From Wikipedia, the free encyclopedia

This is an extended version of the energy density table from the main Energy density page:

Energy densities table
Storage type Specific energy ( MJ/kg) Energy density (MJ/ L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary Antimatter 89,875,517,874 depends on density
Deuterium–tritium fusion 576,000,000 [1]
Uranium-235 fissile isotope 144,000,000 [1] 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor 3,456,000 35%
Pu-238 α-decay 2,200,000
Hf-178m2 isomer 1,326,000 17,649,060
Natural uranium (0.7% U235) in light-water reactor 443,000 35%
Ta-180m isomer 41,340 689,964
Metallic hydrogen (recombination energy) 216 [2]
Specific orbital energy of Low Earth orbit (approximate) 33.0
Beryllium + Oxygen 23.9 [3]
Lithium + Fluorine 23.75[ citation needed]
Octaazacubane potential explosive 22.9 [4]
Ammonia ( NH3) 16.9 11.5 [5][ circular reference]
Hydrogen + Oxygen 13.4 [6]
Gasoline + Oxygen –> Derived from Gasoline 13.3[ citation needed]
Dinitroacetylene explosive - computed[ citation needed] 9.8
Octanitrocubane explosive 8.5 [7] 16.9 [8]
Tetranitrotetrahedrane explosive - computed[ citation needed] 8.3
Heptanitrocubane explosive - computed[ citation needed] 8.2
Sodium (reacted with chlorine)[ citation needed] 7.0349
Hexanitrobenzene explosive 7 [9]
Tetranitrocubane explosive - computed[ citation needed] 6.95
Ammonal (Al+ NH4NO3 oxidizer)[ citation needed] 6.9 12.7
Tetranitromethane + hydrazine bipropellant - computed[ citation needed] 6.6
Nitroglycerin 6.38 [10] 10.2 [11]
ANFO- ANNM[ citation needed] 6.26
battery, Lithium–air 6.12
Octogen (HMX) 5.7 [10] 10.8 [12]
TNT [Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN  978-3-540-15147-0.[ citation needed] 4.610 6.92
Copper Thermite (Al + CuO as oxidizer)[ citation needed] 4.13 20.9
Thermite (powder Al + Fe2O3 as oxidizer) 4.00 18.4
Hydrogen peroxide decomposition (as monopropellant) 2.7 3.8
battery, Lithium-ion nanowire 2.54 29 95%[ clarification needed] [13]
battery, Lithium Thionyl Chloride (LiSOCl2) [14] 2.5
Water 220.64 bar, 373.8 °C[ citation needed][ clarification needed] 1.968 0.708
Kinetic energy penetrator [ clarification needed] 1.9 30
battery, Fluoride-ion [ citation needed] 1.7 2.8
battery, Hydrogen closed cycle H fuel cell [15] 1.62
Hydrazine decomposition (as monopropellant) 1.6 1.6
Ammonium nitrate decomposition (as monopropellant) 1.4 2.5
Thermal Energy Capacity of Molten Salt 1[ citation needed] 98% [16]
Molecular spring approximate[ citation needed] 1
battery, Sodium–Sulfur 0.72 [17] 1.23[ citation needed] 85% [18]
battery, Lithium–Manganese [19] [20] 0.83-1.01 1.98-2.09
battery, Lithium-ion [21] [22] 0.46-0.72 0.83-3.6 [23] 95% [24]
battery, Lithium–Sulfur [25] 1.80 [26] 1.26
battery, Sodium–Nickel Chloride, High Temperature 0.56
battery, Silver-oxide [19] 0.47 1.8
Flywheel 0.36-0.5 [27] [28]
5.56 × 45 mm NATO bullet[ clarification needed] 0.4 3.2
battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries [29] 0.4 1.55
battery, Zinc-manganese (alkaline), long life design [19] [21] 0.4-0.59 1.15-1.43
Liquid Nitrogen 0.349
Water - Enthalpy of Fusion 0.334 0.334
battery, Zinc Bromine flow (ZnBr) [30] 0.27
battery, Nickel metal hydride (NiMH), High Power design as used in cars [31] 0.250 0.493
battery, Nickel–Cadmium (NiCd) [21] 0.14 1.08 80% [24]
battery, Zinc–Carbon [21] 0.13 0.331
battery, Lead–acid [21] 0.14 0.36
battery, Vanadium redox 0.09[ citation needed] 0.1188 7070-75%
battery, Vanadium–Bromide redox 0.18 0.252 80%–90% [32]
Capacitor Ultracapacitor 0.0199 [33] 0.050[ citation needed]
Capacitor Supercapacitor 0.01[ citation needed] 80%–98.5% [34] 39%–70% [34]
Superconducting magnetic energy storage 0 0.008 [35] >95%
Capacitor 0.002 [36]
Neodymium magnet 0.003 [37]
Ferrite magnet 0.0003 [37]
Spring power (clock spring), torsion spring 0.0003 [38] 0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/ L) Peak recovery efficiency % Practical recovery efficiency %

Notes

  1. ^ a b Prelas, Mark (2015). Nuclear-Pumped Lasers. Springer. p. 135. ISBN  9783319198453.
  2. ^ http://iopscience.iop.org/1742-6596/215/1/012194/pdf/1742-6596_215_1_012194.pdf [ bare URL PDF]
  3. ^ Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society. 75 (13): 3102–3103. doi: 10.1021/ja01109a018.
  4. ^ Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry. 35 (24): 7124–7133. doi: 10.1021/ic9606237. PMID  11666896.
  5. ^ Ammonia#Combustion
  6. ^ Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion" (PDF). Archived from the original (PDF) on 9 May 2021. Retrieved 9 May 2021.
  7. ^ Wiley Interscience
  8. ^ Octanitrocubane
  9. ^ Wiley Interscience
  10. ^ a b "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  11. ^ Nitroglycerin
  12. ^ HMX
  13. ^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Archived from the original on 2010-01-07. Retrieved 2010-05-07.
  14. ^ "Lithium Thionyl Chloride Batteries". Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07.
  15. ^ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07.
  16. ^ "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  17. ^ "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Archived from the original on 2015-10-17. Retrieved 2010-05-07.
  18. ^ Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States). 2. Osti.gov. OSTI  5960185.
  19. ^ a b c "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  20. ^ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  21. ^ a b c d e "Battery energy storage in various battery types". AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21.
  22. ^ A typically available lithium-ion cell with an Energy Density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh - Highest Energy Density Cell in Market (LC-18650H4) - LC-18650H4". Archived from the original on 2008-12-01. Retrieved 2012-12-14.
  23. ^ "Lithium Batteries". Archived from the original on 2011-08-08. Retrieved 2010-07-02.
  24. ^ a b Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Archived from the original (PDF) on 2012-09-13. Retrieved 2009-02-26. Table 3: Input and Output Energy from Batteries
  25. ^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  26. ^ Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry. 44 (5): 506–509. doi: 10.1134/s1023193508050029. S2CID  97022927.
  27. ^ "Storage Technology Report, ST6 Flywheel" (PDF). Archived from the original (PDF) on 2013-01-14. Retrieved 2012-12-14.
  28. ^ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  29. ^ "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF). Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14.
  30. ^ "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  31. ^ High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  32. ^ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07.
  33. ^ "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
  34. ^ a b "Archived copy" (PDF). Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.{{ cite web}}: CS1 maint: archived copy as title ( link)
  35. ^ [1] Archived February 16, 2010, at the Wayback Machine
  36. ^ "Department of Computing". Archived from the original on 2006-10-06. Retrieved 2012-12-14.
  37. ^ a b "Archived copy" (PDF). Archived from the original (PDF) on 2011-05-13. Retrieved 2012-12-14.{{ cite web}}: CS1 maint: archived copy as title ( link)
  38. ^ "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.
From Wikipedia, the free encyclopedia

This is an extended version of the energy density table from the main Energy density page:

Energy densities table
Storage type Specific energy ( MJ/kg) Energy density (MJ/ L) Peak recovery efficiency % Practical recovery efficiency %
Arbitrary Antimatter 89,875,517,874 depends on density
Deuterium–tritium fusion 576,000,000 [1]
Uranium-235 fissile isotope 144,000,000 [1] 1,500,000,000
Natural uranium (99.3% U-238, 0.7% U-235) in fast breeder reactor 86,000,000
Reactor-grade uranium (3.5% U-235) in light-water reactor 3,456,000 35%
Pu-238 α-decay 2,200,000
Hf-178m2 isomer 1,326,000 17,649,060
Natural uranium (0.7% U235) in light-water reactor 443,000 35%
Ta-180m isomer 41,340 689,964
Metallic hydrogen (recombination energy) 216 [2]
Specific orbital energy of Low Earth orbit (approximate) 33.0
Beryllium + Oxygen 23.9 [3]
Lithium + Fluorine 23.75[ citation needed]
Octaazacubane potential explosive 22.9 [4]
Ammonia ( NH3) 16.9 11.5 [5][ circular reference]
Hydrogen + Oxygen 13.4 [6]
Gasoline + Oxygen –> Derived from Gasoline 13.3[ citation needed]
Dinitroacetylene explosive - computed[ citation needed] 9.8
Octanitrocubane explosive 8.5 [7] 16.9 [8]
Tetranitrotetrahedrane explosive - computed[ citation needed] 8.3
Heptanitrocubane explosive - computed[ citation needed] 8.2
Sodium (reacted with chlorine)[ citation needed] 7.0349
Hexanitrobenzene explosive 7 [9]
Tetranitrocubane explosive - computed[ citation needed] 6.95
Ammonal (Al+ NH4NO3 oxidizer)[ citation needed] 6.9 12.7
Tetranitromethane + hydrazine bipropellant - computed[ citation needed] 6.6
Nitroglycerin 6.38 [10] 10.2 [11]
ANFO- ANNM[ citation needed] 6.26
battery, Lithium–air 6.12
Octogen (HMX) 5.7 [10] 10.8 [12]
TNT [Kinney, G.F.; K.J. Graham (1985). Explosive shocks in air. Springer-Verlag. ISBN  978-3-540-15147-0.[ citation needed] 4.610 6.92
Copper Thermite (Al + CuO as oxidizer)[ citation needed] 4.13 20.9
Thermite (powder Al + Fe2O3 as oxidizer) 4.00 18.4
Hydrogen peroxide decomposition (as monopropellant) 2.7 3.8
battery, Lithium-ion nanowire 2.54 29 95%[ clarification needed] [13]
battery, Lithium Thionyl Chloride (LiSOCl2) [14] 2.5
Water 220.64 bar, 373.8 °C[ citation needed][ clarification needed] 1.968 0.708
Kinetic energy penetrator [ clarification needed] 1.9 30
battery, Fluoride-ion [ citation needed] 1.7 2.8
battery, Hydrogen closed cycle H fuel cell [15] 1.62
Hydrazine decomposition (as monopropellant) 1.6 1.6
Ammonium nitrate decomposition (as monopropellant) 1.4 2.5
Thermal Energy Capacity of Molten Salt 1[ citation needed] 98% [16]
Molecular spring approximate[ citation needed] 1
battery, Sodium–Sulfur 0.72 [17] 1.23[ citation needed] 85% [18]
battery, Lithium–Manganese [19] [20] 0.83-1.01 1.98-2.09
battery, Lithium-ion [21] [22] 0.46-0.72 0.83-3.6 [23] 95% [24]
battery, Lithium–Sulfur [25] 1.80 [26] 1.26
battery, Sodium–Nickel Chloride, High Temperature 0.56
battery, Silver-oxide [19] 0.47 1.8
Flywheel 0.36-0.5 [27] [28]
5.56 × 45 mm NATO bullet[ clarification needed] 0.4 3.2
battery, Nickel–metal hydride (NiMH), low power design as used in consumer batteries [29] 0.4 1.55
battery, Zinc-manganese (alkaline), long life design [19] [21] 0.4-0.59 1.15-1.43
Liquid Nitrogen 0.349
Water - Enthalpy of Fusion 0.334 0.334
battery, Zinc Bromine flow (ZnBr) [30] 0.27
battery, Nickel metal hydride (NiMH), High Power design as used in cars [31] 0.250 0.493
battery, Nickel–Cadmium (NiCd) [21] 0.14 1.08 80% [24]
battery, Zinc–Carbon [21] 0.13 0.331
battery, Lead–acid [21] 0.14 0.36
battery, Vanadium redox 0.09[ citation needed] 0.1188 7070-75%
battery, Vanadium–Bromide redox 0.18 0.252 80%–90% [32]
Capacitor Ultracapacitor 0.0199 [33] 0.050[ citation needed]
Capacitor Supercapacitor 0.01[ citation needed] 80%–98.5% [34] 39%–70% [34]
Superconducting magnetic energy storage 0 0.008 [35] >95%
Capacitor 0.002 [36]
Neodymium magnet 0.003 [37]
Ferrite magnet 0.0003 [37]
Spring power (clock spring), torsion spring 0.0003 [38] 0.0006
Storage type Energy density by mass (MJ/kg) Energy density by volume (MJ/ L) Peak recovery efficiency % Practical recovery efficiency %

Notes

  1. ^ a b Prelas, Mark (2015). Nuclear-Pumped Lasers. Springer. p. 135. ISBN  9783319198453.
  2. ^ http://iopscience.iop.org/1742-6596/215/1/012194/pdf/1742-6596_215_1_012194.pdf [ bare URL PDF]
  3. ^ Cosgrove, Lee A.; Snyder, Paul E. (2002-05-01). "The Heat of Formation of Beryllium Oxide1". Journal of the American Chemical Society. 75 (13): 3102–3103. doi: 10.1021/ja01109a018.
  4. ^ Glukhovtsev, Mikhail N.; Jiao, Haijun; Schleyer, Paul von Ragué (1996-05-28). "Besides N2, What Is the Most Stable Molecule Composed Only of Nitrogen Atoms?†". Inorganic Chemistry. 35 (24): 7124–7133. doi: 10.1021/ic9606237. PMID  11666896.
  5. ^ Ammonia#Combustion
  6. ^ Miller, Catherine (1 February 2021). "Introduction to Rocket Propulsion" (PDF). Archived from the original (PDF) on 9 May 2021. Retrieved 9 May 2021.
  7. ^ Wiley Interscience
  8. ^ Octanitrocubane
  9. ^ Wiley Interscience
  10. ^ a b "Chemical Explosives". Fas.org. 2008-05-30. Retrieved 2010-05-07.
  11. ^ Nitroglycerin
  12. ^ HMX
  13. ^ "Nanowire battery can hold 10 times the charge of existing lithium-ion battery". News-service.stanford.edu. 2007-12-18. Archived from the original on 2010-01-07. Retrieved 2010-05-07.
  14. ^ "Lithium Thionyl Chloride Batteries". Nexergy. Archived from the original on 2009-02-04. Retrieved 2010-05-07.
  15. ^ "The Unitized Regenerative Fuel Cell". Llnl.gov. 1994-12-01. Archived from the original on 2008-09-20. Retrieved 2010-05-07.
  16. ^ "Technology". SolarReserve. Archived from the original on 2008-01-19. Retrieved 2010-05-07.
  17. ^ "New battery could change world, one house at a time". Heraldextra.com. 2009-04-04. Archived from the original on 2015-10-17. Retrieved 2010-05-07.
  18. ^ Kita, A.; Misaki, H.; Nomura, E.; Okada, K. (August 1984). "Energy Citations Database (ECD) - - Document #5960185". Proc., Intersoc. Energy Convers. Eng. Conf.; (United States). 2. Osti.gov. OSTI  5960185.
  19. ^ a b c "ProCell Lithium battery chemistry". Duracell. Archived from the original on 2011-07-10. Retrieved 2009-04-21.
  20. ^ "Properties of non-rechargeable lithium batteries". corrosion-doctors.org. Retrieved 2009-04-21.
  21. ^ a b c d e "Battery energy storage in various battery types". AllAboutBatteries.com. Archived from the original on 2009-04-28. Retrieved 2009-04-21.
  22. ^ A typically available lithium-ion cell with an Energy Density of 201 wh/kg "Li-Ion 18650 Cylindrical Cell 3.6V 2600mAh - Highest Energy Density Cell in Market (LC-18650H4) - LC-18650H4". Archived from the original on 2008-12-01. Retrieved 2012-12-14.
  23. ^ "Lithium Batteries". Archived from the original on 2011-08-08. Retrieved 2010-07-02.
  24. ^ a b Justin Lemire-Elmore (2004-04-13). "The Energy Cost of Electric and Human-Powered Bicycles" (PDF). p. 7. Archived from the original (PDF) on 2012-09-13. Retrieved 2009-02-26. Table 3: Input and Output Energy from Batteries
  25. ^ "Lithium Sulfur Rechargeable Battery Data Sheet" (PDF). Sion Power, Inc. 2005-09-28. Archived from the original (PDF) on 2008-08-28.
  26. ^ Kolosnitsyn, V.S.; E.V. Karaseva (2008). "Lithium-sulfur batteries: Problems and solutions". Russian Journal of Electrochemistry. 44 (5): 506–509. doi: 10.1134/s1023193508050029. S2CID  97022927.
  27. ^ "Storage Technology Report, ST6 Flywheel" (PDF). Archived from the original (PDF) on 2013-01-14. Retrieved 2012-12-14.
  28. ^ "Next-gen Of Flywheel Energy Storage". Product Design & Development. Archived from the original on 2010-07-10. Retrieved 2009-05-21.
  29. ^ "Advanced Materials for Next Generation NiMH Batteries, Ovonic, 2008" (PDF). Archived from the original (PDF) on 2010-01-04. Retrieved 2012-12-14.
  30. ^ "ZBB Energy Corp". Archived from the original on 2007-10-15. 75 to 85 watt-hours per kilogram
  31. ^ High Energy Metal Hydride Battery Archived 2009-09-30 at the Wayback Machine
  32. ^ "Microsoft Word - V-FUEL COMPANY AND TECHNOLOGY SHEET 2008.doc" (PDF). Archived from the original (PDF) on 2010-11-22. Retrieved 2010-05-07.
  33. ^ "Maxwell Technologies: Ultracapacitors - BCAP3000". Maxwell.com. Retrieved 2010-05-07.
  34. ^ a b "Archived copy" (PDF). Archived from the original (PDF) on 2012-07-22. Retrieved 2012-12-14.{{ cite web}}: CS1 maint: archived copy as title ( link)
  35. ^ [1] Archived February 16, 2010, at the Wayback Machine
  36. ^ "Department of Computing". Archived from the original on 2006-10-06. Retrieved 2012-12-14.
  37. ^ a b "Archived copy" (PDF). Archived from the original (PDF) on 2011-05-13. Retrieved 2012-12-14.{{ cite web}}: CS1 maint: archived copy as title ( link)
  38. ^ "Garage Door Springs". Garagedoor.org. Retrieved 2010-05-07.

Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook