From Wikipedia, the free encyclopedia
Einstein Probe
Einstein Probe artist impression
NamesAiyinsitan Tanzhen
Mission type Space observatory
Operator CAS, ESA
COSPAR ID 2024-007A Edit this at Wikidata
SATCAT no.58753
Website ep.bao.ac.cn/ep/
Mission duration3 years (planned)
3 months and 18 days (ongoing)
Spacecraft properties
SpacecraftEinstein Probe
BusPhoenix-Eye-2
Manufacturer CAS
Launch mass1,450 kg (3,200 lb) [1]
Dimensions3 × 3.4 m (9.8 × 11.2 ft)
Start of mission
Launch date9 January 2024, 07:02 UTC [2]
Rocket Long March 2C [2]
Launch site Xichang LC-3
Contractor CASC
Orbital parameters
Reference system Geocentric orbit
Regime Low Earth orbit
Perigee altitude581 km
Apogee altitude596 km
Inclination29°
Period96 minutes
Instruments
Wide-field X-ray Telescope (WXT)
Follow-up X-ray Telescope (FXT)

Einstein Probe Logo  

The Einstein Probe (EP) is an X-ray space telescope mission by Chinese Academy of Sciences (CAS) in partnership with European Space Agency (ESA) and the Max Planck Institute for Extraterrestrial Physics (MPE) dedicated to time-domain high-energy astrophysics. [3] [4] The primary goals are "to discover high-energy transients and monitor variable objects". [5] The telescope was launched by a Long March 2C rocket from the Xichang Satellite Launch Centre in China, on 9 January 2024, at 07:03 UTC. [6]

Scientific objectives

The primary science objectives are: [7]

  1. Identify inactive black holes to study how matter is precipitated there by detecting the transient events that take the form of X-ray flares;
  2. Detect the electromagnetic counterpart of events triggering gravitational waves such as the merger of neutron stars which will be discovered by the next generation of gravitational wave detectors;
  3. Carry out permanent monitoring of the entire sky to detect the various transient phenomena and carry out measurements of known variable X-ray sources.

Instruments

Einstein Probe carries 2 scientific instruments: the Wide-field X-ray Telescope (WXT), and the Follow-up X-ray Telescope (FXT). [8] Both telescopes utilize X-ray focusing optics.

  • Wide-field X-ray Telescope (WXT): WXT has a new optics design, called " lobster-eye", that has wider field of view. [4] [8] "Lobster-eye" optics was first tested by the Lobster Eye Imager for Astronomy (LEIA) mission, launched in 2022. [4] [9] [10] WXT consists of 12 Lobster-eye optics sensor modules, together creating a very large instantaneous field-of-view of 3600 square degrees. The nominal detection bandpass of WXT is 0.5~4.0 keV. Each module weighs 17 kg and has an electrical power consumption of just under 13 W. With the peripherals, the entire telescope weighs 251 kg and has a power consumption of 315 W.
  • Follow-up X-ray Telescope (FXT): FXT has optics adopted from eROSITA, "the mirror module consists of 54 nested Wolter mirrors with a focal length of 1600 mm and an effective area of greater than 300 cm2 at 1.5 keV." [8]

The probe weights 1450 kg and is 3-by-3.4 metres. [4]

Launch

Einstein Probe was launched on 9 January 2024, at 07:03 UTC by a Long March 2C rocket from the Xichang Satellite Launch Centre in China, and successfully placed in low Earth orbit at an altitude of 600 km [2] and an inclination of 29 degrees, giving an orbital period of 96 minutes. [11]

First results

CAS reported that EP "performs as expected in the first month". [12] The probe detected fast X-ray transient EP240315a, [13] and bright X-ray flares EP240305a [14] and EPW20240219aa. [15]

See also

References

  1. ^ "Einstein Probe factsheet". ESA. Retrieved 10 January 2024.
  2. ^ a b c "Einstein Probe lifts off on a mission to monitor the X-ray sky". www.esa.int.
  3. ^ "Einstein Probe in a nutshell". www.esa.int. Retrieved 28 December 2023.
  4. ^ a b c d "Einstein Probe factsheet". www.esa.int. Retrieved 28 December 2023.
  5. ^ "Einstein Probe Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 28 December 2023.
  6. ^ Jones, Andrew (January 9, 2024). "China launches "lobster eye" Einstein Probe to unveil mysteries of X-ray universe". spacenews.com.
  7. ^ "Science Objectives Overview". Einstein Probe. Retrieved 14 January 2024.
  8. ^ a b c "EinsteinProbe". www.mpe.mpg.de. Retrieved 28 December 2023.
  9. ^ "Einstein Probe Time Domain Astronomical Information Center". ep.bao.ac.cn. Archived from the original on 28 December 2023. Retrieved 28 December 2023.
  10. ^ Jones, Andrew (November 25, 2022). "China tests novel 'lobster eye' X-ray telescope for observing cosmic events". Space.com.
  11. ^ "Technical details for satellite EINSTEIN PROBE". N2YO.com - Real Time Satellite Tracking and Predictions. Retrieved 2024-03-07.
  12. ^ "Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 13 April 2024.
  13. ^ "Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 13 April 2024.
  14. ^ "Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 13 April 2024.
  15. ^ "Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 13 April 2024.

Further reading

External links

From Wikipedia, the free encyclopedia
Einstein Probe
Einstein Probe artist impression
NamesAiyinsitan Tanzhen
Mission type Space observatory
Operator CAS, ESA
COSPAR ID 2024-007A Edit this at Wikidata
SATCAT no.58753
Website ep.bao.ac.cn/ep/
Mission duration3 years (planned)
3 months and 18 days (ongoing)
Spacecraft properties
SpacecraftEinstein Probe
BusPhoenix-Eye-2
Manufacturer CAS
Launch mass1,450 kg (3,200 lb) [1]
Dimensions3 × 3.4 m (9.8 × 11.2 ft)
Start of mission
Launch date9 January 2024, 07:02 UTC [2]
Rocket Long March 2C [2]
Launch site Xichang LC-3
Contractor CASC
Orbital parameters
Reference system Geocentric orbit
Regime Low Earth orbit
Perigee altitude581 km
Apogee altitude596 km
Inclination29°
Period96 minutes
Instruments
Wide-field X-ray Telescope (WXT)
Follow-up X-ray Telescope (FXT)

Einstein Probe Logo  

The Einstein Probe (EP) is an X-ray space telescope mission by Chinese Academy of Sciences (CAS) in partnership with European Space Agency (ESA) and the Max Planck Institute for Extraterrestrial Physics (MPE) dedicated to time-domain high-energy astrophysics. [3] [4] The primary goals are "to discover high-energy transients and monitor variable objects". [5] The telescope was launched by a Long March 2C rocket from the Xichang Satellite Launch Centre in China, on 9 January 2024, at 07:03 UTC. [6]

Scientific objectives

The primary science objectives are: [7]

  1. Identify inactive black holes to study how matter is precipitated there by detecting the transient events that take the form of X-ray flares;
  2. Detect the electromagnetic counterpart of events triggering gravitational waves such as the merger of neutron stars which will be discovered by the next generation of gravitational wave detectors;
  3. Carry out permanent monitoring of the entire sky to detect the various transient phenomena and carry out measurements of known variable X-ray sources.

Instruments

Einstein Probe carries 2 scientific instruments: the Wide-field X-ray Telescope (WXT), and the Follow-up X-ray Telescope (FXT). [8] Both telescopes utilize X-ray focusing optics.

  • Wide-field X-ray Telescope (WXT): WXT has a new optics design, called " lobster-eye", that has wider field of view. [4] [8] "Lobster-eye" optics was first tested by the Lobster Eye Imager for Astronomy (LEIA) mission, launched in 2022. [4] [9] [10] WXT consists of 12 Lobster-eye optics sensor modules, together creating a very large instantaneous field-of-view of 3600 square degrees. The nominal detection bandpass of WXT is 0.5~4.0 keV. Each module weighs 17 kg and has an electrical power consumption of just under 13 W. With the peripherals, the entire telescope weighs 251 kg and has a power consumption of 315 W.
  • Follow-up X-ray Telescope (FXT): FXT has optics adopted from eROSITA, "the mirror module consists of 54 nested Wolter mirrors with a focal length of 1600 mm and an effective area of greater than 300 cm2 at 1.5 keV." [8]

The probe weights 1450 kg and is 3-by-3.4 metres. [4]

Launch

Einstein Probe was launched on 9 January 2024, at 07:03 UTC by a Long March 2C rocket from the Xichang Satellite Launch Centre in China, and successfully placed in low Earth orbit at an altitude of 600 km [2] and an inclination of 29 degrees, giving an orbital period of 96 minutes. [11]

First results

CAS reported that EP "performs as expected in the first month". [12] The probe detected fast X-ray transient EP240315a, [13] and bright X-ray flares EP240305a [14] and EPW20240219aa. [15]

See also

References

  1. ^ "Einstein Probe factsheet". ESA. Retrieved 10 January 2024.
  2. ^ a b c "Einstein Probe lifts off on a mission to monitor the X-ray sky". www.esa.int.
  3. ^ "Einstein Probe in a nutshell". www.esa.int. Retrieved 28 December 2023.
  4. ^ a b c d "Einstein Probe factsheet". www.esa.int. Retrieved 28 December 2023.
  5. ^ "Einstein Probe Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 28 December 2023.
  6. ^ Jones, Andrew (January 9, 2024). "China launches "lobster eye" Einstein Probe to unveil mysteries of X-ray universe". spacenews.com.
  7. ^ "Science Objectives Overview". Einstein Probe. Retrieved 14 January 2024.
  8. ^ a b c "EinsteinProbe". www.mpe.mpg.de. Retrieved 28 December 2023.
  9. ^ "Einstein Probe Time Domain Astronomical Information Center". ep.bao.ac.cn. Archived from the original on 28 December 2023. Retrieved 28 December 2023.
  10. ^ Jones, Andrew (November 25, 2022). "China tests novel 'lobster eye' X-ray telescope for observing cosmic events". Space.com.
  11. ^ "Technical details for satellite EINSTEIN PROBE". N2YO.com - Real Time Satellite Tracking and Predictions. Retrieved 2024-03-07.
  12. ^ "Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 13 April 2024.
  13. ^ "Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 13 April 2024.
  14. ^ "Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 13 April 2024.
  15. ^ "Time Domain Astronomical Information Center". ep.bao.ac.cn. Retrieved 13 April 2024.

Further reading

External links


Videos

Youtube | Vimeo | Bing

Websites

Google | Yahoo | Bing

Encyclopedia

Google | Yahoo | Bing

Facebook