.
  • Murre, Jacob (2014). "Lectures on Algebraic Cycles and Chow Groups". Hodge Theory (MN-49). Princeton University Press. pp. 410–448. ISBN  9780691161341. JSTOR  j.ctt6wpzdg.13.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook