From Wikipedia, the free encyclopedia
(Redirected from Geowilliams)

3700 Geowilliams
Discovery  [1]
Discovered by C. Shoemaker
E. Shoemaker
Discovery site Palomar Obs.
Discovery date23 October 1984
Designations
(3700) Geowilliams
Named after
George E. Williams [1]
(Australian geologist)
1984 UL2 · 1973 YF2
1977 UJ
main-belt [1] [2] · ( inner) [3]
background [4]
Orbital characteristics [2]
Epoch 23 March 2018 ( JD 2458200.5)
Uncertainty parameter 0
Observation arc43.54 yr (15,902 d)
Aphelion2.9602 AU
Perihelion1.8695 AU
2.4148 AU
Eccentricity0.2258
3.75 yr (1,371 d)
293.18 °
0° 15m 45.36s / day
Inclination12.121°
289.16°
153.06°
Physical characteristics
7.712±0.130  km [5]
7.74±1.83 km [6]
7.753±0.152 km [7]
8.70±0.30 km [8]
8.82±0.86 km [9]
8.97 km (calculated) [3]
14.383±0.0183  h [10]
14.387±0.003 h [a]
0.20 (assumed) [3]
0.227±0.045 [9]
0.23±0.13 [6]
0.233±0.033 [8]
0.2970±0.0516 [5]
SMASS = S k [2]
12.443±0.002 (R) [10]
12.50 [5] [8] [9]
12.6 [2] [3]
12.89 [6]
12.94±0.46 [11]

3700 Geowilliams, provisional designation 1984 UL2, is a stony background asteroid from the inner regions of the asteroid belt, approximately 8 kilometers (5 miles) in diameter. It was discovered on 23 October 1984, by American astronomer couple Carolyn and Eugene Shoemaker at the Palomar Observatory in California, United States. [1] The S k-subtype has a rotation period of 14.38 hours. It was named for Australian geologist George E. Williams. [1]

Orbit and classification

Geowilliams is a non- family asteroid from the main belt's background population. [4] It orbits the Sun in the inner main-belt at a distance of 1.9–3.0  AU once every 3 years and 9 months (1,371 days; semi-major axis of 2.41 AU). Its orbit has an eccentricity of 0.23 and an inclination of 12 ° with respect to the ecliptic. [2] The body's observation arc begins with its first observation as 1973 YF2 at Crimea-Nauchnij in December 1973, almost 11 years prior to its official discovery observation at Palomar. [1]

Physical characteristics

In the SMASS classification, Geowilliams is a Sk-subtype that transitions between the common S-type asteroid and the K-type asteroid. The latter spectral type is often found among members of the Eos family. [2]

Rotation period

In January 2008, a rotational lightcurve of Geowilliams was obtained from photometric observations by Australian amateur astronomer David Higgins at the Hunters Hill Observatory ( E14). Lightcurve analysis gave a well-defined rotation period of 14.387 hours with a brightness variation of 0.40 magnitude ( U=3). [a] In July 2010, a similar period of 14.383 hours and an amplitude of 0.42 was measured at the Palomar Transient Factory in California ( U=2). [10]

Diameter and albedo

According to the surveys carried out by the Japanese Akari satellite and the NEOWISE mission of NASA's Wide-field Infrared Survey Explorer, Geowilliams measures between 7.712 and 8.82 kilometers in diameter and its surface has an albedo between 0.227 and 0.297. [5] [6] [7] [8] [9]

The Collaborative Asteroid Lightcurve Link assumes a standard albedo for a stony asteroid of 0.20, and calculates a diameter of 8.97 kilometers based on an absolute magnitude of 12.6. [3]

Naming

This minor planet was named after Australian geologist George E. Williams who discovered the Acraman crater when he worked for BHP in South Australia. The old 90-kilometer impact structure is one of the largest meteorite impact craters known on Earth and the largest one on the Australian continent. [1] The official naming citation was published by the Minor Planet Center on 2 February 1988 ( M.P.C. 12810). [12]

Notes

  1. ^ a b David Higgins (2011): rotation period 14.387±0.003 hours with a brightness amplitude of 0.40±0.02 mag. Quality code is 3. Summary figures for (3700) Geowilliams at the LCDB and archived website of the Hunters Hill Observatory by David Higgins.

References

  1. ^ a b c d e f g "3700 Geowilliams (1984 UL2)". Minor Planet Center. Retrieved 14 May 2018.
  2. ^ a b c d e f "JPL Small-Body Database Browser: 3700 Geowilliams (1984 UL2)" (2017-07-04 last obs.). Jet Propulsion Laboratory. Retrieved 14 May 2018.
  3. ^ a b c d e "LCDB Data for (3700) Geowilliams". Asteroid Lightcurve Database (LCDB). Retrieved 14 May 2018.
  4. ^ a b "Asteroid 3700 Geowilliams – Proper Elements". AstDyS-2, Asteroids – Dynamic Site. Retrieved 29 October 2019.
  5. ^ a b c d Mainzer, A.; Grav, T.; Masiero, J.; Hand, E.; Bauer, J.; Tholen, D.; et al. (November 2011). "NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results". The Astrophysical Journal. 741 (2): 25. arXiv: 1109.6407. Bibcode: 2011ApJ...741...90M. doi: 10.1088/0004-637X/741/2/90. S2CID  35447010. ( catalog)
  6. ^ a b c d Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T.; et al. (September 2016). "NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos". The Astronomical Journal. 152 (3): 12. arXiv: 1606.08923. Bibcode: 2016AJ....152...63N. doi: 10.3847/0004-6256/152/3/63.
  7. ^ a b Masiero, Joseph R.; Grav, T.; Mainzer, A. K.; Nugent, C. R.; Bauer, J. M.; Stevenson, R.; et al. (August 2014). "Main-belt Asteroids with WISE/NEOWISE: Near-infrared Albedos". The Astrophysical Journal. 791 (2): 11. arXiv: 1406.6645. Bibcode: 2014ApJ...791..121M. doi: 10.1088/0004-637X/791/2/121. S2CID  119293330.
  8. ^ a b c d Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Nugent, C.; et al. (November 2012). "Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids". The Astrophysical Journal Letters. 759 (1): 5. arXiv: 1209.5794. Bibcode: 2012ApJ...759L...8M. doi: 10.1088/2041-8205/759/1/L8. S2CID  46350317.
  9. ^ a b c d Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey". Publications of the Astronomical Society of Japan. 63 (5): 1117–1138. Bibcode: 2011PASJ...63.1117U. doi: 10.1093/pasj/63.5.1117. ( online, AcuA catalog p. 153)
  10. ^ a b c Waszczak, Adam; Chang, Chan-Kao; Ofek, Eran O.; Laher, Russ; Masci, Frank; Levitan, David; et al. (September 2015). "Asteroid Light Curves from the Palomar Transient Factory Survey: Rotation Periods and Phase Functions from Sparse Photometry". The Astronomical Journal. 150 (3): 35. arXiv: 1504.04041. Bibcode: 2015AJ....150...75W. doi: 10.1088/0004-6256/150/3/75. S2CID  8342929.
  11. ^ Veres, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce; et al. (November 2015). "Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results". Icarus. 261: 34–47. arXiv: 1506.00762. Bibcode: 2015Icar..261...34V. doi: 10.1016/j.icarus.2015.08.007. S2CID  53493339.
  12. ^ "MPC/MPO/MPS Archive". Minor Planet Center. Retrieved 14 May 2018.
From Wikipedia, the free encyclopedia
(Redirected from Geowilliams)

3700 Geowilliams
Discovery  [1]
Discovered by C. Shoemaker
E. Shoemaker
Discovery site Palomar Obs.
Discovery date23 October 1984
Designations
(3700) Geowilliams
Named after
George E. Williams [1]
(Australian geologist)
1984 UL2 · 1973 YF2
1977 UJ
main-belt [1] [2] · ( inner) [3]
background [4]
Orbital characteristics [2]
Epoch 23 March 2018 ( JD 2458200.5)
Uncertainty parameter 0
Observation arc43.54 yr (15,902 d)
Aphelion2.9602 AU
Perihelion1.8695 AU
2.4148 AU
Eccentricity0.2258
3.75 yr (1,371 d)
293.18 °
0° 15m 45.36s / day
Inclination12.121°
289.16°
153.06°
Physical characteristics
7.712±0.130  km [5]
7.74±1.83 km [6]
7.753±0.152 km [7]
8.70±0.30 km [8]
8.82±0.86 km [9]
8.97 km (calculated) [3]
14.383±0.0183  h [10]
14.387±0.003 h [a]
0.20 (assumed) [3]
0.227±0.045 [9]
0.23±0.13 [6]
0.233±0.033 [8]
0.2970±0.0516 [5]
SMASS = S k [2]
12.443±0.002 (R) [10]
12.50 [5] [8] [9]
12.6 [2] [3]
12.89 [6]
12.94±0.46 [11]

3700 Geowilliams, provisional designation 1984 UL2, is a stony background asteroid from the inner regions of the asteroid belt, approximately 8 kilometers (5 miles) in diameter. It was discovered on 23 October 1984, by American astronomer couple Carolyn and Eugene Shoemaker at the Palomar Observatory in California, United States. [1] The S k-subtype has a rotation period of 14.38 hours. It was named for Australian geologist George E. Williams. [1]

Orbit and classification

Geowilliams is a non- family asteroid from the main belt's background population. [4] It orbits the Sun in the inner main-belt at a distance of 1.9–3.0  AU once every 3 years and 9 months (1,371 days; semi-major axis of 2.41 AU). Its orbit has an eccentricity of 0.23 and an inclination of 12 ° with respect to the ecliptic. [2] The body's observation arc begins with its first observation as 1973 YF2 at Crimea-Nauchnij in December 1973, almost 11 years prior to its official discovery observation at Palomar. [1]

Physical characteristics

In the SMASS classification, Geowilliams is a Sk-subtype that transitions between the common S-type asteroid and the K-type asteroid. The latter spectral type is often found among members of the Eos family. [2]

Rotation period

In January 2008, a rotational lightcurve of Geowilliams was obtained from photometric observations by Australian amateur astronomer David Higgins at the Hunters Hill Observatory ( E14). Lightcurve analysis gave a well-defined rotation period of 14.387 hours with a brightness variation of 0.40 magnitude ( U=3). [a] In July 2010, a similar period of 14.383 hours and an amplitude of 0.42 was measured at the Palomar Transient Factory in California ( U=2). [10]

Diameter and albedo

According to the surveys carried out by the Japanese Akari satellite and the NEOWISE mission of NASA's Wide-field Infrared Survey Explorer, Geowilliams measures between 7.712 and 8.82 kilometers in diameter and its surface has an albedo between 0.227 and 0.297. [5] [6] [7] [8] [9]

The Collaborative Asteroid Lightcurve Link assumes a standard albedo for a stony asteroid of 0.20, and calculates a diameter of 8.97 kilometers based on an absolute magnitude of 12.6. [3]

Naming

This minor planet was named after Australian geologist George E. Williams who discovered the Acraman crater when he worked for BHP in South Australia. The old 90-kilometer impact structure is one of the largest meteorite impact craters known on Earth and the largest one on the Australian continent. [1] The official naming citation was published by the Minor Planet Center on 2 February 1988 ( M.P.C. 12810). [12]

Notes

  1. ^ a b David Higgins (2011): rotation period 14.387±0.003 hours with a brightness amplitude of 0.40±0.02 mag. Quality code is 3. Summary figures for (3700) Geowilliams at the LCDB and archived website of the Hunters Hill Observatory by David Higgins.

References

  1. ^ a b c d e f g "3700 Geowilliams (1984 UL2)". Minor Planet Center. Retrieved 14 May 2018.
  2. ^ a b c d e f "JPL Small-Body Database Browser: 3700 Geowilliams (1984 UL2)" (2017-07-04 last obs.). Jet Propulsion Laboratory. Retrieved 14 May 2018.
  3. ^ a b c d e "LCDB Data for (3700) Geowilliams". Asteroid Lightcurve Database (LCDB). Retrieved 14 May 2018.
  4. ^ a b "Asteroid 3700 Geowilliams – Proper Elements". AstDyS-2, Asteroids – Dynamic Site. Retrieved 29 October 2019.
  5. ^ a b c d Mainzer, A.; Grav, T.; Masiero, J.; Hand, E.; Bauer, J.; Tholen, D.; et al. (November 2011). "NEOWISE Studies of Spectrophotometrically Classified Asteroids: Preliminary Results". The Astrophysical Journal. 741 (2): 25. arXiv: 1109.6407. Bibcode: 2011ApJ...741...90M. doi: 10.1088/0004-637X/741/2/90. S2CID  35447010. ( catalog)
  6. ^ a b c d Nugent, C. R.; Mainzer, A.; Bauer, J.; Cutri, R. M.; Kramer, E. A.; Grav, T.; et al. (September 2016). "NEOWISE Reactivation Mission Year Two: Asteroid Diameters and Albedos". The Astronomical Journal. 152 (3): 12. arXiv: 1606.08923. Bibcode: 2016AJ....152...63N. doi: 10.3847/0004-6256/152/3/63.
  7. ^ a b Masiero, Joseph R.; Grav, T.; Mainzer, A. K.; Nugent, C. R.; Bauer, J. M.; Stevenson, R.; et al. (August 2014). "Main-belt Asteroids with WISE/NEOWISE: Near-infrared Albedos". The Astrophysical Journal. 791 (2): 11. arXiv: 1406.6645. Bibcode: 2014ApJ...791..121M. doi: 10.1088/0004-637X/791/2/121. S2CID  119293330.
  8. ^ a b c d Masiero, Joseph R.; Mainzer, A. K.; Grav, T.; Bauer, J. M.; Cutri, R. M.; Nugent, C.; et al. (November 2012). "Preliminary Analysis of WISE/NEOWISE 3-Band Cryogenic and Post-cryogenic Observations of Main Belt Asteroids". The Astrophysical Journal Letters. 759 (1): 5. arXiv: 1209.5794. Bibcode: 2012ApJ...759L...8M. doi: 10.1088/2041-8205/759/1/L8. S2CID  46350317.
  9. ^ a b c d Usui, Fumihiko; Kuroda, Daisuke; Müller, Thomas G.; Hasegawa, Sunao; Ishiguro, Masateru; Ootsubo, Takafumi; et al. (October 2011). "Asteroid Catalog Using Akari: AKARI/IRC Mid-Infrared Asteroid Survey". Publications of the Astronomical Society of Japan. 63 (5): 1117–1138. Bibcode: 2011PASJ...63.1117U. doi: 10.1093/pasj/63.5.1117. ( online, AcuA catalog p. 153)
  10. ^ a b c Waszczak, Adam; Chang, Chan-Kao; Ofek, Eran O.; Laher, Russ; Masci, Frank; Levitan, David; et al. (September 2015). "Asteroid Light Curves from the Palomar Transient Factory Survey: Rotation Periods and Phase Functions from Sparse Photometry". The Astronomical Journal. 150 (3): 35. arXiv: 1504.04041. Bibcode: 2015AJ....150...75W. doi: 10.1088/0004-6256/150/3/75. S2CID  8342929.
  11. ^ Veres, Peter; Jedicke, Robert; Fitzsimmons, Alan; Denneau, Larry; Granvik, Mikael; Bolin, Bryce; et al. (November 2015). "Absolute magnitudes and slope parameters for 250,000 asteroids observed by Pan-STARRS PS1 - Preliminary results". Icarus. 261: 34–47. arXiv: 1506.00762. Bibcode: 2015Icar..261...34V. doi: 10.1016/j.icarus.2015.08.007. S2CID  53493339.
  12. ^ "MPC/MPO/MPS Archive". Minor Planet Center. Retrieved 14 May 2018.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook