From Wikipedia, the free encyclopedia
A fluctuation scattering experiment collects a series of X-ray diffraction snapshots of multiple proteins (or other particles) in solution. An ultrabright X-ray laser provides fast snapshots, containing features that are angularly non-isotropic (speckle), ultimately resulting in a detailed understanding of the structure of the sample.

Fluctuation X-ray scattering (FXS) [1] [2] is an X-ray scattering technique similar to small-angle X-ray scattering (SAXS), but is performed using X-ray exposures below sample rotational diffusion times. This technique, ideally performed with an ultra-bright X-ray light source, such as a free electron laser, results in data containing significantly more information as compared to traditional scattering methods. [3]

FXS can be used for the determination of (large) macromolecular structures, [4] but has also found applications in the characterization of metallic nanostructures, [5] magnetic domains [6] and colloids. [7]

The most general setup of FXS is a situation in which fast diffraction snapshots of models are taken which over a long time period undergo a full 3D rotation. A particularly interesting subclass of FXS is the 2D case where the sample can be viewed as a 2-dimensional system with particles exhibiting random in-plane rotations. In this case, an analytical solution exists relation the FXS data to the structure. [8] In absence of symmetry constraints, no analytical data-to-structure relation for the 3D case is available, although various iterative procedures have been developed.

Overview

An FXS experiment consists of collecting a large number of X-ray snapshots of samples in a different random configuration. By computing angular intensity correlations for each image and averaging these over all snapshots, the average 2-point correlation function can be subjected to a finite Legendre transform, resulting in a collection of so-called Bl(q,q') curves, where l is the Legendre polynomial order and q / q' the momentum transfer or inverse resolution of the data.

Mathematical background

A visual representation of mathematical relations in Fluctuation X-ray Scattering illustrates the relation between the electron density, scattering amplitude, diffracted intensities and angular correlation data. Image modified from [3]

Given a particle with density distribution , the associated three-dimensional complex structure factor is obtained via a Fourier transform

The intensity function corresponding to the complex structure factor is equal to

where denotes complex conjugation. Expressing as a spherical harmonics series, one obtains

The average angular intensity correlation as obtained from many diffraction images is then

It can be shown that

where

with equal to the X-ray wavelength used, and

is a Legendre Polynome. The set of curves can be obtained via a finite Legendre transform from the observed autocorrelation and are thus directly related to the structure via the above expressions.

Additional relations can be obtained by obtaining the real space autocorrelation of the density:

A subsequent expansion of in a spherical harmonics series, results in radial expansion coefficients that are related to the intensity function via a Hankel transform

A concise overview of these relations has been published elsewhere [1] [3]

Basic relations

A generalized Guinier law describing the low resolution behavior of the data can be derived from the above expressions:

Values of and can be obtained from a least squares analyses of the low resolution data. [3]

The falloff of the data at higher resolution is governed by Porod laws. It can be shown [3] that the Porod laws derived for SAXS/WAXS data hold here as well, ultimately resulting in:

for particles with well-defined interfaces.

Structure determination from FXS data

Currently, there are three routes to determine molecular structure from its corresponding FXS data.

Algebraic phasing

By assuming a specific symmetric configuration of the final model, relations between expansion coefficients describing the scattering pattern of the underlying species can be exploited to determine a diffraction pattern consistent with the measure correlation data. This approach has been shown to be feasible for icosahedral [9] and helical models. [10]

Reverse Monte Carlo

By representing the to-be-determined structure as an assembly of independent scattering voxels, structure determination from FXS data is transformed into a global optimisation problem and can be solved using simulated annealing. [3]

Multi-tiered iterative phasing

The multi-tiered iterative phasing algorithm (M-TIP) overcomes convergence issues associated with the reverse Monte Carlo procedure and eliminates the need to use or derive specific symmetry constraints as needed by the Algebraic method. The M-TIP algorithm utilizes non-trivial projections that modifies a set of trial structure factors such that corresponding match observed values. The real-space image , as obtained by a Fourier Transform of is subsequently modified to enforce symmetry, positivity and compactness. The M-TIP procedure can start from a random point and has good convergence properties. [11]

References

  1. ^ a b Kam, Zvi (1977). "Determination of Macromolecular Structure in Solution by Spatial Correlation of Scattering Fluctuations". Macromolecules. 10 (5): 927–934. Bibcode: 1977MaMol..10..927K. doi: 10.1021/ma60059a009.
  2. ^ Kam, Z.; M. H. Koch, and J. Bordas (1981). "Fluctuation x-ray scattering from biological particles in frozen solution by using synchrotron radiation". Proceedings of the National Academy of Sciences of the United States of America. 78 (6): 3559–3562. Bibcode: 1981PNAS...78.3559K. doi: 10.1073/pnas.78.6.3559. PMC  319609. PMID  6943555.
  3. ^ a b c d e f Malmerberg, Erik; Cheryl A. Kerfeld and Petrus H. Zwart (2015). "Operational properties of fluctuation X-ray scattering data". IUCrJ. 2 (3): 309–316. doi: 10.1107/S2052252515002535. PMC  4420540. PMID  25995839.
  4. ^ Liu, Haiguang; Poon, Billy K.; Saldin, Dilano K.; Spence, John C. H.; Zwart, Peter H. (2013). "Three-dimensional single-particle imaging using angular correlations from X-ray laser data". Acta Crystallographica Section A. 69 (4): 365–373. doi: 10.1107/S0108767313006016. ISSN  0108-7673. PMID  23778093.
  5. ^ Chen, Gang; Modestino, Miguel A.; Poon, Billy K.; Schirotzek, André; Marchesini, Stefano; Segalman, Rachel A.; Hexemer, Alexander; Zwart, Peter H. (2012). "Structure determination of Pt-coated Au dumbbellsviafluctuation X-ray scattering". Journal of Synchrotron Radiation. 19 (5): 695–700. doi: 10.1107/S0909049512023801. ISSN  0909-0495. PMID  22898947.
  6. ^ Su, Run; Seu, Keoki A.; Parks, Daniel; Kan, Jimmy J.; Fullerton, Eric E.; Roy, Sujoy; Kevan, Stephen D. (2011). "Emergent Rotational Symmetries in Disordered Magnetic Domain Patterns". Physical Review Letters. 107 (25): 257204. Bibcode: 2011PhRvL.107y7204S. doi: 10.1103/PhysRevLett.107.257204. ISSN  0031-9007. PMID  22243108.
  7. ^ Wochner, Peter; Gutt, Christian; Autenrieth, Tina; Demmer, Thomas; Bugaev, Volodymyr; Ortiz, Alejandro Díaz; Duri, Agnès; Zontone, Federico; Grübel, Gerhard; Dosch, Helmut (2009). "X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter". Proceedings of the National Academy of Sciences. 106 (28): 11511–11514. Bibcode: 2009PNAS..10611511W. doi: 10.1073/pnas.0905337106. ISSN  0027-8424. PMC  2703671. PMID  20716512.
  8. ^ Kurta, R. P.; Altarelli, M.; Weckert, E.; Vartanyants, I. A. (2012). "X-ray cross-correlation analysis applied to disordered two-dimensional systems". Physical Review B. 85 (18): 184204. arXiv: 1202.6253. Bibcode: 2012PhRvB..85r4204K. doi: 10.1103/PhysRevB.85.184204. ISSN  1098-0121. S2CID  118605221.
  9. ^ Saldin, D. K.; H.-C. Poon, P. Schwander, M. Uddin, and M. Schmidt (2011). "Reconstructing an icosahedral virus from single-particle diffraction experiments". Optics Express. 19 (18): 17318–17335. arXiv: 1107.5212. Bibcode: 2011OExpr..1917318S. doi: 10.1364/OE.19.017318. PMID  21935096. S2CID  17080094.{{ cite journal}}: CS1 maint: multiple names: authors list ( link)
  10. ^ Poon, H.-C.; P. Schwander, M. Uddin, & D. K. Saldin (2011). "Fiber Diffraction without Fibers" (PDF). Physical Review Letters. 19 (18): 17318–17335. Bibcode: 2013PhRvL.110z5505P. doi: 10.1103/PhysRevLett.110.265505. PMID  23848897.{{ cite journal}}: CS1 maint: multiple names: authors list ( link)
  11. ^ Donatelli, Jeffrey J.; Peter H. Zwart, and James A. Sethian (2015). "Iterative phasing for fluctuation X-ray scattering" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 112 (33): 10286–10291. Bibcode: 2015PNAS..11210286D. doi: 10.1073/pnas.1513738112. PMC  4547282. PMID  26240348. early edition online ahead of publication
From Wikipedia, the free encyclopedia
A fluctuation scattering experiment collects a series of X-ray diffraction snapshots of multiple proteins (or other particles) in solution. An ultrabright X-ray laser provides fast snapshots, containing features that are angularly non-isotropic (speckle), ultimately resulting in a detailed understanding of the structure of the sample.

Fluctuation X-ray scattering (FXS) [1] [2] is an X-ray scattering technique similar to small-angle X-ray scattering (SAXS), but is performed using X-ray exposures below sample rotational diffusion times. This technique, ideally performed with an ultra-bright X-ray light source, such as a free electron laser, results in data containing significantly more information as compared to traditional scattering methods. [3]

FXS can be used for the determination of (large) macromolecular structures, [4] but has also found applications in the characterization of metallic nanostructures, [5] magnetic domains [6] and colloids. [7]

The most general setup of FXS is a situation in which fast diffraction snapshots of models are taken which over a long time period undergo a full 3D rotation. A particularly interesting subclass of FXS is the 2D case where the sample can be viewed as a 2-dimensional system with particles exhibiting random in-plane rotations. In this case, an analytical solution exists relation the FXS data to the structure. [8] In absence of symmetry constraints, no analytical data-to-structure relation for the 3D case is available, although various iterative procedures have been developed.

Overview

An FXS experiment consists of collecting a large number of X-ray snapshots of samples in a different random configuration. By computing angular intensity correlations for each image and averaging these over all snapshots, the average 2-point correlation function can be subjected to a finite Legendre transform, resulting in a collection of so-called Bl(q,q') curves, where l is the Legendre polynomial order and q / q' the momentum transfer or inverse resolution of the data.

Mathematical background

A visual representation of mathematical relations in Fluctuation X-ray Scattering illustrates the relation between the electron density, scattering amplitude, diffracted intensities and angular correlation data. Image modified from [3]

Given a particle with density distribution , the associated three-dimensional complex structure factor is obtained via a Fourier transform

The intensity function corresponding to the complex structure factor is equal to

where denotes complex conjugation. Expressing as a spherical harmonics series, one obtains

The average angular intensity correlation as obtained from many diffraction images is then

It can be shown that

where

with equal to the X-ray wavelength used, and

is a Legendre Polynome. The set of curves can be obtained via a finite Legendre transform from the observed autocorrelation and are thus directly related to the structure via the above expressions.

Additional relations can be obtained by obtaining the real space autocorrelation of the density:

A subsequent expansion of in a spherical harmonics series, results in radial expansion coefficients that are related to the intensity function via a Hankel transform

A concise overview of these relations has been published elsewhere [1] [3]

Basic relations

A generalized Guinier law describing the low resolution behavior of the data can be derived from the above expressions:

Values of and can be obtained from a least squares analyses of the low resolution data. [3]

The falloff of the data at higher resolution is governed by Porod laws. It can be shown [3] that the Porod laws derived for SAXS/WAXS data hold here as well, ultimately resulting in:

for particles with well-defined interfaces.

Structure determination from FXS data

Currently, there are three routes to determine molecular structure from its corresponding FXS data.

Algebraic phasing

By assuming a specific symmetric configuration of the final model, relations between expansion coefficients describing the scattering pattern of the underlying species can be exploited to determine a diffraction pattern consistent with the measure correlation data. This approach has been shown to be feasible for icosahedral [9] and helical models. [10]

Reverse Monte Carlo

By representing the to-be-determined structure as an assembly of independent scattering voxels, structure determination from FXS data is transformed into a global optimisation problem and can be solved using simulated annealing. [3]

Multi-tiered iterative phasing

The multi-tiered iterative phasing algorithm (M-TIP) overcomes convergence issues associated with the reverse Monte Carlo procedure and eliminates the need to use or derive specific symmetry constraints as needed by the Algebraic method. The M-TIP algorithm utilizes non-trivial projections that modifies a set of trial structure factors such that corresponding match observed values. The real-space image , as obtained by a Fourier Transform of is subsequently modified to enforce symmetry, positivity and compactness. The M-TIP procedure can start from a random point and has good convergence properties. [11]

References

  1. ^ a b Kam, Zvi (1977). "Determination of Macromolecular Structure in Solution by Spatial Correlation of Scattering Fluctuations". Macromolecules. 10 (5): 927–934. Bibcode: 1977MaMol..10..927K. doi: 10.1021/ma60059a009.
  2. ^ Kam, Z.; M. H. Koch, and J. Bordas (1981). "Fluctuation x-ray scattering from biological particles in frozen solution by using synchrotron radiation". Proceedings of the National Academy of Sciences of the United States of America. 78 (6): 3559–3562. Bibcode: 1981PNAS...78.3559K. doi: 10.1073/pnas.78.6.3559. PMC  319609. PMID  6943555.
  3. ^ a b c d e f Malmerberg, Erik; Cheryl A. Kerfeld and Petrus H. Zwart (2015). "Operational properties of fluctuation X-ray scattering data". IUCrJ. 2 (3): 309–316. doi: 10.1107/S2052252515002535. PMC  4420540. PMID  25995839.
  4. ^ Liu, Haiguang; Poon, Billy K.; Saldin, Dilano K.; Spence, John C. H.; Zwart, Peter H. (2013). "Three-dimensional single-particle imaging using angular correlations from X-ray laser data". Acta Crystallographica Section A. 69 (4): 365–373. doi: 10.1107/S0108767313006016. ISSN  0108-7673. PMID  23778093.
  5. ^ Chen, Gang; Modestino, Miguel A.; Poon, Billy K.; Schirotzek, André; Marchesini, Stefano; Segalman, Rachel A.; Hexemer, Alexander; Zwart, Peter H. (2012). "Structure determination of Pt-coated Au dumbbellsviafluctuation X-ray scattering". Journal of Synchrotron Radiation. 19 (5): 695–700. doi: 10.1107/S0909049512023801. ISSN  0909-0495. PMID  22898947.
  6. ^ Su, Run; Seu, Keoki A.; Parks, Daniel; Kan, Jimmy J.; Fullerton, Eric E.; Roy, Sujoy; Kevan, Stephen D. (2011). "Emergent Rotational Symmetries in Disordered Magnetic Domain Patterns". Physical Review Letters. 107 (25): 257204. Bibcode: 2011PhRvL.107y7204S. doi: 10.1103/PhysRevLett.107.257204. ISSN  0031-9007. PMID  22243108.
  7. ^ Wochner, Peter; Gutt, Christian; Autenrieth, Tina; Demmer, Thomas; Bugaev, Volodymyr; Ortiz, Alejandro Díaz; Duri, Agnès; Zontone, Federico; Grübel, Gerhard; Dosch, Helmut (2009). "X-ray cross correlation analysis uncovers hidden local symmetries in disordered matter". Proceedings of the National Academy of Sciences. 106 (28): 11511–11514. Bibcode: 2009PNAS..10611511W. doi: 10.1073/pnas.0905337106. ISSN  0027-8424. PMC  2703671. PMID  20716512.
  8. ^ Kurta, R. P.; Altarelli, M.; Weckert, E.; Vartanyants, I. A. (2012). "X-ray cross-correlation analysis applied to disordered two-dimensional systems". Physical Review B. 85 (18): 184204. arXiv: 1202.6253. Bibcode: 2012PhRvB..85r4204K. doi: 10.1103/PhysRevB.85.184204. ISSN  1098-0121. S2CID  118605221.
  9. ^ Saldin, D. K.; H.-C. Poon, P. Schwander, M. Uddin, and M. Schmidt (2011). "Reconstructing an icosahedral virus from single-particle diffraction experiments". Optics Express. 19 (18): 17318–17335. arXiv: 1107.5212. Bibcode: 2011OExpr..1917318S. doi: 10.1364/OE.19.017318. PMID  21935096. S2CID  17080094.{{ cite journal}}: CS1 maint: multiple names: authors list ( link)
  10. ^ Poon, H.-C.; P. Schwander, M. Uddin, & D. K. Saldin (2011). "Fiber Diffraction without Fibers" (PDF). Physical Review Letters. 19 (18): 17318–17335. Bibcode: 2013PhRvL.110z5505P. doi: 10.1103/PhysRevLett.110.265505. PMID  23848897.{{ cite journal}}: CS1 maint: multiple names: authors list ( link)
  11. ^ Donatelli, Jeffrey J.; Peter H. Zwart, and James A. Sethian (2015). "Iterative phasing for fluctuation X-ray scattering" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 112 (33): 10286–10291. Bibcode: 2015PNAS..11210286D. doi: 10.1073/pnas.1513738112. PMC  4547282. PMID  26240348. early edition online ahead of publication

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook