From Wikipedia, the free encyclopedia
The FIDA principle: A narrow indicator zone is introduced into a capillary under hydrodynamic flow. When the indicator is not bound, a narrow peak is observed at the detector. However, when the indicator is bound by the target analyte, the apparent size increases and a broader peak is observed. This change in size can be used for determine the analyte concentration and interaction [1] - Published by The Royal Society of Chemistry.

Flow-induced dispersion analysis (FIDA) is an immobilization-free technology used for characterization and quantification of biomolecular interaction and protein concentration under native conditions. [1] [2] [3] In the FIDA assay, the size of a ligand (indicator) with affinity to the target analyte is measured. When the indicator interacts with the analyte the apparent size increases and this change in size can be used to determine the analyte concentration and interaction. [1] [2] [4] Additionally, the hydrodynamic radius of the analyte-indicator complex is obtained. A FIDA assay is typically completed in minutes and only requires a modest sample consumption of a few μL. [1]

Applications

Principle

The FIDA principle is based on measuring the change in the apparent size ( diffusivity) of a selective indicator interacting with the analyte molecule. [1] [2] [4] The apparent indicator size is measured by Taylor dispersion analysis in a capillary under hydrodynamic flow. [9]

References

  1. ^ a b c d e Poulsen, Nicklas N.; Andersen, Nina Z.; Østergaard, Jesper; Zhuang, Guisheng; Petersen, Nickolaj J.; Jensen, Henrik (2015-06-15). "Flow induced dispersion analysis rapidly quantifies proteins in human plasma samples". The Analyst. 140 (13): 4365–4369. Bibcode: 2015Ana...140.4365P. doi: 10.1039/c5an00697j. ISSN  1364-5528. PMID  26031223.
  2. ^ a b c Morten E, Pedersen; Østergaard, Jesper; Jensen, Henrik (2019). "Flow-Induced Dispersion Analysis (FIDA) for Protein Quantification and Characterization". In Phillips, Terry M. (ed.). Clinical Applications of Capillary Electrophoresis: Methods and Protocols. Methods in Molecular Biology. Vol. 1972. New York, NY: Springer New York. pp. 109–123. doi: 10.1007/978-1-4939-9213-3. ISBN  9781493992126. S2CID  23665803.
  3. ^ Pedersen, Morten E.; Gad, Sarah I.; Østergaard, Jesper; Jensen, Henrik (2019-04-05). "Protein Characterization in 3D: Size, Folding, and Functional Assessment in a Unified Approach". Analytical Chemistry. 91 (8): 4975–4979. doi: 10.1021/acs.analchem.9b00537. ISSN  0003-2700. PMID  30916933. S2CID  85544070.
  4. ^ a b Jensen, Henrik; Østergaard, Jesper (2010-03-31). "Flow Induced Dispersion Analysis Quantifies Noncovalent Interactions in Nanoliter Samples". Journal of the American Chemical Society. 132 (12): 4070–4071. doi: 10.1021/ja100484d. ISSN  0002-7863. PMID  20201527.
  5. ^ Cholak, Ersoy; Bugge, Katrine; Khondker, Adree; Gauger, Kimmie; Pedraz-Cuesta, Elena; Pedersen, Morten Enghave; Bucciarelli, Saskia; Vestergaard, Bente; Pedersen, Stine F.; Rheinstädter, Maikel C.; Langkilde, Annette Eva (2020). "Avidity within the N-terminal anchor drives α-synuclein membrane interaction and insertion". The FASEB Journal. 34 (6): 7462–7482. doi: 10.1096/fj.202000107R. ISSN  1530-6860. PMID  32277854. S2CID  215742011.
  6. ^ Poulsen, Nicklas N.; Pedersen, Morten E.; Østergaard, Jesper; Petersen, Nickolaj J.; Nielsen, Christoffer T.; Heegaard, Niels H. H.; Jensen, Henrik (2016-09-20). "Flow-Induced Dispersion Analysis for Probing Anti-dsDNA Antibody Binding Heterogeneity in Systemic Lupus Erythematosus Patients: Toward a New Approach for Diagnosis and Patient Stratification". Analytical Chemistry. 88 (18): 9056–9061. doi: 10.1021/acs.analchem.6b01741. ISSN  0003-2700. PMID  27571264.
  7. ^ Pedersen, Morten E.; Østergaard, Jesper; Jensen, Henrik (2020-04-28). "In-Solution IgG Titer Determination in Fermentation Broth Using Affibodies and Flow-Induced Dispersion Analysis". ACS Omega. 5 (18): 10519–10524. doi: 10.1021/acsomega.0c00791. ISSN  2470-1343. PMC  7227040. PMID  32426609.
  8. ^ Pedersen, Morten E.; Haegebaert, Ragna M. S.; Østergaard, Jesper; Jensen, Henrik (2021-02-26). "Size-based characterization of adalimumab and TNF-α interactions using flow induced dispersion analysis: assessment of avidity-stabilized multiple bound species". Scientific Reports. 11 (1): 4754. Bibcode: 2021NatSR..11.4754P. doi: 10.1038/s41598-021-84113-z. ISSN  2045-2322. PMC  7910425. PMID  33637878.
  9. ^ Taylor, Sir Geoffrey; S, F. R. (1953-08-25). "Dispersion of soluble matter in solvent flowing slowly through a tube". Proc. R. Soc. Lond. A. 219 (1137): 186–203. Bibcode: 1953RSPSA.219..186T. doi: 10.1098/rspa.1953.0139. ISSN  0080-4630. S2CID  97372019.
From Wikipedia, the free encyclopedia
The FIDA principle: A narrow indicator zone is introduced into a capillary under hydrodynamic flow. When the indicator is not bound, a narrow peak is observed at the detector. However, when the indicator is bound by the target analyte, the apparent size increases and a broader peak is observed. This change in size can be used for determine the analyte concentration and interaction [1] - Published by The Royal Society of Chemistry.

Flow-induced dispersion analysis (FIDA) is an immobilization-free technology used for characterization and quantification of biomolecular interaction and protein concentration under native conditions. [1] [2] [3] In the FIDA assay, the size of a ligand (indicator) with affinity to the target analyte is measured. When the indicator interacts with the analyte the apparent size increases and this change in size can be used to determine the analyte concentration and interaction. [1] [2] [4] Additionally, the hydrodynamic radius of the analyte-indicator complex is obtained. A FIDA assay is typically completed in minutes and only requires a modest sample consumption of a few μL. [1]

Applications

Principle

The FIDA principle is based on measuring the change in the apparent size ( diffusivity) of a selective indicator interacting with the analyte molecule. [1] [2] [4] The apparent indicator size is measured by Taylor dispersion analysis in a capillary under hydrodynamic flow. [9]

References

  1. ^ a b c d e Poulsen, Nicklas N.; Andersen, Nina Z.; Østergaard, Jesper; Zhuang, Guisheng; Petersen, Nickolaj J.; Jensen, Henrik (2015-06-15). "Flow induced dispersion analysis rapidly quantifies proteins in human plasma samples". The Analyst. 140 (13): 4365–4369. Bibcode: 2015Ana...140.4365P. doi: 10.1039/c5an00697j. ISSN  1364-5528. PMID  26031223.
  2. ^ a b c Morten E, Pedersen; Østergaard, Jesper; Jensen, Henrik (2019). "Flow-Induced Dispersion Analysis (FIDA) for Protein Quantification and Characterization". In Phillips, Terry M. (ed.). Clinical Applications of Capillary Electrophoresis: Methods and Protocols. Methods in Molecular Biology. Vol. 1972. New York, NY: Springer New York. pp. 109–123. doi: 10.1007/978-1-4939-9213-3. ISBN  9781493992126. S2CID  23665803.
  3. ^ Pedersen, Morten E.; Gad, Sarah I.; Østergaard, Jesper; Jensen, Henrik (2019-04-05). "Protein Characterization in 3D: Size, Folding, and Functional Assessment in a Unified Approach". Analytical Chemistry. 91 (8): 4975–4979. doi: 10.1021/acs.analchem.9b00537. ISSN  0003-2700. PMID  30916933. S2CID  85544070.
  4. ^ a b Jensen, Henrik; Østergaard, Jesper (2010-03-31). "Flow Induced Dispersion Analysis Quantifies Noncovalent Interactions in Nanoliter Samples". Journal of the American Chemical Society. 132 (12): 4070–4071. doi: 10.1021/ja100484d. ISSN  0002-7863. PMID  20201527.
  5. ^ Cholak, Ersoy; Bugge, Katrine; Khondker, Adree; Gauger, Kimmie; Pedraz-Cuesta, Elena; Pedersen, Morten Enghave; Bucciarelli, Saskia; Vestergaard, Bente; Pedersen, Stine F.; Rheinstädter, Maikel C.; Langkilde, Annette Eva (2020). "Avidity within the N-terminal anchor drives α-synuclein membrane interaction and insertion". The FASEB Journal. 34 (6): 7462–7482. doi: 10.1096/fj.202000107R. ISSN  1530-6860. PMID  32277854. S2CID  215742011.
  6. ^ Poulsen, Nicklas N.; Pedersen, Morten E.; Østergaard, Jesper; Petersen, Nickolaj J.; Nielsen, Christoffer T.; Heegaard, Niels H. H.; Jensen, Henrik (2016-09-20). "Flow-Induced Dispersion Analysis for Probing Anti-dsDNA Antibody Binding Heterogeneity in Systemic Lupus Erythematosus Patients: Toward a New Approach for Diagnosis and Patient Stratification". Analytical Chemistry. 88 (18): 9056–9061. doi: 10.1021/acs.analchem.6b01741. ISSN  0003-2700. PMID  27571264.
  7. ^ Pedersen, Morten E.; Østergaard, Jesper; Jensen, Henrik (2020-04-28). "In-Solution IgG Titer Determination in Fermentation Broth Using Affibodies and Flow-Induced Dispersion Analysis". ACS Omega. 5 (18): 10519–10524. doi: 10.1021/acsomega.0c00791. ISSN  2470-1343. PMC  7227040. PMID  32426609.
  8. ^ Pedersen, Morten E.; Haegebaert, Ragna M. S.; Østergaard, Jesper; Jensen, Henrik (2021-02-26). "Size-based characterization of adalimumab and TNF-α interactions using flow induced dispersion analysis: assessment of avidity-stabilized multiple bound species". Scientific Reports. 11 (1): 4754. Bibcode: 2021NatSR..11.4754P. doi: 10.1038/s41598-021-84113-z. ISSN  2045-2322. PMC  7910425. PMID  33637878.
  9. ^ Taylor, Sir Geoffrey; S, F. R. (1953-08-25). "Dispersion of soluble matter in solvent flowing slowly through a tube". Proc. R. Soc. Lond. A. 219 (1137): 186–203. Bibcode: 1953RSPSA.219..186T. doi: 10.1098/rspa.1953.0139. ISSN  0080-4630. S2CID  97372019.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook